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L-Fuzzy Filters of a Poset

Berhanu Assaye Alaba, Mihret Alamneh and Derso Abeje

Abstract—Many generalizations of ideals and filters of a lattice
to an arbitrary poset have been studied by different scholars.
The authors of this paper introduced several generalizations of
L-fuzzy ideal of a lattice to an arbitrary poset in [1]. In this paper,
we introduce several L-fuzzy filters of a poset which generalize
the L-fuzzy filter of a lattice and give several characterizations
of them.

Index Terms—Poset, Filter, L-fuzzy closed filter, L-fuzzy Frink
filter, L-fuzzy V-Filter, L-fuzzy semi-filter, L-fuzzy filter, I-L-fuzzy
filter.

I. INTRODUCTION

E have found several generalizations of ideals and
filters of a lattice to arbitrary poset (partially ordered
set) in a literature. Birkhoff in [2, p. 59] introduced a closed
or normal ideals who gives accredit to the work of Stone in
[3]. Next, in 1954 the second type of ideal and filter of a
poset called Frink ideal and Frink filter have been introduced
by O. Frink [4]. Following this P. V. Venkatanarasimhan
developed the theory of semi ideals and semi filter in [5] and
ideals and filters for a poset in [6], in 1970. These ideals
(respectively, filters) are called ideals (respectively, filter) in
the sense of Venkatanarasimhan or V-ideals (V-filters) for
short. Later Hala$ [7], in 1994, introduced a new ideal and
filter of a poset which seems to be a suitable generalization
of the usual concept of ideal and filter in a lattice. We will
simply call it ideal (respectively, filter) in the sense of Halas.
Moreover, the concept of fuzzy ideals and filters of a lattice
has been studied by different authors in series of papers
[81, [9], [10], [11] and [12]. The aim of this paper is to
notify several generalizations of L-fuzzy filters of a lattice
to an arbitrary poset whose truth values are in a complete
lattice satisfying the infinite meet distributive law and give
several characterizations of them. We also prove that the set
of all L-fuzzy filters of a poset forms a complete lattice with
respect to point-wise ordering “C”. Throughout this work, L
means a non-trivial complete lattice satisfying the infinite meet
distributive law: x AsupS = sup{xAs:s € S} for all x € L and
for any subset S of L.

II. PRELIMINARIES

We briefly recall certain necessary concepts, terminologies
and notations from [2], [13] and [14]. A binary relation
” <” on a non-empty set Q is called a partial order if it
is reflexive, anti-symmetric and transitive. A pair (Q,<) is
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called a partially ordered set or simply a poset if Q is a non-
empty set and ” <7 is a partial order on Q. When confusion
is unlikely, we use simply the symbol Q to denote a Poset
(0,<). Let Q be a poset and S C Q. An element x in Q
is called a lower bound (respectively, an upper bound) of S
if x < a (respectively, x > a ) for all a € S. We denote the
set of all lower bounds and upper bounds of S by ' and
S“, respectively. That is §' = {x € Q:x<aVaecS} and
S“={xeQ:x>aVacS} S shall mean {S*}/ and S™
shall mean {S'}* . Let a,b € Q. Then {a}" is simply denoted
by ¢ and {a,b}" is denoted by (a,b)". Similar notations are
used for the set of lower bounds. We note that S C % and
SCS"andif SCT in Q then S D T! and $* D T“. Moreover,
siul = gt gulu = gu_ {g*}! = gl and {a'}* = a*. An element x(
in Q is called the least upper bound of S or supremum of
S, denoted by supS (respectively, the greatest lower bound of
S or infimum of S, denoted by infS) if xp € $* and xo < x
Vx € S* (respectively, if xo € S/ and x < xy Vx € ' ). An
element xg in Q is called the largest (respectively, the smallest)
element if x < xg (respectively, xg < x) for all x € Q. The largest
(respectively, the smallest) element if it exists in Q is denoted
by 1 (respectively, by 0). A poset (Q <) is called bounded if
it has 0 and 1. Note that if S =0 we have §™ = (0/)* = Q"
which is equal to the empty set or the singleton set {1} if Q
has the largest element 1

Now we recall definitions of filters of a poset that are
introduced by different scholars.

Definition 2.1 (Dual of [2]): A subset F of a poset (Q,<)
is said to be a closed or a normal filter in Q if F wcF,

Definition 2.2 ([4]): A subset F of a poset (Q,<) is said to
be a Frink filter in Q if S C F whenever S is a finite subset
of F.

Definition 2.3 ([5]): A non-empty subset F' of a poset (Q, <)
is called a semi-filter or an order filter of Q if a < b and
a € Fimpliesb e F.

Definition 2.4 ([6]): A subset F of a poset (Q,<) is said to
be a V-filter or a filter in the sense of Venkatannarasimhan if
F is a semi-filter and for any nonempty finite subset S of F',
if inf§ exists, then infS € F.

Definition 2.5 ([7]): A subset F of a poset (Q, <) is called
a filter in Q in the sense of Hala3 if (a,b)™ contained in F
whenever a,b € F.

Note that every filter of a poset Q defined above contains Q".

Remark 2.6: The following remarks are due to R. Hala$ and
J. Rachtinek [15].

1) If (Q <) is a lattice then a non-empty subset F of Q is

a filter as a poset if and only if it is a filter as a lattice
©<).

2) If a poset does not have the largest element then the

empty subset 0 is a filter in (Q <) (since 0/ = (0')* =
0" =0).
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Definition 2.7: Let A be any subset of a poset Q. Then the
smallest filter containing A is called a filter generated by A
and is denoted by [A). The filter generated by a singleton set
{a}, is called a principal filter and is denoted by [a)

Note that for any subset S of Q if infS exists then S = [inf).

The followings are some characterizations of filters gener-
ated by a subset S of a poset Q. We write T CC S to mean T
is a finite subset of S.

1) The closed or normal filter generated by S, denoted by

[S)c, is [S)c = U{T™: T C S} where the union is taken
over all subsets T of S.

2) The Frink filter generated by S, denoted by [S)p, is
[S)r = U{T’” : T CC S}, where the union is taken over
all finite subsets T of §

3) Define By = J{(a,b)"" : a,b € S} and B, = J{(a,b)" :
a,b € B,_} for each positive integer n > 2, inductively.
Then the filter generated by S in the sense of Halas,
denoted by [S)y, is [S)g = U{Bu : n € A} where A
denotes the set of positive integers.

4) If a€ Q then [a) = {x€ Q:x<a}=d is the principal
ideal generated by a.

Definition 2.8 ([7]): A filter F of a poset Q is called an

Ifilter if (x,y)'NF # 0 for all x,y € F.
Note that an easy induction shows that F is an [-filter if B/ N
F # 0 for every non-empty finite subset B of F.

Theorem 2.9 ([7]): Let .Z (Q) be the set of filters of a poset
Q and A and B be [-filters of Q. Then the supremum AV B of
A and B in Z(Q) is AVB=U{(a,b)" :ac A,bc B}

Definition 2.10 ([16]): An L-fuzzy subset 11 of a poset Q is

a function from Q into L.
Note that if L is a unit interval of real numbers [0,1], then the
L-fuzzy subset 1 is the fuzzy subsets of Q which is introduced
by L. Zadeh [17]. The set of all L-fuzzy subsets of Q is denoted
by L.

Definition 2.11 ([11]): Let 1 € L2. Then for each a € L the
set Ng = {x: N (x) > o} is called the level subset or level cut
of n at a.

Lemma 2.12 ([9]): Let n € L2. Then n(x) = sup{a € L :
X € Ng} for all x € Q.

Definition 2.13 ([16]): Let v,o € L2. Define a binary
relation ”C” on L2 by v C o if and only v(x) < o(x) for
all x € Q.

It is simple to verify that the binary relation ” C” on L is a
partial order and it is called the point wise ordering.

Definition 2.14 ([18]): Let 8 and 1) be in L2. Then the union
of fuzzy subsets 6 and 1 of X, denoted by 6 U, is a fuzzy
subset of Q defined by (6UN)(x) =0(x) v n(x) for all x€ Q
and the intersection of fuzzy subsets 6 and 1 of Q, denoted
by 6N, is a fuzzy subset of X defined by (6 Nn)(x) =
0(x) An(x) for all x € Q.

More generally, the union and intersection of any family
{Ni}iea of L-fuzzy subsets of Q, denoted by [Jjcani and
(Nica Mi respectively, are defined by:

(Uicami)(x) = sup;ea Mi(x) and Miea Ni = infiea ni(x) for all
x € Q, respectively.

Definition 2.15 ([10]): An L-fuzzy subset n of a lattice Q
with 1 is said to be an L -fuzzy filter of Q; if n(1) =1 and
N(aAb) =n(a) An(b) for all a,b € Q.

Definition 2.16: Let ) be L- fuzzy subset of a poset Q. The
smallest fuzzy filter of Q containing 7 is called a fuzzy filter
generated by 1 and is denoted by [1).

III. L-Fuzzy FILTERS OF A POSET

In this section, we notify the concept of L-fuzzy filters of a
poset and give several characterizations of them. Throughout
this paper, Q stands for a poset (Q, <) with 1 unless otherwise
stated. We begin with the following

Definition 3.1: An L-fuzzy subset 1 of Q is called an L-
fuzzy closed filter if it fulfills the following conditions:

1) n(1)=1 and

2) for any subset S of Q, n(x) > inf{n(a):a € S} Vx € ™.

Lemma 3.2: A subset F of Q is a closed filter of Q if and
only if its characteristic map )r is an L-fuzzy closed filter of
0.

Proof: Suppose F is a closed filter of Q. Since 1 is in
F'" C F, we have xr(1) = 1. Again let S be any subset of
Q and x € §*. Then if SC F, we have S C Fi* C F and
xr(a) =1 for all a € S. Therefore xr(x) =1 =inf{)r(a):a €
S}. Again if § € F, then there is ¢ € S such that ¢ ¢ F and
hence Yr(c) =0 and hence xr(x) > 0= inf{)r(a):a <€ S}.
Thus in either cases, xr(x) > inf{}r(a): a € S} for all x €
St and S C Q. Therefore, yr is an L-fuzzy closed filter of
Q. Conversely, suppose xr is an L-fuzzy closed filter. Since
xr(1) =1, we have 1 € F, that is {1} = Q" C F. Let x € F'*,
Then by hypotheses, xr(x) > inf{xr(a) : a € F} = 1. This
implies yr(x) = 1 and hence x € F. Therefore, F** C F and
hence F is a closed filter. This proves the result. [ ]

The following result characterizes the L-fuzzy closed filter
of Q in terms of its level subsets.

Lemma 3.3: Let 7 be in L2. Then 1 is an L- fuzzy closed
filter of Q if and only if 1 is a closed filter of Q for all & € L.

Proof: Let ) be an L- fuzzy closed filter of Q and o € L.
Then (1) =1 > « and hence 1 € 1, ie., {1} = 0" C ng.
Again let x € (n¢)™. Then n(x) > inf{n(a):a € g} > o and
hence x € 1. Therefore (1g)™ C ng and hence 1, is a closed
filter.

Conversely, let ng is a closed filter of Q for all o € L. In
particular 7y is a closed filter. Since 1 € (1;)™ C 1, we have
n(l)=1.

Again let S be any subset of Q. Put oo =inf{n(a):a € S}.
Then 1(a) > a Va € S and hence S C g. This implies S C
i C py. Now x € S = x € ng = n(x) > a=inf{n(a):ac
S}. Therefore 1 is an L-fuzzy closed filter of Q. This proves
the result. [ ]

Lemma 3.4: Let ) be fuzzy closed filter of a poset Q. Then
7 is iso-tone, in the sense that 1 (x) < 1(y) whenever x < y.

Proof: Let x,y € Q such that x <y. Put n1(x) = . Since
n is a fuzzy closed filter, 1y is a closed filter of Q and
hence (Ng)™ C Ng. Now n(x) = ¢ = x € Ng = x* = {x}/* C
(Ma)™ € Ng. Thus x <y = y € x* =y € N and hence
Nn(x) = a < n(y). This proves the result. [ |

Theorem 3.5: Let (Q, <) be a lattice. Then an L-fuzzy subset
n of Q is an L- fuzzy closed filter in the poset Q if and only
if an L-fuzzy filter in the lattice Q.

Proof: Let n be an L-fuzzy filter in the poset Q and a,b €
Q. Then n(1) =1 and since S = {a,b} C Q and aAb € S,
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we have n(aAb) > inf{n(x) : x € S} = n(a) An(b). Again
since 7 is iso-tone, we have N(aAb) < n(a) and N(aAb) <
n(b) and hence we have 1n(a) AN (b) < n(aAb). Therefore
n(anb) =n(a) An(b) and hence 7N is an L-fuzzy filter in the
lattice Q. Conversely suppose [ be an L-fuzzy filter in the
lattice Q. Then (1) =1 and n(aAb) =n(a) Au(b) Va,b €
Q. Let SC Q and x € (S). Then x is an upper bound of
(S). Since infS € (A)!, we have x > infS and hence we have
n(x) > n(infS) =inf{n(a) : a € S}. Therefore 7 is an L-fuzzy
closed filter in the poset Q. This proves the result. ]

Lemma 3.6: The intersection of any family of L-fuzzy closed
filters is an L-fuzzy closed filter.

Theorem 3.7: Let [S)c be a closed filter generated by a
subset S of Q and xs be its characteristic functions. Then the
[Xs) = Xis)c-

Proof: Since [S)c is a closed filter of Q containing S, by
Lemma 3.2, we have x(s). is a fuzzy closed filter. Again since
S C[S)c, clearly we have xs C X[S)c- Now, we show that it is
the smallest L- fuzzy closed filter containing ys. Let 7 be an
L-fuzzy closed filter such that ys C 1. Then n(a) =1 for all
a € 8. Now we claim Y. C 1. Let x € Q. If x ¢ [S)c, then
Xis)(x) =0 < n(x). If x € [S)c, then x € T for some subset
T of S and hence 1(x) > inf{n(b) : b€ T} =1 = yg).(%).
Hence in either cases, ¥(s).(x) < 1(x) for all x € Q and hence
X(s)c © M. This proves the theorem. [ ]

In the following theorem we characterize a fuzzy closed
filter generated by a fuzzy subset of Q in terms of its level
closed filters.

Theorem 3.8: Let 1 € L2. Then the L-fuzzy subset 7) of
Q defined by fj(x) =sup{a € L: x € [nNg)c} for all x € Q is
a fuzzy closed filter of Q generated by 1, where [Ug)c is a
closed filter generated by 1g.

Proof: Now we show 1] is the smallest fuzzy closed filter
containing 1. Let x € Q and put 1 (x) = 8. Then x € ng C
Mg)c = B €{acL:xeng)c} Thus n(x) =B <sup{a e
L:x€[Na)ct =1(x) and hence n C fi. Again since {1} =
0" C [Ng)c for all a € L, clearly we have (1) = 1. Let S
be any subset of Q and x € S. Now inf{f)(a) :a € S} =
inf{sup{a, : a € [Ng,)c}:a €S} =sup{inf{a,:a€S}:ac
Ma,)c}. Put A =inf{o; :a €S} Then A < o, for all a € S
and hence [Ng,)c C [Ny)c Va € S. Therefore S C [n;)c and
hence x € §"™ C [n;)™ C [n;). So

inf{fi(a):acS} = sup{inf{o,:a€S}:acng)}
sup{A €L:x€[n)}

A

7 (x)

IN

Therefore 7] is an L-fuzzy closed filter. Again let 6 be any
L-fuzzy closed filter of Q such that n C 6. Then ny C 6, and
0q is a closed filter for all o € L and hence [1g) C [0y) = Og.
Thus for any x € Q, fj(x) =sup{a € L:x € [nNg)} <sup{a €
L:x €6y} =0(x) and hence 7] C 6. This proves that fj = [n).
|
In the following, we give an algebraic characterization of
L-fuzzy Closed filter generated by fuzzy subset of Q.

25

Theorem 3.9: Let 1 € LC. Then the fuzzy subset 7] defined
by

() = 1 ifx=1
)= sup{infyesn(a):x €S SCQ} ifx#1

is a fuzzy closed filter of Q generated by 7.

Proof: Tt is enough to show that ) = 7] where 7} is an
L-fuzzy subset given in the above theorem. Let x € Q. If x =
1, then 7(x) =1 =1 (x). Let x # 0. Put A, = {inf,esn(a) :
SCQand x € 8™} and B, = {& : x € [Ng)c}. Now we show
supA, = supBy. Let o € A,. Then a = inf,eq 1 (a) for some
subset S of Q such that x € §". This implies that o < 17(a)
for all @ € S and hence S C Ny C [Ng). Thus ™ C (ng]™ C
[Ne) and hence x € [ny). Therefore o € By. Thus A, C By
and hence supA, < supB,. Again let a € B,.Then x € [ny).
Since [tg)c = U{S" :S C ny}, we have x € S for some
subset S of 1. This implies 1(a) > « for all a € S and hence
inf{n(a):a €S} > a. Thus B =inf{n(a):a €S} € A,. Thus
for each a € B, we get B € A, such that @ < f3 and hence
supA, > supBy. Therefore supA, = supB, and hence 71 = 7).

|

The above result yields the following.

Theorem 3.10: Let .F€.%(Q) be the set of all L-fuzzy
closed filters of Q. Then (F%€.%(Q),C) forms a complete
lattice with respect to the point wise ordering ” C ”, in which
the supremum sup;call; and the inifimum inficpam; of any
family {n; :i € A} in F€.%#(Q) are given by:
supicaNi = Uiea{ni} and infica i = Nica M-

Corollary 3.11: For any L-fuzzy closed filters 7 and v of
Q, the supremum 7 V Vv and the infimum n Av of 1 and v in
F€.F(Q) respectively are:
nvv=nUvand nAVv=nnNv.

Now we introduce the fuzzy version of a filter (dual ideal) of
a poset introduced by O. Frink [4].

Definition 3.12: An L-fuzzy subset n of Q is an L-fuzzy
Frink filter if it satisfies the following conditions:

1) n(1)=1 and

2) for any finite subset F of Q, n(x) > inf{n(a):a € F}

Vx € Fl

Lemma 3.13: Let n € L. Then 7 is an L-fuzzy Frink filter
of Q if and only if 1y is a Frink filter of Q for all o € L.

Lemma 3.14: Let 1 be fuzzy Frink filter of a poset Q. Then
7 is iso-tone, in the sense that 1 (x) < 1(y) whenever x < y.

Corollary 3.15: A subset S of Q is a Frink filter of Q if and
only if its characteristic map ys is an L-fuzzy Frink filter of
0.
Theorem 3.16: Let (Q,<) be a lattice and 1 € L2. Then
n is an L- fuzzy Frink filter in the poset Q if and only it an
L-fuzzy filter in the lattice Q.

Lemma 3.17: The intersection of any family of L-fuzzy
Frink-filters is an L-fuzzy Frink filter.

Theorem 3.18: Let [S)F be a Frink-filter generated by subset
S of Q and x5 be its characteristic functions. Then [xs) = X[s), -
In the following theorems, we give characterizations of L-
Fuzzy Frink filters generated by fuzzy subset of Q.

Theorem 3.19: Let n € L2. Define a fuzzy subset | of Q
by f)(x) =sup{a € L:x € [Ng)r} for all x € Q where [Ny )rF a
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Frink filter generated by 1, where [Ny)r is a Frink filter
generated by 7g. Then 7} is an L-fuzzy Frink filter of Q
generated by 1.
In the following, we give an algebraic characterization of L-
fuzzy Frink filters generated by fuzzy subset of Q.

Theorem 3.20: Let 1 be a fuzzy subset of Q. Then the fuzzy
subset ﬁ defined by

ifx=1

=1
= sup{inf,ern(a): F CC Q, x € F"} ifx#1

is a Frink fuzzy filter of Q generated by 7).

Theorem 3.21: Let .F.% % (Q) be the of all L-fuzzy Frink
filter of Q. Then (.#.% .#(Q), C) forms a complete lattice with
respect to point wise ordering ” C ”, in which the supremum
and the infimum of any family {n;:i € A} in Z.Z.%(Q)
respectively are: supieani = Uiea{Ni} and infiea 0; = Njca Ni-

Corollary 3.22: For any L-fuzzy Frink ideals 17 and v of Q
in the supremum 71 Vv and the infimum 1 Av of 1 and Vv in
FFF(Q) respectively are: Vv = Tm and nAV=nnNv.
Now we introduce the fuzzy version of semi-filters and V-
filters of a poset introduced by P.V. Venkatanarasimhan [5]
and [6].

Definition 3.23: 1 in L2 is said to be an L-fuzzy semi-filter
or L-fuzzy order filter if n(x) < n(y) whenever x <y in Q.

Definition 3.24: m in L? is said to be an L- fuzzy V-filter
if it satisfies the following conditions:

1) for any x,y € Q n(x) <n(y) whenever x <y and

2) for any non-empty finite subset B of Q, if infB exists

then 1 (infB) > inf{n(b) : b € B}.

Theorem 3.25: Every L-fuzzy Frink filter is an L-fuzzy V-
filter.

Proof: Let 1 be an L-fuzzy Frink filter and let x,y € O
such that x <y. Put n(x) = o. Since 1 is an L-fuzzy Frink
filter, Mg is a Frink filter of Q. Now n(x) =a = x € Ny =
XM Cng. Now x<y=yex*=x"Cng=nx)=a<
N(y). Again let B be any nonempty subset of Q such that inf B
exists in Q. Then infB € B™ and hence 1(infB) > inf{n(a) :
a € B}. Therefore 7 is an L-fuzzy V-filter. [ |

Now we introduce the fuzzy version filters of a poset intro-
duced by Halas [7] which seems to be a suitable generalization
of the usual concept of L-fuzzy filter of a lattice.

Definition 3.26: 1 € L? is called an L- fuzzy filter in the
sense of Halas if it fulfills the followings:

1) n(1)=1 and

2) for any a,b € Q, n(x) >n(a) An(b) for all x € (a,b)™
In the rest of this paper, an L-fuzzy filter of a poset will mean
an L-fuzzy filter in the sense of Halas.

Lemma 3.27: n € L2 is an L-fuzzy filter of Q if and only
if Mg is a filter of Q in the sense of HalaS$ for all o € L.

Corollary 3.28: A subset S of Q is a filter of Q in the sense
of Halas if and only if its characteristic map xs is an L-fuzzy
filter of Q.

Lemma 3.29: If n is an L-fuzzy filter of Q, then the
following assertions hold:

1) for any x,y € Q n(x) < n(y) whenever x <y.

2) for any x,y € Q, n(xAy) > pu(x) An(y) whenever xAy

exists.

Theorem 3.30: Let (Q,<) be a lattice. Then an L-fuzzy
subset n of Q is an L-fuzzy filter in the poset Q if and only
if an L-fuzzy filter is in the lattice Q.

Theorem 3.31: Let [S)y be a filter generated by subset S of
Q in the sense of Halas and )y be its characteristic functions.
Then [xs) = X[s),-

Lemma 3.32: The intersection of any family of L-fuzzy
filters is an L- fuzzy filter.

Now we give characterization of an L- fuzzy filter generated
by a fuzzy subset of a poset Q.

Definition 3.33: Let 1 be a fuzzy subset of Q and .4/ be a set
of positive integers. Define fuzzy subsets of Q inductively as
follows: B] (x) = sup{n(a) An(b): x € (a,b)} and B} (x) =
sup{B!! ,(a)AB]' |(b):x € (a,b)™} for each n>2 and a,b €
0.

Theorem 3.34: The set {B,] :n € .4} forms a chain and the
fuzzy subset f) defined by f(x) = sup{B) (x):n€ .4} is a
fuzzy filter generated by 7.

Proof: Let x € Q and n € 4. Then

B;;’H(x) = sup{B)(a)AB}(b):x € (a,b)l”}

B (x) AB(x) (since x € x* = (x,x)")
Bl(x)VxeQ.

Therefore B C B), | for each n € .4 and hence {B : n €

A} is a chain. Now we show 7] is the smallest fuzzy filter
containing 7).

v

Since 7)(x)

sup{B] (x) :ne€ A}

> B{(x)

= sup{n(a) An(b):x € (a,b)"}
> nx)AN(x) (since x € (x,x)™)
= 1) VxeQ.

Therefore § C A. Let a,b € L and x € (a,b)™.

Now f)(x) = sup{B](x):ne A}
> B)(x) forallne 4
= sup{B () AB}_;(2) :x € (12)"}
foralln > 2.
> B! (a)AB] (b) Yn>2

(since x € (a,b)")

= Bl(a)AB}(b) Vme N
Thus f)(x) > sup{Bl(a)ABJ}(b) :me AN}
sup{B))(a) :me N} A
sup{B)}(b) :m e N}

= M(a)A7(b).

Therefore ] is a fuzzy filter. Again let 8 be any L-fuzzy
filter of Q such that 1 C 6. Now let a,b € Q and x €
(a,b)™. Then 6(x) > 0(a) A O(b) >n(a) An(b). This implies
8(x) > sup{n(a) An(b) : x € (a,b)"'} = B](x). Therefore
6(x) > B} (x) for all x € (a,b)™. Again for any x € (a,b)™
we have 6(x) > 6(a) A6(b) > Bl (a) AB] (b). This implies
6(x) > sup{B] (a) AB(b) : x € (a,b)"} = BJ(x). Thus by
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induction we have 6(x) > B} (x) Vn € 4" and V x € (a,b)"™.
Thus for any x € O, we have

= sup{B)(x):ne N}

= sup{B] ,(a)AB] [(b):n€ N x€ (a,b)"}

< sup{0(a)AO(b):x € (a,b)"}

(since, a,b € (a,b)™.)

6(x)

(x)

IN

Therefore 6 D 1) . This proves the theorem. ]

The above result yields the following.

Theorem 3.35: Let .7 . (Q) be the set of all L-fuzzy filter of
Q. Then (% (Q),C) forms a complete lattice with respect to
the point wise ordering ” C ”, in which the supremum and the
infimum of any family {n;:i € A} in .%.% (Q) respectively are:
(supicam;)(x) = sup{Bg"GA Mi(x):ne Y} and (infieam)(x) =
(Nieani)(x) for any x € Q.

Corollary 3.36: For any L-fuzzy filter n and v of Q, the
supremum 1) V v and the infimum n Av of n and v in Z#.%(Q)
respectively are: (Vv)(x) =sup{B]~"(x):n€ .4} and (n A
v)(x) = (MmN v)(x) for any x € Q.

Theorem 3.37: The following implications hold, where all
of them are not equivalent:

1) L-fuzzy closed filter = L-fuzzy Frink filter = L-fuzzy
V-filter = L-fuzzy semi-filter.

2) L- fuzzy closed filter = L-fuzzy Frink filter = L-
fuzzy filter = L- fuzzy semi-filter.

The following examples show that the converse of the above
implications do not hold in general.

Example 3.38: Consider the Poset ([0, 1], <) with the usual
ordering. Define a fuzzy subset 1 : [0,1] — [0, 1] by

1 ifxe (3,1
i) = {o ifx e [(i%]

Then 7 is an L- fuzzy Frink filter but not an L- fuzzy closed
filter.

Example 3.39: Consider the poset (Q,<) depicted in the
figure below. Define a fuzzy subset v:Q — [0,1] by v(1) =
v(id)=1,v(a)=v(b)=v(c)=v(d)=v(0)=02, v(p) =
0.6, v(c') =0.5 and v(d') =0.7. Then v is an L-fuzzy filter

Fig. 1. A Poset.
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but not an L- fuzzy Frink-filter.

Example 3.40: Consider the poset (Q,<) depicted in the
figure below. Define a fuzzy subset 6 : 0 — [0,1] by 6(U) =
1, 6(L)=6(M)=0.8 and 6(N) =0.6. Then 0 is an L-fuzzy

U

L M N

Fig. 2. A Poset.

V-filter but not an L- fuzzy Frink-filter.

Example 3.41: Consider the poset (Q,<) depicted in the
figure below. Define a fuzzy subset : Q — [0,1] by 6(1) =
1, o(a) =0.8, 6(b) =0.9 and 6(0) =0.2.

0
Fig. 3. A Poset.

Then o is an L-fuzzy semi-filter but not an L-fuzzy filter.
Theorem 3.42: Let x € Q and o € L. Define an L- fuzzy

subset a* of Q by
if y€l[x)

1
X —
) {a ¢ 1)
for all y € Q. Then o is an L-fuzzy filter of Q.
Proof: By the definition of ¥, we clearly have o, (1) = 1.

Let a,b € Q and y € (a,b)™. Now if a,b € [x), then we have
(a,b)™ C [x) and o (a) = a*(b) = 1. Thus a*(y) = 1 = 1A 1 =
o*(a) A a*(b). Again if a ¢ [x) or b ¢ [x), we have o*(a) A
o*(b) = a and hence a*(y) > a = a*(a) A a*(b). Therefore in
either cases we have a*(y) > a*(a) A o*(b) for all y € (a,b)™
and hence a* is an L-fuzzy filter. [ ]

Definition 3.43: The L-fuzzy filter a* defined above is called
the o-level principal fuzzy filter corresponding to x.

Definition 3.44: An L-fuzzy filter u of a poset Q is called
an [-L-fuzzy filter if for any a,b € Q, there exists x € (a,b)’
such that u(x) = u(a) A u(b).

Lemma 3.45: An L-fuzzy filter u of Q is an [-L-fuzzy filter
of Q if and only if ygy is an [-filter of Q for all o € L.

Proof: Suppose U is an [-L-fuzzy filter and ¢ € L. Since

U is an L- fuzzy filter, U is a filter of Q. Let a,b € Uy. Then
u(a) > o and u(b) > o and hence p(a) Ap(b) > o. Also since
W is an [- L- fuzzy filter there exists x € (a,b)! such that p(x) =
w(a) A u(b) and hence u(x) > a. Therefore x € gy N (a,b)’
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and hence pg N (a,b)! # 0. Therefore g is an I-filter of a
poset Q. Conversely suppose U is an [-filter of a poset Q for
all @ € L. Then u is an L-fuzzy filter. Let a,b € Q and put @ =
w(a) Au(b). Then py N (a,b)! #0. Let x € g N (a,b)!. Then
X € Uy and x € (a,b)’. This implies p(x) > a = p(a) A u(b)
and x <a, x <b. Since U is iso-tone we have p(x) < u(a) and
u(x) < u(b) and hence p(x) < p(a) A u(b). Therefore there
exists x € (a,b)! such that p(x) = p(a) A u(b) and hence u is
an [-L-fuzzy filter. [ |

Corollary 3.46: Let (Q,<) be a poset with 0 and let
x € Q and o € L. Then the o-level principal fuzzy filter
corresponding to x is an [-L-fuzzy filter.

Remark 3.47: Every L-fuzzy filter is not an [-L-fuzzy filter.
For example consider the poset (Q, <) depicted in the figure
below and define a fuzzy subset 4 : Q — [0,1] by u(1) =
u(c) =p(d)=0.9, u(a) = p(b) = pu(0) =0.7. Then u is an
L-fuzzy filter but not an /- L-fuzzy filter.

0

Fig. 4. A Poset.

Theorem 3.48: Every [-L-fuzzy filter is an L- fuzzy Frink
filter.

Proof: Suppose m is an [-L-fuzzy filter. Let F be a

finite subset of Q. Then there exists y € F! such that 1(y) =

inf{n(a):a € F}.

Again x € F s<xVseF!

=
= y<x (sinceye F')

= N =n(y) =inf{n(a):acF}
= n(x) >inf{n(a):acF}

Therefore 1 is an L-fuzzy Frink filter. ]
Theorem 3.49: Let n and 6 be /- L-fuzzy filters of Q. Then
the supremum 11V 6 of 1 and 0 in #.F(Q) is given by:
(MV 6)(x) =sup{n(a) AO(b) : x € (a,b)"} for all x € Q.
Proof: Let o be an L-fuzzy subset of Q defined by o(x) =
sup{n(a) AO(b) : x € (a,b)"} Vx € Q. Now we claim o is the
smallest L-fuzzy filter of Q containing nU 6. Let x € Q.

sup{n(a) AO(b) : x € (a,b)"™}
n(x) A @(1), (since x € (x,1)™)
= nWAT=n(x)

Similarly we can show ¢ O 0 and hence

Now o(x) =

Y

and hence o 2 7.
c2onue.

Let a,b € Q and x € (a,b)™. Now

o(a)Aa(b) = sup{n(c)A6(d):ac (c,d)"} A
sup{n(e) AB(f): b € (e./)"}
= Sup{n(C) 6(d) An(e) NO(f):
€ (e,d)",b e (e, )"}
< Sup{n(c) n(e) AO(d)AB(f):

a,b € (c,d,e, )™}

Again since 1 and 0 are [-L-fuzzy filters, for each c,e and d, f
there are r € (c,e)! and s € (d, f)! such that n(r) =n(c) An(e)

and 6(s) = 0(d) AO(f). Now
re(ce)landse (d, f)! = {c,de f}"C {sr}"
= a,be{sr}"
= (a7b)l” C {sﬂ,}lu
= x¢&{sr}"
Thus o(a) A o(b) < sup{n(c) An(e) AO(d)AO(f):abe
(c,d,e, )"} < sup{n(r) A O(s) : x € (r,s)*} < o(x) for all

x € (a,b)!" and hence o is an L-fuzzy filter.
Let ¢ be any L-fuzzy filter of Q such that nU8 C ¢. Now
for any x € O, we have

o(x) = sup{n(a)A0B(b):x€e( ,b)l“}
< sup{¢(a) A 9(b):x € (a,b)"}
< o)

and hence o C ¢. Therefore o (n 0)=nVe0,thatis o is
the supremum of 1 and 0 in .Z.%(Q). [ |
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