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Estimation of Air Pollutant Transportation Equation
in Surabaya using Kalman Filter Method
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Abstract—Surabaya is one of big cities in Indonesia. Since
the number of industries in Surabaya is increasing, the level
of air pollution in Surabaya is also increasing. To deal with
this matter, procurement of measuring instruments has been
carried out in several locations in Surabaya based on the level of
emissions issued by motorized vehicles, but increasing the number
of measuring instruments affects the cost significantly. Therefore,
the estimation of air pollution will make it easier to determine
the level of air pollution in Indonesia. Kalman filter a method to
estimate the state variable by using a system model accompanied
by a measurement model as the initial value that comprises the
prediction stage and the correction stage. The results of this
correction stage will be the estimation results. Then it will be
compared with the data at some locations. The results obtained
are quite accurate at the point of observation with a relatively
small error.

Index Terms—Air pollutant, Kalman filter, state estimation.

I. INTRODUCTION

SURABAYA is the second largest city after Jakarta in In-
donesia. Industrial development in Surabaya is increasing

every year. The use of motorized vehicles also increases over
time. Without realizing it, these things contribute a lot of air
pollution in the city. Data from the Ministry of Environment
shows that the pollution index in Surabaya in 2016 reached
89.57, up from the previous year. Air pollution or what
is usually indicated by the PM10 symbol is caused by air
emissions coming out from motorized vehicles. As a result
of air pollution, this is very detrimental to living things, in
breeding or growing.

Efforts have been made to prevent air pollution or mitigate
it. What can be done by the Surabaya government is to
place a measuring device at several observation points for an
indication of the level of air pollution (PM10) in these places.
From the observational data, it shows which locations have
high concentrations, densely populated areas, around pollutant
locations, projections, areas according to the control strategy,
and overall observation sites. Based on the ISPU data recap
from BLH in 2015, within a period of 4 years it was noted
that based on the results of monitoring air quality, the data
produced were not sufficient to describe Surabaya’s air quality
because it only had 3 active monitoring stations [1]. The
impact of inadequate data is inaccurate information for the
general public and environmental management policy making.
In improving the availability of information on air quality data
that is more accurate, technically and operationally easier, it
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is necessary to provide alternative steps to provide good data,
one of which is by determining the correct observation points
and the minimum number of observers but able to represent
the air quality of Surabaya.

Air pollution problems are represented in the form of
mathematical models where air pollution is assumed to be a
system. The system is formed from an air pollution model
approach (Gaussian model, advection-diffusion model, box
model). The system is a large-order system. The system is
a combination of several components that work together to
achieve a specific goal and the order is the number of positions
specified. In this study, the model that has been obtained will
be estimated by data assimilation techniques. Data assimilation
is a combination of system models with measurement data.
Unlike the statistical method, assimilation of data does not
require a lot of data to draw conclusions from the results of
the analysis.

One familiar method of data assimilation is the Kalman fil-
ter. Kalman filter was introduced by R.E. Kalman in the 1960s
which the point was uses a series of measurements observed
over time, containing statistical noise and other inaccuracies,
and produces estimates of unknown variables that tend to be
more accurate than those based on a single measurement alone,
by estimating a joint probability distribution over the variables
for each time-frame. Kalman filters are widely used in the
world of applied mathematics such as controls on aircraft,
controls on the motion of cars, etc. The algorithm works in
a two-step process. In the prediction step, the Kalman filter
produces estimates of the current state variables, along with
their uncertainties. Once the outcome of the next measurement
(necessarily corrupted with some amount of error, including
random noise) is observed, these estimates are updated using a
weighted average, with more weight being given to estimates
with higher certainty. The algorithm is recursive. It can run
in real time, using only the present input measurements and
the previously calculated state and its uncertainty matrix; no
additional past information is required. In its application in
the case of air pollution, Kalman filter works well at the
observation point with a small error while when it does
not have data it will cause uncertainty because it cannot be
compared with the original estimation [2]. Kalman filter and
its extension have been widely developed in various problems
such as estimation of radar tracking [3], in model reduction
[4], estimation of state variable of stirred tank reactor [5],
estimation of floodgate control [6], and estimation of multi-
robot motion [7].
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II. MATHEMATICAL MODEL OF POLLUTANT
TRANSPORTATION EQUATION IN SURABAYA

Estimation of the concentration of pollutants at certain time
and location can be done by using a pollutant dispersion
model. The spreading process of pollutants (carbon monoxide)
in the air can be approached by the advection-diffusion model.
Advection is a process of pushing pollutants because of their
existence media movements. In this case, air movement is
due to differences in pressure, while the diffusion process
is the spread of pollutants because of their difference in
concentration between one point and another around it. The
model can be an analytical, statistical or numerical model.
Each model has advantages and disadvantages, so for each
problem, we need to choose the the most appropriate model.
Determination of the type of model used depends on several
things, including: modeling objectives, space scale, time scale,
and available costs. In numerical modeling, there are two
methods that can be used, namely finite element method and
finite difference method. Difference method is selected for
making the pollutant advection-diffusion models. Numerical
finite difference method is one method that is widely used in
solving engineering problems because it is easy to use.

A. Pollutant Transportation Equation

Advection-diffusion equation or pollutant transport equation
is a solution to find out the concentration of pollutants in
a particular area with a velocity profile and certain wind
direction [8]:
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If we assumed the grid width used is the same, so (h = k),
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if

e = c−a; f = d−b; g = (1+a+b−2c−2d) (11)

then the equation becomes
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If we run the index i and j then we obtain:

Or the equation above can be described as model system
with replacing m with k which denotes a time index, as
follows:

A xk = xk+1 (13)
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Fig. 1: Grid map of Surabaya city

B. Pollutant Transportation in Surabaya

Discretization in this discussion aims to obtain informa-
tion/data at a certain time and distance so that the grid in
Surabaya becomes a number of points as in Fig. 1 to facilitate
the analysis process. In Fig. 1, the city map of Surabaya
on the grid becomes 36 points with the determination of
N = M = 5. These points represent the density of PM10
pollutants which are then needed in the analysis of determining
the number of air quality observation points. Modeling of the
air pollution system is approached by a 2D diffusion advection
model according to (1) then discretization using the following
finite difference method [3]. Based on data from the Surabaya
City Environmental Service in this study, we set 4t = 1800
seconds, 4x = 2700 meter and 4y = 2500 meter. The wind
speed and diffusion coefficient are given in Table I.

So, by running the index and input the parameters to the
equation of pollutant transportation, we obtain matrix A, B, C,
and D. Matrix A is of size 25× 25, B is of size 25× 20, C
is of size 25× 25. Matrix B shows that the system input is
20 in accordance with the input variable uk and also suitable
with matrix A. The measurement matrix C is determined to
indicate the observation points to be installed on the measuring
instrument and the point is assumed to be valuable and if in
this discussion the observation point is not a measuring instru-
ment, meaning there is no measurement data in the position,
then it is 0. In this research, we determine 18 observation
points from 25 points of variable states. Information from 18
observation points can provide output y that is information
about the concentration of PM10 pollutants at 25 points in the
Surabaya area at the next time instant.

III. KALMAN FILTER ALGORITHM

Kalman filter estimates one process through a feedback
control mechanism: the filter estimates the state of the process
and then gets feedback in the form of a noisy measurement.
The equation for Kalman filters is grouped in two parts: time
update equations and measurement update equations. The time
update equation is assigned to get the pre-estimated value for

TABLE I: Diffusion coefficient and wind speed

(i, j) Dx Dy vy

(1,1) 2296.5424 3479.2617 0.0000
(1,2) 2245.7357 3351.7605 0.0000
(1,3) 2313.3385 3522.0579 0.0000
(1,4) 2445.2976 3869.6835 0.0000
(1,5) 2660.4993 4481.6110 0.9300
(2,1) 1821.8245 2396.6101 0.0800
(2,2) 1756.7835 2266.2508 0.5050
(2,3) 1833.1890 2419.8094 0.5050
(2,4) 2046.6221 2879.5973 1.0050
(2,5) 2330.0661 3565.0011 0.0000
(3,1) 1323.7715 1497.1855 0.0800
(3,2) 1756.7835 2266.2508 0.0800
(3,3) 1341.0658 1524.7918 0.6970
(3,4) 1659.0770 2077.9940 1.0050
(3,5) 2035.8624 2855.2971 1.0050
(4,1) 817.0584 790.5040 0.0800
(4,2) 530.2510 469.2721 0.0800
(4,3) 861.7808 845.4070 0.5800
(4,4) 1362.5688 1559.4600 1.0800
(4,5) 1619.2778 2003.8563 0.0000
(5,1) 663.6289 612.1976 0.0000
(5,2) 204.5575 163.5437 0.0800
(5,3) 730.9625 688.5667 1.0800
(5,4) 1306.3945 1469.6938 1.0800
(5,5) 1795.1762 2342.7049 0.0000

TABLE II: Dimensions of discrete time system variables

Variable Description Dimension

x state vector nx×1
y output vector ny×1
u input vector nu×1
w process noise vector nx×1
v measurement noise vector ny×1
A system matrix - state nx×nx

G system matrix - input nx×nu

H observation matrix ny×nx

the next time instant. The measurement update equation is
responsible for feedback needs, such as integrating the latest
measurement results with pre-estimated values to obtain a
better post-estimation value. The time update equation is also
called the prediction equation, while the measurement update
equation is called the correction equation. The Kalman estima-
tion algorithm filters resemble predictive-correction algorithms
to solve numerical problems. Kalman filter is designed to
operate on systems in linear state space format i.e. [9]

xk+1 = Ak xk +Bkuk +wk

yk = Hk xk + vk

where the variable definitions and dimensions are detailed in
Table II.

The state vector x are the values that will be estimated by the
filter, in this case x means pollutant level in Surabaya. Kalman
filter uses a prediction then continued by a correction in order
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to determine states of the filter. This is called predicted-
updated. The main idea is that using information about the
dynamics of the state, the filter will project forward and
predict what the next state will be. Starting from some initial
estimation of state, x̂0, and initial state error covariance matrix,
P0, the predicted-updated format is applied recursively at each
time step, e.g. using a loop. First, the state vector is predicted
from state dynamic equation using

x̂k+1|k = Akx̂k +Bk uk (14)

where x̂k+1|k is the predicted state vector, x̂k is the previous
estimated state vector. Next, the state error covariance matrix
must also be predicted using

Pk+1|k = Ak Pk AT
k +Qk (15)

where Pk+1|k represents the predicted state error covariance
matrix, Pk is the previous estimated state error covariance
matrix, and Q is the process noise covariance matrix. Once the
predicted values are obtained, the Kalman gain matrix Kk+1 is
calculated by

Kk+1 = Pk+1|kHT
k (Hk Pk+1|kHT

k +Rk)
−1 (16)

where H is a matrix necessary to define the output equation
and R is the measurement noise covariance. The state vector is
then updated which is the difference between the measurement
of the output zk, and the predicted output Hkx̂k+1|k, by calcu-
lated Kalman gain matrix in order to correct the prediction by
the appropriate amount, as in

x̂k+1 = x̂k+1|k +Kk+1(zk+1−Hkx̂k+1|k) (17)

Similarly, the state error covariance is updated by

Pk+1 = (I−Kk+1Hk)Pk+1|k (18)

where I is an identity matrix.

IV. NUMERICAL RESULTS

Simulation of pollutant transportation Equation on (1) can
be presented in state-space form as on 13. By using Kalman
filter, the estimation results are obtained at several points
around the known point of the real data. Based on Fig. 1, it can
be seen that the point or area that has real data is the area with
the red mark, Kebonsari, Wonorejo, and Taman Prestasi (three
locations of Surabaya grid). The data used in the simulation
is data from the Department of Environment of the city of
Surabaya on February 28, 2018. In this paper, we use the
hourly data.

From the real data, estimates can be made around the area
based on the coordinates in Fig. 1. Estimated results for the
coordinates (1,3), (1,4), (2,3), and (3,2) are presented in Fig.
2-5.

Based on Fig. 2-5, it can be seen that the estimation of
pollutant distribution in February 2018 has the same charac-
teristics as real data.

The absolute error of the estimated pollutant distribution
with Kalman Filter on real data can be formulated as follows

Error = |xest − xreal | (19)

Fig. 2: Estimation of pollutant in coordinate (1,3) or in
Kebonsari.

Fig. 3: Estimation of pollutant in coordinate (1,4) or in Taman
Prestasi.

Absolute error can be only calculated on points that have
real data. In this case, the points are (1,3) and (3,2) which is
Kebonsari and Wonorejo. From (19), we can calculate value of
estimation error of pollutant distribution using Kalman filter
on (1,3) as 0.93631 and on point (3,2) is 0.146192. At the
observation point (1,4) namely Taman Prestasi and (2,3) in
Taman Bungkul, we did not have the data so the error was
still quite large above 1 so we did not display it in the paper.

V. CONCLUSIONS

From the experiments that have been done, it can be con-
cluded that the mathematical model of pollutant equations can
be applied in Surabaya by dividing it into several observation
grids. The observational data held determines the accuracy
of the estimation using the Kalman filter. Kalman filters work
well or accurately at the point that has observational data while
working less optimally at points that do not have observational
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Fig. 4: Estimation of pollutant in coordinate (2,3) or in Taman
Bungkul.

Fig. 5: Estimation of pollutant in coordinate (3,2) or in
Wonorejo.

data. Error between estimation and original data generated is
between 0.146192 up to 0.963631.
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