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Transitive and Absorbent Filters of Implicative
Almost Distributive Lattices

Berhanu Assaye Alaba, Mihret Alamneh and Tilahun Mekonnen

Abstract—In this paper, we introduce the concept of transitive
and absorbent filters of implicative almost distributive lattices
and studied their properties. A necessary and sufficient condition
is derived for every filter to become a transitive filter. Some
sufficient conditions are also derived for a filter to become a
transitive filter. A set of equivalent conditions is obtained for a
filter to become an absorbent filter.

Index Terms—Implicative almost distributive lattices, transi-
tive filters, absorbent filters.

I. INTRODUCTION

IN order to research the logical system whose propositional
value is given in a lattice, Y. Xu [1] proposed the concept

of lattice implication algebras and discussed some of their
properties. Y. Xu and K. Y. Qin [2] introduced the notions
of a filter and an implicative filter in a lattice implication
algebra, and investigate their properties. Y. B. Jun [3], [4]
introduced various types of filters in lattice implication algebra
and studied their properties. M. Sambasiva Rao [5] introduced
the notions of transitive and absorbent filters and studied some
of their properties. Venkateswarlu Kolluru and Berhanu Bekele
[6] introduced the concept of implicative algebras and obtained
certain properties. They also proved that every implicative
algebra is a lattice implication algebra. The concept of an
Almost Distributive Lattice (ADL) was introduced in 1981 by
U. M. Swamy and G. C. Rao [7] as a common abstraction
to most of the existing ring theoretic and lattice theoretic
generalization of Boolean algebra. Berhanu Assaye, Mihret
Alamneh and Tilahun Mekonnen [8] introduced the concept of
Implicative Almost Distributive Lattices (IADLs) as a general-
ization of implicative algebra in the class of ADLs. We proved
some properties and equivalence condition in an implicative
almost distributive lattice. We also introduced filter, implica-
tive filter, positive implicative filter and associative filter in an
implicative almost distributive lattice [9]. We proved that every
positive implicative filter is an implicative filter and hence a
filter. We gave example to show that a filter may not be an
associative filter. We provided equivalent conditions for both a
positive implicative filter and an associative filter. In this paper,
the concept of transitive filter is introduced in implicative
almost distributive lattices and their properties are studied. A
necessary and sufficient condition is obtained for every filter of
IADLs to become a transitive filter. Some sufficient conditions
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are also derived for a filter to become a transitive filter. The
concept of absorbent filters are introduced in IADLs and their
properties are studied. A set of equivalent conditions is derived
among absorbent, implicative and positive implicative filters.

In the following, we give some important definitions and
results that will be useful in this study.

II. PRELIMINARIES

Definition 2.1 ([7]): An algebra (L,∨,∧,0) of type (2,2,0)
is called an Almost Distributive Lattice (ADL) with 0 if it
satisfies the following axioms:

1) (x∨ y)∧ z = (x∧ z)∨ (y∧ z)
2) x∧ (y∨ z) = (x∧ y)∨ (x∧ z)
3) (x∨ y)∧ y = y
4) (x∨ y)∧ x = x
5) x∨ (x∧ y) = x
6) 0∧ x = 0, for all x,y,z ∈ L.
If (L,∨,∧,0) is an ADL, for any x,y ∈ L, define x ≤ y if

and only if x = x∧ y or equivalently x∨ y = y , then ≤ is a
partial ordering on L.

Definition 2.2 ([7]): Let L be an ADL. An element m ∈ L
is called maximal if for any x ∈ L, m≤ x implies m = x.

Definition 2.3 ([7]): Let L be an ADL. For any a ∈ L,
principal filter of L generated by a is [a) = {x∨a : x ∈ L}.

Definition 2.4 ([7]): A non-empty subset F of an ADL L
is called a filter of L if it satisfies

1) x,y ∈ F implies x∧ y ∈ F
2) x ∈ F and y ∈ L implies y∨ x ∈ F , for all x,y ∈ L.
Theorem 2.5 ([7]): Let F be a filter of an ADL L and x,y∈

L. Then x∨ y ∈ F if and only if y∨ x ∈ F .
Definition 2.6 ([7]): An algebra (L,→, ′,0,1) of type

(2,1,0,0) is called implicative algebra if it satisfies the fol-
lowing conditions:

1) x→ (y→ z) = y→ (x→ z)
2) 1→ x = x
3) x→ 1 = 1
4) x→ y = y′→ x′

5) (x→ y)→ y = (y→ x)→ x
6) 0′ = 1 , for x,y,z ∈ L
Definition 2.7 ([6]): A relation ≤ on an implicative algebra

L is defined as follows: x≤ y⇔ x→ y = 1, for all x,y ∈ L.
Theorem 2.8 ([6]): Let (L,→,′ ,0,1) be an implicative al-

gebra. Then (L,∨,∧,→,′ ,0,1) is a lattice implication algebra.
Definition 2.9 ([8]): Let (L,∨,∧,0,m) be an ADL with 0

and maximal element m. Then an algebra (L,∨,∧,→,′ ,0,m)
of type (2,2,2,1,0,0) is called Implicative Almost Distributive
Lattice (IADL) if it satisfies the following conditions:
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1) x∨ y = (x→ y)→ y
2) x∧ y = [(x→ y)→ x′]′

3) x→ (y→ z) = y→ (x→ z)
4) m→ x = x
5) x→ m = m
6) x→ y = y′→ x′

7) 0′ = m, for all x,y,z ∈ L.
Now we define the relation ≤ on an IADL L as follows:

x ≤ y⇔ x→ y = m, for all x,y ∈ L.The relation ≤ on L is a
partial ordering. Thus (L,≤) is a poset.

Theorem 2.10 ([8]): In an IADL L, for all x,y,z ∈ L the
following conditions hold:

1) [(x→ y)→ y]∧m = [(y→ x)→ x]∧m
2) [((x→ y)→ x′)′]∧m = [((y→ x)→ y′)′]∧m
3) x→ x = m
4) m′ = 0
5) (x′)′ = x
6) x′ = x→ 0
7) 0→ x = m
8) x→ y = m = y→ x implies x = y.
9) If x→ y = m and y→ z = m, then x→ z = m

10) x≤ y if and only if z→ x≤ z→ y and y→ z≤ x→ z
11) ((x→ y)→ y)→ y = x→ y
12) (x→ y)→ ((y→ z)→ (x→ z)) = m, (x→ y)→ ((z→

x)→ (z→ y)) = m
13) (x→ z)→ (x→ y) = (z→ x)→ (z→ y).
14) x→ y≤ (y→ z)→ (x→ z)
15) (x∧ y)′ = x′∨ y′, (x∨ y)′ = x′∧ y′

16) x≤ y implies y′ ≤ x′.
17) (x∨ y)→ z = (x→ z)∧ (y→ z)
18) (x∧ y)→ z = (x→ z)∨ (y→ z)
19) x→ (y∧ z) = (x→ y)∧ (x→ z)
20) x→ (y∨ z) = (x→ y)∨ (x→ z).
Definition 2.11 ([9]): Let L be an IADL.
1) A subset F of L is called a filter of L if it satisfies:

(F1) m ∈ F
(F2) x ∈ F and x→ y ∈ F implies y ∈ F , for all x,y ∈ L.

2) A subset F of L is called implicative filter of L if it
satisfies
(F1) m ∈ F
(I) x→ y ∈ F and x→ (y→ z) ∈ F implies x→ z ∈ F ,
for all x,y,z ∈ L, .

Lemma 2.12 ([9]): Let F be a non-empty subset of an IADL
L. Then F is a filter of L if and only if it satisfies for all x,y∈F
and z ∈ L:

x≤ y→ z implies z ∈ F
Lemma 2.13 ([9]): Every filter F of an IADL L has the

following property: x≤ y and x ∈ F implies y ∈ F .
Definition 2.14 ([9]): A subset F of IADL L is called a

positive implicative filter of L if it satifies:
(F1) m ∈ F
(P1) x ∈ F and x→ ((y→ z)→ y) ∈ F implies y ∈ F , for

x,y,z ∈ L.
Theorem 2.15 ([9]): Let F be a filter of IADL L. Then F is

a positive implicative filter of L if and only if for all x,y ∈ L,
(F′) m ∈ F
(P2) (x→ y)→ x ∈ F implies x ∈ F .

Theorem 2.16 ([9]): Let F be a non-empty subset of an
IADL L. If F is a positive implicative filter of L, then it is an
implicative filter of L.

Definition 2.17 ([9]): Let L be an IADL and x ∈ L be fixed.
A subset F of L is called an associative filter of L with respect
to x if it satisfies:
(F1) m ∈ F
(A1) x→ y ∈ F and x→ (y→ z) ∈ F implies z ∈ F , for all

x,y ∈ L.
Theorem 2.18 ([9]): Every associative filter of an IADL L

is a filter of L.
Theorem 2.19 ([9]): Let F be a filter of an IADL L. Then

F is an assocaitive filter of L if and only if it satisfies:
(A2) x→ (y→ z)∈F implies (x→ y)→ z∈F for all x,y,z∈

L.
Theorem 2.20 ([9]): Let F be a filter on an IADL L. Then

F is an associative filter of L if and only if it satisfies
(A3) x→ (x→ y) ∈ F implies y ∈ F for all x,y ∈ L.
Definition 2.21 ([10]): A subset F of lattice implication

algebra L is called a fantastic filter of L if it satisfies: (F1)
1 ∈ F and

(F8) z→ (y→ x)∈F and z∈F imply ((x→ y)→ y)→ x∈F
for all x,y,z ∈ L.

Theorem 2.22 ([9]): Every positive implicative filter of
IADL L is a filter of L.

III. TRANSITIVE FILTERS IN IMPLICATIVE ALMOST
DISTRIBUTIVE LATTICES (IADLS)

In this section, we introduce transitive filters in an Implica-
tive almost distributive (IADL). We discuss some properties of
these filters and an equivalent condition is obtained for every
filter to become a transitive filter.

Definition 3.1: A subset F of an IADL L is called a transitive
filter of L if it satisfies:

(F1) m ∈ F where m ∈ L and
(T1) x→ y ∈ F , y→ z ∈ F implies that x→ z ∈ F , for all

x,y,z ∈ L.
Example 3.2: The principal filter F = [m) of an IADL L is

a transitive filter of L.
Proof: Let L be an IADL. Let x,y,z ∈ L be such that

x→ y ∈ [m) and y→ z ∈ [m). Then m≤ x→ y and m≤ y→ z.
Since m is a maximal element of L, we have x→ y = m and
y→ z = m. This implies x ≤ y and y ≤ z (by Theorem 2.9).
Hence x ≤ z, which implies x→ z = m ∈ [m). Therefore F is
a transitive filter of L.

Example 3.3: Let L = {0,x,y,z,m} be a set. Define the
partially ordered relation on L as 0 < x < y < z < m and also
define x∧ y = min{x,y}, x∨ y = max {x,y} for all x,y,z ∈ L.
Define the unary operation ′ and binary operation→ as shown
in the tables below respectively,

a a′

0 m
x z
y y
z x
m 0

→ 0 x y z m
0 m m m m m
x z m m m m
y y z m m m
z x y z m m
m 0 x y z m
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Then clearly (L,∨,∧,→,′ ,0,m) is an IADL. Now consider
F = {x,y,z,m}. It can be easily verified that F is a transitive
filter.

In the following, some properties of transitive filters in
IADLs are discussed.

Lemma 3.4: Let F be a transitive filter of IADL L. Then,
we have the following

1) x ∈ F and x≤ y implies that y ∈ F
2) x ∈ F and x→ y ∈ F implies that y ∈ F .
3) The intersection of two transitive filters is again a

transitive filter.
Proof: Let F and G be a transitive filter of an IADL L

and x,y,z ∈ L.
1) Suppose x ∈ F and x ≤ y. Then x ∈ F and x→ y = m.

Since m→ x = x ∈ F and x→ y = m ∈ F , we get y =
m→ y ∈ F (by definition of transitive filter).

2) Let x∈F and x→ y∈F . Then we get that m→ x= x∈F
and x→ y∈ F . Since F is transitive filter, it yields y∈ F .

3) Suppose x→ y ∈ F ∩G and y→ z ∈ F ∩G. We need to
show x→ z ∈ F ∩G. Now x→ y ∈ F ∩G and y→ z ∈
F ∩G implies x→ y ∈ F , y→ z ∈ F , x→ y ∈ G and
y→ z ∈ G. Since F and G are transitive filter of L, we
get x→ z∈F and x→ z∈G. This implies x→ z∈F∩G.
Therefore F ∩G is a transitive filter of L.

Theorem 3.5: Every transitive filter of an IADL L is an ADL
filter of L.

Proof: Let F be a transitive filter of an IADL L. We need
to prove F is an ADL filter of L.

1) Let x,y ∈ F . Now y≤ x→ y = m∧ (x→ y) = (x→ x)∧
(x→ y) = x→ (x∧ y). From Lemma 3.4 we get x→
x∧ y ∈ F . Again by Lemma 3.4, F is a filter and x ∈ F
then it follows that x∧ y ∈ F .

2) Let x ∈ F and y ∈ L. Since x ≤ y∨ x it follows from
Lemma 3.4(1) that y∨ x ∈ F . Hence F is an ADL filter
of L.

But the converse of Theorem 3.5 is not true. It can be seen
in the following example.

Example 3.6: Let L = {0,x,y,z,w,m} be the underlining set
with partial ordering ≤= { (0,w), (0,x), (0,z), (0,y), (0,m),
(w,x), (w,y), (w,m), (z,y), (z,m), (y,m), (0,0), (w,w), (x,x),
(z,z), (y,y), (m,m)} Define the unary operation ′ and a binary
operation → on L as shown in the tables below respectively,

a a′

0 m
x z
y w
z x
w y
m 0

→ 0 x y z w m
0 m m m m m m
x z m y z y m
y w x m w x m
z x x w m x m
w y m m y m m
m 0 x y z w m

Define the binary operation ∨ and ∧ on L as follows
x ∨ y = (x → y) → y and x ∧ y = [(x → y) → x′]′. Then

(L,∨,∧,→,′ ,0,m) is an IADL. Clearly F = {y,m} be an
ADL filter of L but not transitive filter of L, because of
x→ w = y ∈ F and w→ z = y ∈ F but x→ z = z /∈ F .

Theorem 3.7: Let F be an ADL filter of IADL L. If x∧(x→
y) = x∧ y for all x,y,z ∈ L, then F is a transitive filter of L.

Proof: Let F be an ADL filter of an IADL L. Let x,y,z∈ L
be such that x→ y ∈ F and y→ z ∈ F . Assume x∧ (x→ y) =
x∧ y. Since y→ z ≤ x→ (y→ z) and F is an ADL filter of
L, we get x→ (y→ z) ∈ F . Now (x→ y)∧ (x→ z) = x→
(y∧ (y→ z)) = (x→ y)∧ (x→ (y→ z)) ∈ F(...from theorem
2.9). This implies (x→ y)∧ (x→ z) ∈ F and F is an ADL
filter of L. Thus x→ z ∈ F . Therefore, F is a transitive filter
of L.

From Lemma 3.4 (2) it can be easily observed that every
transitive filter is a filter. However, in the following a necessary
and sufficient condition is derived for every filter of IADL L
to become a transitive filter.

Theorem 3.8: Let F be a filter of IADL L. Then F is a
transitive filter if and only if for all x,y,z ∈ L,it satisfies the
following condition:
(T2) x→ y ∈ F , (x→ y)→ (y→ z) ∈ F implies (x→ y)→

(x→ z) ∈ F
Proof: Let F be a filter of IADL L. Assume that F is a

transitive filter of L. Let x,y,z ∈ L be such that x→ y ∈ F and
(x→ y)→ (y→ z) ∈ F . Since F is a filter we have y→ z ∈ F .
Now (y→ z)→ [(x→ y)→ (x→ z)] = (x→ y)→ [(y→ z)→
(x→ z)] = (x→ y)→ [(z→ y)→ (x→ y)] = (z→ y)→ m =
m ∈ F . Since (x→ y)→ (y→ z) ∈ F , (y→ z)→ [(x→ y)→
(x→ z)] ∈ F and F is a transitive filter, we can conclude that
(x→ y)→ [(x→ y)→ (x→ z)] ∈ F . Since x→ y ∈ F and F is
a filter, we get that (x→ y)→ (x→ z)∈ F . Conversely assume
that condition (T2) holds. Let x→ y ∈ F and y→ z ∈ F . We
need to prove x→ z. Now y→ z≤ (x→ y)→ (y→ z)∈ F . By
assumed condition (T2), we get (x→ y)→ (x→ z) ∈ F . Now
x→ y ∈ F , (x→ y)→ (x→ z) ∈ F and F is a filter, we get
that x→ z ∈ F . Therefore, F is a transitive filter.

In the following, some sufficient conditions are obtained for
a filter of IADL to become a transitive filter.

Theorem 3.9: Let F be a filter of IADL L. Then F is a
transitive filter of L if it satisfies the following condition: x→
(y→ z) ∈ F implies (x→ y)→ z ∈ F for all x,y,z ∈ L.

Proof: Let F be a filter of IADL L which satisfies the
given condition. Let x,y,z∈ L be such that x→ y∈ F and y→
z∈ F . Since y→ z≤ x→ (y→ z), we can get x→ (y→ z)∈ F
this implies (x→ y)→ z ∈ F (by the given condition). Since
x→ y ∈ F and F is a filter of L , it yields that z ∈ F , since
z≤ x→ z, we get x→ z ∈ F . Therefore, F is a transitive filter
of L.

The following corollary is a direct consequence of Theorem
2.19

Corollary 3.10: Let F be a filter of IADL L. If F is an
associative filter, then it is a transitive filter of L.

Proof: Let F be a filter of IADL L. Let x,y,z ∈ L such
that x→ y∈ F and y→ z∈ F . Assume that F is an associative
filter of L. We need to show that F is a transitive filter of
L. Since F is an associative filter, x→ (y→ z) ∈ F implies
(x→ y)→ z ∈ F (by Theorem 2.19). Since x→ y ∈ F and F
is a filter of L, we have z ∈ F . Since z ≤ x→ z and F is a
filter of L, we have x→∈ F . Therefore, F is a transitive filter
of L.
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IV. ABSORBENT FILTERS IN IMPLICATIVE ALMOST
DISTRIBUTIVE LATTICES

In this section, the concept of absorbent filters is introduced
in an implicative almost distributive lattice (IADL) and some
properties of absorbent filters are studied. A set of equivalent
conditions is obtained for every filter to become an absorbent
filter.

Definition 4.1: A subset F of an IADL L is called absorbent
filter if it satisfies the following conditions:

(F1) m ∈ F where m ∈ L and
(Ab1) (x→ y)→ x ∈ F implies that x ∈ F .
Theorem 4.2: Every associative filter of IADL L is an

absorbent filter of L.
Proof: Let F be an associative filter of IADL L. Clearly

(F1) holds. Let x,y ∈ L be such that (x→ y)→ x ∈ F . Since F
is an associative filter, (x→ y)→ x = (x→ y)→ (m→ x) ∈ F
and (x→ y)→ m = m ∈ F implies x ∈ F . Therefore, F is an
absorbent filter of L.

Remark 4.3: The converse of Theorem 4.2, is not true as
shown in the following example.

Example 4.4: Let L = {0,x,y,z,m} be the underlining set
with partial ordering ≤= { (0,x), (0,z), (0,y), (0,m), (x,z),
(x,m), (y,z), (y,m), (z,m), (0,0), (x,x), (y,y), (z,z), (m,m)}.
Define the unary operation ′ and binary operation→ as shown
in the tables below respectively,

a a′

0 m
x y
y x
z z
m 0

→ 0 x y z m
0 m m m m m
x y m z m m
y x z m m m
z z z z m m
m 0 x y z m

Define the binary operation ∨ and ∧ by
x∨ y = (x→ y)→ y
x∧ y = [(x→ y)→ x′]′. Then clearly (L,∨,∧,→,′ ,0,m) is

an IADL. Now consider F = {m,y,z}. Clearly, we can show
that F is an absorbent filter. But F is not an associative filter,
because of y→ (z→ x) = y→ z = m∈ F and (y→ z)→ x /∈ F .

In general, every filter of IADL L need not be an absorbent
filter. From Example 3.5, consider F = {m,z}. Then clearly F
is a filter of L but not an absorbent filter of L. For this consider
y,z ∈ L. Then, it is clear that (y→ z)→ y = w→ y = m ∈ F
but y /∈ F . Therefore, F is not an absorbent filter of L.

In [9], we proved that every positive implicative filter of an
IADL L is an implicative filter but not the converse. However,
in the following, we derive a set of equivalent conditions
for every implicative filter of IADL L to become a positive
implicative filter which leads to the characterization of an
absorbent filter in an IADL L.

Theorem 4.5: Let F be a filter of IADL L and x,y,z ∈ L.
Then, the following conditions are equivalent.

1) F is an absorbent filter
2) a ∈ F and (x→ y)→ (a→ x) ∈ F implies x ∈ F
3) F is an implicative filter
4) F is a positive implicative filter.

Proof: Let L be an IADL and x,y,z ∈ L. (1) ⇒ (2):
Assume that F is an absorbent filter of L. Let a ∈ F and

(x→ y)→ (a→ x)∈ F . Then (x→ y)→ (a→ x) = a→ [(x→
y)→ x] ∈ F . since a ∈ F and F is a filter of L, we get that
(x→ y)→ x ∈ F . Since F is an absorbent filter of L, we have
x ∈ F .
(2)⇒ (3): Assume condition (2) holds. Suppose that x→

(y→ z)∈ F and x→ y∈ F . Now x→ (y→ z) = y→ (x→ z)≤
(x→ y)→ [(x→ (x→ z)]. Since F is a filter and x→ (y→ z)∈
F , we get (x→ y)→ [x→ (x→ z)]∈F . Since x→ y∈F and F
is a filter of L, we get x→ (x→ z) ∈ F . Put x→ (x→ z) = a.
Then we have the following consequence, [(x→ z)→ z]→
[a→ (x→ z)] = a→ {[(x→ z)→ z]→ (x→ z)}= a→ {x→
[(x→ z)→ z)→ z]} = a→ [x→ (x→ z)] = a→ a = m ∈ F .
Then by assumption we get x→ z ∈ F .
(3)⇒ (4): Assume condition (3) holds. Let x ∈ F and x→

[(y→ z)→ y] ∈ F . Since x ∈ F and F is a filter, we get that
[(y→ z)→ y] ∈ F . Since y′ ≤ y→ z, we have (y→ z)→ y ≤
y′→ y = y′→ (y′→ 0). Since F is a filter in L, we get y′→
(y′→ 0) ∈ F and y′→ y′ = m ∈ F . Since F is an implicative
filter, it yields that y = (y′)′ = y′→ 0 ∈ F .

(4)⇒ (1): Assume that F is a positive implicative filter of L.
Suppose (x→ y)→ x∈ F . Then m→ [(x→ y)→ x]∈ F . Since
F is a positive implicative filter of L, we get x = m→ x ∈ F .
Therefore, F is an absorbent filter of L.

Definition 4.6: A subset F of an IADL L is called a fantastic
filter of L if it satisfies:
(F1) m ∈ F , where m ∈ L and
(F7) z ∈ F and z→ (y→ x) ∈ F implies ((x→ y)→ y)→

x ∈ F for all x,y,z ∈ F .
Theorem 4.7: Every positive implicative filter of an IADL

L is a fantastic filter of L.
Proof: Let F be a positive implicative filter of an IADL

L. Then F is a filter of L (see Theorem 2.22). Let x,y ∈ L
be such that y→ x ∈ F . It is sufficient to show that ((x→
y)→ y)→ x ∈ F . Since x≤ ((x→ y)→ y)→ x, we get (((x→
y)→ y)→ x)→ y≤ x→ y. Putting a = ((x→ y)→ y)→ x, we
obtain (a→ y)→ a = ((((x→ y)→ y)→ x)→ y)→ (((x→
y)→ y)→ x)≥ (x→ y)→ (((x→ y)→ y)→ x) = (x→ y)→
y)→ ((x→ y)→ x) ≥ y→ x. It follows from Lemma 2.13
that (a→ y)→ a ∈ F so, from Theorem 2.15, that a ∈ F , i.e.,
((x→ y)→ y)→ x ∈ F . Hence F is a fantastic filter of L.

Corollary 4.8: Let F be a filter of an IADL L. If F is an
absorbent filter of L, then it is a fantastic filter of L.

Proof: Let L be an IADL and x,y,z ∈ L. Assume F is an
absorbent filter of L. Then by Theorem 4.5, F is a positive
implicative filter of L. From Theorem 2.21, F is a fantastic
filter of L.
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