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L-Fuzzy Filters of a Poset
Berhanu Assaye Alaba, Mihret Alamneh and Derso Abeje

Abstract—Many generalizations of ideals and filters of a lattice
to an arbitrary poset have been studied by different scholars.
The authors of this paper introduced several generalizations of
L-fuzzy ideal of a lattice to an arbitrary poset in [1]. In this paper,
we introduce several L-fuzzy filters of a poset which generalize
the L-fuzzy filter of a lattice and give several characterizations
of them.

Index Terms—Poset, Filter, L-fuzzy closed filter, L-fuzzy Frink
filter, L-fuzzy V-Filter, L-fuzzy semi-filter, L-fuzzy filter, l-L-fuzzy
filter.

I. INTRODUCTION

WE have found several generalizations of ideals and
filters of a lattice to arbitrary poset (partially ordered

set) in a literature. Birkhoff in [2, p. 59] introduced a closed
or normal ideals who gives accredit to the work of Stone in
[3]. Next, in 1954 the second type of ideal and filter of a
poset called Frink ideal and Frink filter have been introduced
by O. Frink [4]. Following this P. V. Venkatanarasimhan
developed the theory of semi ideals and semi filter in [5] and
ideals and filters for a poset in [6], in 1970. These ideals
(respectively, filters) are called ideals (respectively, filter) in
the sense of Venkatanarasimhan or V-ideals (V-filters) for
short. Later Halaś [7], in 1994, introduced a new ideal and
filter of a poset which seems to be a suitable generalization
of the usual concept of ideal and filter in a lattice. We will
simply call it ideal (respectively, filter) in the sense of Halaš.

Moreover, the concept of fuzzy ideals and filters of a lattice
has been studied by different authors in series of papers
[8], [9], [10], [11] and [12]. The aim of this paper is to
notify several generalizations of L-fuzzy filters of a lattice
to an arbitrary poset whose truth values are in a complete
lattice satisfying the infinite meet distributive law and give
several characterizations of them. We also prove that the set
of all L-fuzzy filters of a poset forms a complete lattice with
respect to point-wise ordering ”⊆”. Throughout this work, L
means a non-trivial complete lattice satisfying the infinite meet
distributive law: x∧ supS = sup{x∧ s : s ∈ S} for all x ∈ L and
for any subset S of L.

II. PRELIMINARIES

We briefly recall certain necessary concepts, terminologies
and notations from [2], [13] and [14]. A binary relation
” ≤ ” on a non-empty set Q is called a partial order if it
is reflexive, anti-symmetric and transitive. A pair (Q,≤) is
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called a partially ordered set or simply a poset if Q is a non-
empty set and ”≤ ” is a partial order on Q. When confusion
is unlikely, we use simply the symbol Q to denote a Poset
(Q,≤). Let Q be a poset and S ⊆ Q. An element x in Q
is called a lower bound (respectively, an upper bound) of S
if x ≤ a (respectively, x ≥ a ) for all a ∈ S. We denote the
set of all lower bounds and upper bounds of S by Sl and
Su, respectively. That is Sl = {x ∈ Q : x ≤ a ∀ a ∈ S} and
Su = {x ∈ Q : x ≥ a ∀ a ∈ S}. Sul shall mean {Su}l and Slu

shall mean {Sl}u . Let a,b ∈Q. Then {a}u is simply denoted
by au and {a,b}u is denoted by (a,b)u. Similar notations are
used for the set of lower bounds. We note that S ⊆ Sul and
S⊆ Slu and if S⊆ T in Q then Sl ⊇ T l and Su ⊇ T u. Moreover,
Slul = Sl , Sulu = Su, {au}l = al and {al}u = au. An element x0
in Q is called the least upper bound of S or supremum of
S, denoted by supS (respectively, the greatest lower bound of
S or infimum of S, denoted by in f S) if x0 ∈ Su and x0 ≤ x
∀x ∈ Su (respectively, if x0 ∈ Sl and x ≤ x0 ∀x ∈ Sl ). An
element x0 in Q is called the largest (respectively, the smallest)
element if x≤ x0 (respectively, x0≤ x) for all x∈Q. The largest
(respectively, the smallest) element if it exists in Q is denoted
by 1 (respectively, by 0). A poset (Q≤) is called bounded if
it has 0 and 1. Note that if S = /0 we have Slu = ( /0l)u = Qu

which is equal to the empty set or the singleton set {1} if Q
has the largest element 1

Now we recall definitions of filters of a poset that are
introduced by different scholars.

Definition 2.1 (Dual of [2]): A subset F of a poset (Q,≤)
is said to be a closed or a normal filter in Q if F lu ⊆ F .

Definition 2.2 ([4]): A subset F of a poset (Q,≤) is said to
be a Frink filter in Q if Slu ⊆ F whenever S is a finite subset
of F .

Definition 2.3 ([5]): A non-empty subset F of a poset (Q,≤)
is called a semi-filter or an order filter of Q if a ≤ b and
a ∈ F implies b ∈ F .

Definition 2.4 ([6]): A subset F of a poset (Q,≤) is said to
be a V-filter or a filter in the sense of Venkatannarasimhan if
F is a semi-filter and for any nonempty finite subset S of F ,
if infS exists, then infS ∈ F .

Definition 2.5 ([7]): A subset F of a poset (Q,≤) is called
a filter in Q in the sense of Halaš if (a,b)lu contained in F
whenever a,b ∈ F .
Note that every filter of a poset Q defined above contains Qu.

Remark 2.6: The following remarks are due to R. Halaš and
J. Rachŭnek [15].

1) If (Q≤) is a lattice then a non-empty subset F of Q is
a filter as a poset if and only if it is a filter as a lattice
(Q≤).

2) If a poset does not have the largest element then the
empty subset /0 is a filter in (Q≤) (since /0lu = ( /0l)u =
Qu = /0).
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Definition 2.7: Let A be any subset of a poset Q. Then the
smallest filter containing A is called a filter generated by A
and is denoted by [A). The filter generated by a singleton set
{a}, is called a principal filter and is denoted by [a)
Note that for any subset S of Q if infS exists then Slu = [infS).

The followings are some characterizations of filters gener-
ated by a subset S of a poset Q. We write T ⊂⊂ S to mean T
is a finite subset of S.

1) The closed or normal filter generated by S, denoted by
[S)C, is [S)C =

⋃
{T lu : T ⊆ S} where the union is taken

over all subsets T of S.
2) The Frink filter generated by S, denoted by [S)F , is

[S)F =
⋃
{T lu : T ⊂⊂ S}, where the union is taken over

all finite subsets T of S
3) Define B1 =

⋃
{(a,b)lu : a,b ∈ S} and Bn =

⋃
{(a,b)lu :

a,b ∈ Bn−1} for each positive integer n≥ 2, inductively.
Then the filter generated by S in the sense of Halaš,
denoted by [S)H , is [S)H =

⋃
{Bn : n ∈N } where N

denotes the set of positive integers.
4) If a ∈ Q then [a) = {x ∈ Q : x≤ a}= al is the principal

ideal generated by a.
Definition 2.8 ([7]): A filter F of a poset Q is called an

l-filter if (x,y)l ∩F 6= /0 for all x,y ∈ F .
Note that an easy induction shows that F is an l-filter if Bl ∩
F 6= /0 for every non-empty finite subset B of F .

Theorem 2.9 ([7]): Let F (Q) be the set of filters of a poset
Q and A and B be l-filters of Q. Then the supremum A∨B of
A and B in F (Q) is A∨B =

⋃
{(a,b)lu : a ∈ A,b ∈ B}.

Definition 2.10 ([16]): An L-fuzzy subset η of a poset Q is
a function from Q into L.
Note that if L is a unit interval of real numbers [0,1], then the
L-fuzzy subset η is the fuzzy subsets of Q which is introduced
by L. Zadeh [17]. The set of all L-fuzzy subsets of Q is denoted
by LQ.

Definition 2.11 ([11]): Let η ∈ LQ. Then for each α ∈ L the
set ηα = {x : η(x)≥ α} is called the level subset or level cut
of η at α .

Lemma 2.12 ([9]): Let η ∈ LQ. Then η(x) = sup{α ∈ L :
x ∈ ηα} for all x ∈ Q.

Definition 2.13 ([16]): Let ν ,σ ∈ LQ. Define a binary
relation ”⊆” on LQ by ν ⊆ σ if and only ν(x) ≤ σ(x) for
all x ∈ Q.
It is simple to verify that the binary relation ”⊆ ” on LQ is a
partial order and it is called the point wise ordering.

Definition 2.14 ([18]): Let θ and η be in LQ. Then the union
of fuzzy subsets θ and η of X , denoted by θ ∪η , is a fuzzy
subset of Q defined by (θ ∪η)(x) = θ(x)∨η(x) for all x ∈Q
and the intersection of fuzzy subsets θ and η of Q, denoted
by θ ∩ η , is a fuzzy subset of X defined by (θ ∩ η)(x) =
θ(x)∧η(x) for all x ∈ Q.
More generally, the union and intersection of any family
{ηi}i∈∆ of L-fuzzy subsets of Q, denoted by

⋃
i∈∆ ηi and⋂

i∈∆ ηi respectively, are defined by:
(
⋃

i∈∆ ηi)(x) = supi∈∆ ηi(x) and
⋂

i∈∆ ηi = infi∈∆ ηi(x) for all
x ∈ Q, respectively.

Definition 2.15 ([10]): An L-fuzzy subset η of a lattice Q
with 1 is said to be an L -fuzzy filter of Q; if η(1) = 1 and
η(a∧b) = η(a)∧η(b) for all a,b ∈ Q.

Definition 2.16: Let η be L- fuzzy subset of a poset Q. The
smallest fuzzy filter of Q containing η is called a fuzzy filter
generated by η and is denoted by [η).

III. L-FUZZY FILTERS OF A POSET

In this section, we notify the concept of L-fuzzy filters of a
poset and give several characterizations of them. Throughout
this paper, Q stands for a poset (Q,≤) with 1 unless otherwise
stated. We begin with the following

Definition 3.1: An L-fuzzy subset η of Q is called an L-
fuzzy closed filter if it fulfills the following conditions:

1) η(1) = 1 and
2) for any subset S of Q, η(x)≥ inf{η(a) : a∈ S} ∀x∈ Slu.
Lemma 3.2: A subset F of Q is a closed filter of Q if and

only if its characteristic map χF is an L-fuzzy closed filter of
Q.

Proof: Suppose F is a closed filter of Q. Since 1 is in
F lu ⊆ F , we have χF(1) = 1. Again let S be any subset of
Q and x ∈ Slu. Then if S ⊆ F , we have Slu ⊆ F lu ⊆ F and
χF(a) = 1 for all a∈ S. Therefore χF(x) = 1 = inf{χF(a) : a∈
S}. Again if S * F , then there is c ∈ S such that c /∈ F and
hence χF(c) = 0 and hence χF(x) ≥ 0 = inf{χF(a) : a ∈ S}.
Thus in either cases, χF(x) ≥ inf{χF(a) : a ∈ S} for all x ∈
Slu and S ⊆ Q. Therefore, χF is an L-fuzzy closed filter of
Q. Conversely, suppose χF is an L-fuzzy closed filter. Since
χF(1) = 1, we have 1 ∈ F , that is {1}= Qu ⊆ F . Let x ∈ F lu.
Then by hypotheses, χF(x) ≥ inf{χF(a) : a ∈ F} = 1. This
implies χF(x) = 1 and hence x ∈ F . Therefore, F lu ⊆ F and
hence F is a closed filter. This proves the result.

The following result characterizes the L-fuzzy closed filter
of Q in terms of its level subsets.

Lemma 3.3: Let η be in LQ. Then η is an L- fuzzy closed
filter of Q if and only if ηα is a closed filter of Q for all α ∈ L.

Proof: Let η be an L- fuzzy closed filter of Q and α ∈ L.
Then η(1) = 1 ≥ α and hence 1 ∈ ηα , i.e., {1} = Qu ⊆ ηα .
Again let x∈ (ηα)

lu. Then η(x)≥ inf{η(a) : a∈ ηα} ≥ α and
hence x∈ ηα . Therefore (ηα)

lu ⊆ ηα and hence ηα is a closed
filter.

Conversely, let ηα is a closed filter of Q for all α ∈ L. In
particular η1 is a closed filter. Since 1 ∈ (η1)

lu ⊆ η1, we have
η(1) = 1.

Again let S be any subset of Q. Put α = inf{η(a) : a ∈ S}.
Then η(a)≥ α ∀a ∈ S and hence S⊆ µα . This implies Slu ⊆
µ lu

α ⊆ µα . Now x ∈ Slu⇒ x ∈ ηα ⇒ η(x)≥ α = inf{η(a) : a∈
S}. Therefore η is an L-fuzzy closed filter of Q. This proves
the result.

Lemma 3.4: Let η be fuzzy closed filter of a poset Q. Then
η is iso-tone, in the sense that η(x)≤ η(y) whenever x≤ y.

Proof: Let x,y ∈ Q such that x≤ y. Put η(x) = α . Since
η is a fuzzy closed filter, ηα is a closed filter of Q and
hence (ηα)

lu ⊆ ηα . Now η(x) = α ⇒ x ∈ ηα ⇒ xu = {x}lu ⊆
(ηα)

lu ⊆ ηα . Thus x ≤ y ⇒ y ∈ xu ⇒ y ∈ ηα and hence
η(x) = α ≤ η(y). This proves the result.

Theorem 3.5: Let (Q,≤) be a lattice. Then an L-fuzzy subset
η of Q is an L- fuzzy closed filter in the poset Q if and only
if an L-fuzzy filter in the lattice Q.

Proof: Let η be an L-fuzzy filter in the poset Q and a,b∈
Q. Then η(1) = 1 and since S = {a,b} ⊆ Q and a∧ b ∈ Slu,
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we have η(a∧ b) ≥ inf{η(x) : x ∈ S} = η(a)∧η(b). Again
since η is iso-tone, we have η(a∧b)≤ η(a) and η(a∧b)≤
η(b) and hence we have η(a)∧η(b) ≤ η(a∧ b). Therefore
η(a∧b) = η(a)∧η(b) and hence η is an L-fuzzy filter in the
lattice Q. Conversely suppose µ be an L-fuzzy filter in the
lattice Q. Then η(1) = 1 and η(a∧b) = η(a)∧ µ(b) ∀a,b ∈
Q. Let S ⊆ Q and x ∈ (S)lu. Then x is an upper bound of
(S)l . Since infS ∈ (A)l , we have x≥ infS and hence we have
η(x)≥ η(infS) = inf{η(a) : a∈ S}. Therefore η is an L-fuzzy
closed filter in the poset Q. This proves the result.

Lemma 3.6: The intersection of any family of L-fuzzy closed
filters is an L-fuzzy closed filter.

Theorem 3.7: Let [S)C be a closed filter generated by a
subset S of Q and χS be its characteristic functions. Then the
[χS) = χ[S)C .

Proof: Since [S)C is a closed filter of Q containing S, by
Lemma 3.2, we have χ[S)C is a fuzzy closed filter. Again since
S⊆ [S)C, clearly we have χS ⊆ χ[S)C . Now, we show that it is
the smallest L- fuzzy closed filter containing χS. Let η be an
L-fuzzy closed filter such that χS ⊆ η . Then η(a) = 1 for all
a ∈ S. Now we claim χ[S)C ⊆ η . Let x ∈ Q. If x /∈ [S)C, then
χ[S)(x) = 0 ≤ η(x). If x ∈ [S)C, then x ∈ T lu for some subset
T of S and hence η(x) ≥ inf{η(b) : b ∈ T} = 1 = χ[S)C(x).
Hence in either cases, χ[S)C(x)≤ η(x) for all x ∈Q and hence
χ[S)C ⊆ η . This proves the theorem.

In the following theorem we characterize a fuzzy closed
filter generated by a fuzzy subset of Q in terms of its level
closed filters.

Theorem 3.8: Let η ∈ LQ. Then the L-fuzzy subset η̂ of
Q defined by η̂(x) = sup{α ∈ L : x ∈ [ηα)C} for all x ∈ Q is
a fuzzy closed filter of Q generated by η , where [µα)C is a
closed filter generated by ηα .

Proof: Now we show η̂ is the smallest fuzzy closed filter
containing η . Let x ∈ Q and put η(x) = β . Then x ∈ ηβ ⊆
[ηβ )C⇒ β ∈ {α ∈ L : x ∈ [ηα)C}. Thus η(x) = β ≤ sup{α ∈
L : x ∈ [ηα)C} = η̂(x) and hence η ⊆ µ̂ . Again since {1} =
Qu ⊆ [ηα)C for all α ∈ L, clearly we have η̂(1) = 1. Let S
be any subset of Q and x ∈ Slu. Now inf{η̂(a) : a ∈ S} =
inf{sup{αa : a ∈ [ηαa)C} : a ∈ S} = sup{inf{αa : a ∈ S} : a ∈
[ηαa)C}. Put λ = inf{αa : a ∈ S}. Then λ ≤ αa for all a ∈ S
and hence [ηαa)C ⊆ [ηλ )C ∀a ∈ S. Therefore S ⊆ [ηλ )C and
hence x ∈ Slu ⊆ [ηλ )

lu ⊆ [ηλ ). So

inf{η̂(a) : a ∈ S} = sup{inf{αa : a ∈ S} : a ∈ [ηαa)}
≤ sup{λ ∈ L : x ∈ [ηλ )}
= η̂(x)

Therefore η̂ is an L-fuzzy closed filter. Again let θ be any
L-fuzzy closed filter of Q such that η ⊆ θ . Then ηα ⊆ θα and
θα is a closed filter for all α ∈ L and hence [ηα)⊆ [θα) = θα .
Thus for any x ∈ Q, η̂(x) = sup{α ∈ L : x ∈ [ηα)} ≤ sup{α ∈
L : x∈ θα}= θ(x) and hence η̂ ⊆ θ . This proves that η̂ = [η).

In the following, we give an algebraic characterization of
L-fuzzy Closed filter generated by fuzzy subset of Q.

Theorem 3.9: Let η ∈ LQ. Then the fuzzy subset η defined
by

η(x) =

{
1 i f x = 1
sup{infa∈S η(a) : x ∈ Slu,S⊆ Q} i f x 6= 1

is a fuzzy closed filter of Q generated by η .
Proof: It is enough to show that η̄ = η̂ where η̂ is an

L-fuzzy subset given in the above theorem. Let x ∈ Q. If x =
1, then η̄(x) = 1 = η̂(x). Let x 6= 0. Put Ax = {infa∈S η(a) :
S ⊆ Q and x ∈ Slu} and Bx = {α : x ∈ [ηα)C}. Now we show
supAx = supBx. Let α ∈ Ax. Then α = infa∈A η(a) for some
subset S of Q such that x ∈ Slu. This implies that α ≤ η(a)
for all a ∈ S and hence S ⊆ ηα ⊆ [ηα). Thus Slu ⊆ (ηα ]

lu ⊆
[ηα) and hence x ∈ [ηα). Therefore α ∈ Bx. Thus Ax ⊆ Bx
and hence supAx ≤ supBx. Again let α ∈ Bx.Then x ∈ [ηα).
Since [µα)C =

⋃
{Slu : S ⊆ ηα}, we have x ∈ Slu for some

subset S of ηα . This implies η(a)≥ α for all a ∈ S and hence
inf{η(a) : a ∈ S} ≥ α . Thus β = inf{η(a) : a ∈ S} ∈ Ax. Thus
for each α ∈ Bx we get β ∈ Ax such that α ≤ β and hence
supAx ≥ supBx. Therefore supAx = supBx and hence η = η̂ .

The above result yields the following.
Theorem 3.10: Let FC F (Q) be the set of all L-fuzzy

closed filters of Q. Then (FC F (Q),⊆) forms a complete
lattice with respect to the point wise ordering ”⊆ ”, in which
the supremum supi∈∆µi and the inifimum infi∈∆ ηi of any
family {ηi : i ∈ ∆} in FC F (Q) are given by:
supi∈∆ηi =

⋃
i∈∆{ηi} and infi∈∆ ηi =

⋂
i∈∆ ηi.

Corollary 3.11: For any L-fuzzy closed filters η and ν of
Q, the supremum η ∨ν and the infimum η ∧ν of η and ν in
FC F (Q) respectively are:
η ∨ν = η ∪ν and η ∧ν = η ∩ν .
Now we introduce the fuzzy version of a filter (dual ideal) of
a poset introduced by O. Frink [4].

Definition 3.12: An L-fuzzy subset η of Q is an L-fuzzy
Frink filter if it satisfies the following conditions:

1) η(1) = 1 and
2) for any finite subset F of Q, η(x) ≥ inf{η(a) : a ∈ F}
∀x ∈ F lu

Lemma 3.13: Let η ∈ LQ. Then η is an L-fuzzy Frink filter
of Q if and only if ηα is a Frink filter of Q for all α ∈ L.

Lemma 3.14: Let η be fuzzy Frink filter of a poset Q. Then
η is iso-tone, in the sense that η(x)≤ η(y) whenever x≤ y.

Corollary 3.15: A subset S of Q is a Frink filter of Q if and
only if its characteristic map χS is an L-fuzzy Frink filter of
Q.

Theorem 3.16: Let (Q,≤) be a lattice and η ∈ LQ. Then
η is an L- fuzzy Frink filter in the poset Q if and only it an
L-fuzzy filter in the lattice Q.

Lemma 3.17: The intersection of any family of L-fuzzy
Frink-filters is an L-fuzzy Frink filter.

Theorem 3.18: Let [S)F be a Frink-filter generated by subset
S of Q and χS be its characteristic functions. Then [χS)= χ[S)F .
In the following theorems, we give characterizations of L-
Fuzzy Frink filters generated by fuzzy subset of Q.

Theorem 3.19: Let η ∈ LQ. Define a fuzzy subset η̂ of Q
by η̂(x) = sup{α ∈ L : x ∈ [ηα)F} for all x ∈Q where [ηα)F a
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Frink filter generated by ηα , where [ηα)F is a Frink filter
generated by ηα . Then η̂ is an L-fuzzy Frink filter of Q
generated by η .
In the following, we give an algebraic characterization of L-
fuzzy Frink filters generated by fuzzy subset of Q.

Theorem 3.20: Let η be a fuzzy subset of Q. Then the fuzzy
subset −→η defined by

−→
η (x) =

{
1 i f x = 1
sup{infa∈F η(a) : F ⊂⊂ Q, x ∈ F lu} i f x 6= 1

is a Frink fuzzy filter of Q generated by η .
Theorem 3.21: Let FFF (Q) be the of all L-fuzzy Frink

filter of Q. Then (FFF (Q),⊆) forms a complete lattice with
respect to point wise ordering ”⊆ ”, in which the supremum
and the infimum of any family {ηi : i ∈ ∆} in FFF (Q)

respectively are: supi∈∆ηi =
−−−−−−→⋃

i∈∆{ηi} and infi∈∆ ηi =
⋂

i∈∆ ηi.
Corollary 3.22: For any L-fuzzy Frink ideals η and ν of Q

in the supremum η ∨ν and the infimum η ∧ν of η and ν in
FFF (Q) respectively are: η∨ν =

−−−→
η ∪ν and η∧ν = η∩ν .

Now we introduce the fuzzy version of semi-filters and V-
filters of a poset introduced by P.V. Venkatanarasimhan [5]
and [6].

Definition 3.23: η in LQ is said to be an L-fuzzy semi-filter
or L-fuzzy order filter if η(x)≤ η(y) whenever x≤ y in Q.

Definition 3.24: η in LQ is said to be an L- fuzzy V -filter
if it satisfies the following conditions:

1) for any x,y ∈ Q η(x)≤ η(y) whenever x≤ y and
2) for any non-empty finite subset B of Q, if infB exists

then η(infB)≥ inf{η(b) : b ∈ B}.
Theorem 3.25: Every L-fuzzy Frink filter is an L-fuzzy V -

filter.
Proof: Let η be an L-fuzzy Frink filter and let x,y ∈ Q

such that x ≤ y. Put η(x) = α . Since η is an L-fuzzy Frink
filter, ηα is a Frink filter of Q. Now η(x) = α ⇒ x ∈ ηα ⇒
{x}lu ⊆ ηα . Now x ≤ y⇒ y ∈ xu = xlu ⊆ ηα ⇒ η(x) = α ≤
η(y). Again let B be any nonempty subset of Q such that infB
exists in Q. Then infB ∈ Blu and hence η(infB)≥ inf{η(a) :
a ∈ B}. Therefore η is an L-fuzzy V -filter.

Now we introduce the fuzzy version filters of a poset intro-
duced by Halaš [7] which seems to be a suitable generalization
of the usual concept of L-fuzzy filter of a lattice.

Definition 3.26: η ∈ LQ is called an L- fuzzy filter in the
sense of Halaš if it fulfills the followings:

1) η(1) = 1 and
2) for any a,b ∈ Q, η(x)≥ η(a)∧η(b) for all x ∈ (a,b)lu

In the rest of this paper, an L-fuzzy filter of a poset will mean
an L-fuzzy filter in the sense of Halaš.

Lemma 3.27: η ∈ LQ is an L-fuzzy filter of Q if and only
if ηα is a filter of Q in the sense of Halaš for all α ∈ L.

Corollary 3.28: A subset S of Q is a filter of Q in the sense
of Halaš if and only if its characteristic map χS is an L-fuzzy
filter of Q.

Lemma 3.29: If η is an L-fuzzy filter of Q, then the
following assertions hold:

1) for any x,y ∈ Q η(x)≤ η(y) whenever x≤ y.
2) for any x,y ∈ Q, η(x∧ y)≥ µ(x)∧η(y) whenever x∧ y

exists.

Theorem 3.30: Let (Q,≤) be a lattice. Then an L-fuzzy
subset η of Q is an L-fuzzy filter in the poset Q if and only
if an L-fuzzy filter is in the lattice Q.

Theorem 3.31: Let [S)H be a filter generated by subset S of
Q in the sense of Halaš and χS be its characteristic functions.
Then [χS) = χ[S)H .

Lemma 3.32: The intersection of any family of L-fuzzy
filters is an L- fuzzy filter.
Now we give characterization of an L- fuzzy filter generated
by a fuzzy subset of a poset Q.

Definition 3.33: Let η be a fuzzy subset of Q and N be a set
of positive integers. Define fuzzy subsets of Q inductively as
follows: Bη

1 (x) = sup{η(a)∧η(b) : x ∈ (a,b)lu} and Bη
n (x) =

sup{Bη

n−1(a)∧Bη

n−1(b) : x ∈ (a,b)lu} for each n≥ 2 and a,b ∈
Q.

Theorem 3.34: The set {Bη
n : n∈N } forms a chain and the

fuzzy subset η̂ defined by η̂(x) = sup{Bη
n (x) : n ∈N } is a

fuzzy filter generated by η .
Proof: Let x ∈ Q and n ∈N . Then

Bη

n+1(x) = sup{Bη
n (a)∧Bη

n (b) : x ∈ (a,b)lu}
≥ Bη

n (x)∧Bη
n (x) (since x ∈ xu = (x,x)lu)

= Bη
n (x) ∀ x ∈ Q.

Therefore Bη
n ⊆ Bη

n+1 for each n ∈ N and hence {Bη
n : n ∈

N } is a chain. Now we show η̂ is the smallest fuzzy filter
containing η .

Since η̂(x) = sup{Bη
n (x) : n ∈N }

≥ Bη

1 (x)

= sup{η(a)∧η(b) : x ∈ (a,b)lu}
≥ η(x)∧η(x) (since x ∈ (x,x)lu)

= η(x) ∀ x ∈ Q.

Therefore η ⊆ η̂ . Let a,b ∈ L and x ∈ (a,b)lu.

Now η̂(x) = sup{Bη
n (x) : n ∈N }

≥ Bη
n (x) for all n ∈N

= sup{Bη

n−1(y)∧Bη

n−1(z) : x ∈ (y,z)lu}
for all n≥ 2.

≥ Bη

n−1(a)∧Bη

n−1(b) ∀n≥ 2

(since x ∈ (a,b)ul)

= Bη
m(a)∧Bη

m(b) ∀ m ∈N

Thus η̂(x) ≥ sup{Bη
m(a)∧Bη

m(b) : m ∈N }
= sup{Bη

m(a) : m ∈N }∧
sup{Bη

m(b) : m ∈N }
= η̂(a)∧ η̂(b).

Therefore η̂ is a fuzzy filter. Again let θ be any L-fuzzy
filter of Q such that η ⊆ θ . Now let a,b ∈ Q and x ∈
(a,b)lu. Then θ(x)≥ θ(a)∧θ(b)≥ η(a)∧η(b). This implies
θ(x) ≥ sup{η(a) ∧ η(b) : x ∈ (a,b)ul} = Bη

1 (x). Therefore
θ(x) ≥ Bη

1 (x) for all x ∈ (a,b)lu. Again for any x ∈ (a,b)lu

we have θ(x) ≥ θ(a)∧ θ(b) ≥ Bη

1 (a)∧Bη

1 (b). This implies
θ(x) ≥ sup{Bη

1 (a) ∧ Bη

1 (b) : x ∈ (a,b)lu} = Bη

2 (x). Thus by
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induction we have θ(x) ≥ Bη
n (x) ∀n ∈N and ∀ x ∈ (a,b)lu.

Thus for any x ∈ Q, we have

η̂(x) = sup{Bη
n (x) : n ∈N }

= sup{Bη

n−1(a)∧Bη

n−1(b) : n ∈N ,x ∈ (a,b)lu}
≤ sup{θ(a)∧θ(b) : x ∈ (a,b)lu}

( since, a,b ∈ (a,b)lu.)

≤ θ(x)

Therefore θ ⊇ η̂ . This proves the theorem.
The above result yields the following.
Theorem 3.35: Let FF (Q) be the set of all L-fuzzy filter of

Q. Then (FF (Q),⊆) forms a complete lattice with respect to
the point wise ordering ”⊆ ”, in which the supremum and the
infimum of any family {ηi : i∈∆} in FF (Q) respectively are:
(supi∈∆ηi)(x) = sup{B

⋃
i∈∆ ηi

n (x) : n ∈N } and (infi∈∆ ηi)(x) =
(
⋂

i∈∆ ηi)(x) for any x ∈ Q.
Corollary 3.36: For any L-fuzzy filter η and ν of Q, the

supremum η∨ν and the infimum η∧ν of η and ν in FF (Q)
respectively are: (η∨ν)(x) = sup{Bη∪ν

n (x) : n∈N } and (η∧
ν)(x) = (η ∩ν)(x) for any x ∈ Q.

Theorem 3.37: The following implications hold, where all
of them are not equivalent:

1) L-fuzzy closed filter =⇒L-fuzzy Frink filter =⇒ L-fuzzy
V -filter =⇒ L-fuzzy semi-filter.

2) L- fuzzy closed filter =⇒ L-fuzzy Frink filter =⇒ L-
fuzzy filter =⇒ L- fuzzy semi-filter.

The following examples show that the converse of the above
implications do not hold in general.

Example 3.38: Consider the Poset ([0,1],≤) with the usual
ordering. Define a fuzzy subset η : [0,1]−→ [0,1] by

η(x) =

{
1 i f x ∈ ( 1

2 ,1]
0 i f x ∈ [0, 1

2 ]

Then η is an L- fuzzy Frink filter but not an L- fuzzy closed
filter.

Example 3.39: Consider the poset (Q,≤) depicted in the
figure below. Define a fuzzy subset ν : Q−→ [0,1] by ν(1) =
ν(a′) = 1, ν(a) = ν(b) = ν(c) = ν(d) = ν(0) = 0.2, ν(b′) =
0.6, ν(c′) = 0.5 and ν(d′) = 0.7. Then ν is an L-fuzzy filter

Fig. 1. A Poset.

but not an L- fuzzy Frink-filter.
Example 3.40: Consider the poset (Q,≤) depicted in the

figure below. Define a fuzzy subset θ : Q−→ [0,1] by θ(U) =
1, θ(L) = θ(M) = 0.8 and θ(N) = 0.6. Then θ is an L-fuzzy

Fig. 2. A Poset.

V-filter but not an L- fuzzy Frink-filter.
Example 3.41: Consider the poset (Q,≤) depicted in the

figure below. Define a fuzzy subset σ : Q−→ [0,1] by σ(1) =
1, σ(a) = 0.8, σ(b) = 0.9 and σ(0) = 0.2.

Fig. 3. A Poset.

Then σ is an L-fuzzy semi-filter but not an L-fuzzy filter.
Theorem 3.42: Let x ∈ Q and α ∈ L. Define an L- fuzzy

subset αx of Q by

α
x(y) =

{
1 i f y ∈ [x)
α i f y /∈ [x)

for all y ∈ Q. Then αx is an L-fuzzy filter of Q.
Proof: By the definition of αx, we clearly have αx(1) = 1.

Let a,b ∈ Q and y ∈ (a,b)lu. Now if a,b ∈ [x), then we have
(a,b)lu⊆ [x) and αx(a) =αx(b) = 1. Thus αx(y) = 1= 1∧1=
αx(a)∧αx(b). Again if a /∈ [x) or b /∈ [x), we have αx(a)∧
αx(b) =α and hence αx(y)≥α =αx(a)∧αx(b). Therefore in
either cases we have αx(y)≥ αx(a)∧αx(b) for all y ∈ (a,b)lu

and hence αx is an L-fuzzy filter.
Definition 3.43: The L-fuzzy filter αx defined above is called

the α-level principal fuzzy filter corresponding to x.
Definition 3.44: An L-fuzzy filter µ of a poset Q is called

an l-L-fuzzy filter if for any a,b ∈ Q, there exists x ∈ (a,b)l

such that µ(x) = µ(a)∧µ(b).
Lemma 3.45: An L-fuzzy filter µ of Q is an l-L-fuzzy filter

of Q if and only if µα is an l-filter of Q for all α ∈ L.
Proof: Suppose µ is an l-L-fuzzy filter and α ∈ L. Since

µ is an L- fuzzy filter, µα is a filter of Q. Let a,b ∈ µα . Then
µ(a)≥α and µ(b)≥α and hence µ(a)∧µ(b)≥α . Also since
µ is an l- L- fuzzy filter there exists x∈ (a,b)l such that µ(x)=
µ(a)∧ µ(b) and hence µ(x) ≥ α . Therefore x ∈ µα ∩ (a,b)l
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and hence µα ∩ (a,b)l 6= /0. Therefore µα is an l-filter of a
poset Q. Conversely suppose µα is an l-filter of a poset Q for
all α ∈ L. Then µ is an L-fuzzy filter. Let a,b∈Q and put α =
µ(a)∧µ(b). Then µα ∩ (a,b)l 6= /0. Let x ∈ µα ∩ (a,b)l . Then
x ∈ µα and x ∈ (a,b)l . This implies µ(x) ≥ α = µ(a)∧ µ(b)
and x≤ a, x≤ b. Since µ is iso-tone we have µ(x)≤ µ(a) and
µ(x) ≤ µ(b) and hence µ(x) ≤ µ(a)∧ µ(b). Therefore there
exists x ∈ (a,b)l such that µ(x) = µ(a)∧µ(b) and hence µ is
an l-L-fuzzy filter.

Corollary 3.46: Let (Q,≤) be a poset with 0 and let
x ∈ Q and α ∈ L. Then the α-level principal fuzzy filter
corresponding to x is an l-L-fuzzy filter.

Remark 3.47: Every L-fuzzy filter is not an l-L-fuzzy filter.
For example consider the poset (Q,≤) depicted in the figure
below and define a fuzzy subset µ : Q−→ [0,1] by µ(1) = 1,
µ(c) = µ(d) = 0.9, µ(a) = µ(b) = µ(0) = 0.7. Then µ is an
L-fuzzy filter but not an l- L-fuzzy filter.

Fig. 4. A Poset.

Theorem 3.48: Every l-L-fuzzy filter is an L- fuzzy Frink
filter.

Proof: Suppose η is an l-L-fuzzy filter. Let F be a
finite subset of Q. Then there exists y ∈ F l such that η(y) =
in f{η(a) : a ∈ F}.

Again x ∈ F lu ⇒ s≤ x ∀s ∈ F l

⇒ y≤ x (since y ∈ F l)

⇒ η(x)≥ η(y) = inf{η(a) : a ∈ F}
⇒ η(x)≥ inf{η(a) : a ∈ F}

Therefore η is an L-fuzzy Frink filter.
Theorem 3.49: Let η and θ be l- L-fuzzy filters of Q. Then

the supremum η ∨ θ of η and θ in FF (Q) is given by:
(η ∨θ)(x) = sup{η(a)∧θ(b) : x ∈ (a,b)lu} for all x ∈ Q.

Proof: Let σ be an L-fuzzy subset of Q defined by σ(x)=
sup{η(a)∧θ(b) : x ∈ (a,b)lu} ∀x ∈Q. Now we claim σ is the
smallest L-fuzzy filter of Q containing η ∪θ . Let x ∈ Q.

Now σ(x) = sup{η(a)∧θ(b) : x ∈ (a,b)lu}
≥ η(x)∧θ(1), (since x ∈ (x,1)lu)

= η(x)∧1 = η(x)

and hence σ ⊇ η . Similarly we can show σ ⊇ θ and hence
σ ⊇ η ∪θ .

Let a,b ∈ Q and x ∈ (a,b)lu. Now

σ(a)∧σ(b) = sup{η(c)∧θ(d) : a ∈ (c,d)lu}∧
sup{η(e)∧θ( f ) : b ∈ (e, f )lu}

= sup{η(c)∧θ(d)∧η(e)∧θ( f ) :
a ∈ (c,d)lu,b ∈ (e, f )lu}

≤ sup{η(c)∧η(e)∧θ(d)∧θ( f ) :
a,b ∈ (c,d,e, f )lu}

Again since η and θ are l-L-fuzzy filters, for each c,e and d, f
there are r∈ (c,e)l and s∈ (d, f )l such that η(r) =η(c)∧η(e)
and θ(s) = θ(d)∧θ( f ). Now

r ∈ (c,e)land s ∈ (d, f )l ⇒ {c,d,e, f}lu ⊆ {s,r}lu

⇒ a,b ∈ {s,r}lu

⇒ (a,b)lu ⊆ {s,r}lu

⇒ x ∈ {s,r}lu

Thus σ(a) ∧ σ(b) ≤ sup{η(c) ∧ η(e) ∧ θ(d) ∧ θ( f ) : a,b ∈
(c,d,e, f )lu} ≤ sup{η(r)∧ θ(s) : x ∈ (r,s)lu} ≤ σ(x) for all
x ∈ (a,b)lu and hence σ is an L-fuzzy filter.

Let φ be any L-fuzzy filter of Q such that η ∪θ ⊆ φ . Now
for any x ∈ Q, we have

σ(x) = sup{η(a)∧θ(b) : x ∈ (a,b)lu}
≤ sup{φ(a)∧φ(b) : x ∈ (a,b)lu}
≤ φ(x)

and hence σ ⊆ φ . Therefore σ = (η ∪θ ] = η ∨θ , that is σ is
the supremum of η and θ in FF (Q).
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