I-Vague Vector Spaces

Zelalem Teshome Wale

Abstract—The notions of I-vague vector spaces of vector spaces with membership and non-membership functions taking values in an involutary dually residuated lattice ordered semigroup are introduced which generalizes the notions with truth values in a Boolean algebra as well as those usual vague sets whose membership and non-membership functions taking values in the unit interval [0, 1]. We discuss some properties of I-vague vector spaces.

Index Terms—Involutary dually residuated lattice ordered semigroup, I-vague sets, I-vague vector spaces.

I. INTRODUCTION

 \mathbf{R} AMAKRISHNA and Eswarlal [1] studied Boolean vague sets where the vague set of the universe X is defined by the pair of functions (t_A, f_A) where t_A and f_A are mappings from a set X into a Boolean algebra satisfying the condition $t_A(x) \leq f_A(x)'$ for all $x \in X$ where $f_A(x)'$ is the complement of $f_A(x)$ in the Boolean algebra. K.L.N Swamy [2], [3], [4] introduced the concept of a Dually Residuated Lattice Ordered Semigroup (in short DRL-semigroup) which is a common abstraction of Boolean algebras and lattice ordered groups. The subclass of DRL-semigroups which are bounded and involutary (i.e. having 0 as the least, 1 as the greatest and satisfying 1 - (1 - x) = x which is categorically equivalent to the class of MV-algebras of Chang [5] and well studied offer a natural generalization of the closed unit interval [0, 1] of real numbers as well as Boolean algebras. Thus, the study of vague sets (t_A, f_A) with values in an involutary DRL-semigroup promises a unified study of real valued vague sets and also those Boolean valued vague sets.

T. Eswarlal and N. Ramakrishna [6] studied vague fields and vector spaces. Moreover, K.V. Rama Rao and Amarendra Babu V. [7] studied vague vector spaces and vague Modules. In this paper, using the definition of I-vague sets in [8], we defined and studied I-vague vector spaces where I is an involutary DRL-semigroup which generalizes the work of vector spaces discussed in T. Eswarlal and N. Ramakrishna [6] and K.V. Rama Rao and Amarendra Babu V. [7].

II. PRELIMINARIES

Definition 1: A system $A = (A, +, \leq, -)$ is called a dually residuated lattice ordered semigroup (in short DRL-semigroup) if and only if

- i) A = (A, +) is a commutative semigroup with zero "0";
- ii) $A = (A, \leq)$ is a lattice such that $a + (b \cup c) = (a+b) \cup (a+c)$ and $a + (b \cap c) = (a+b) \cap (a+c)$ for all $a, b, c \in A$;

Manuscript received January 30, 2019; accepted April 7, 2020.

- iii) Given $a, b \in A$, there exists a least x in A such that $b+x \ge a$, and we denote this x by a-b (for a given a, b this x is uniquely determined);
- iv) $(a-b) \cup 0+b \le a \cup b$ for all $a, b \in A$;
- v) $a-a \ge 0$ for all $a \in A$.

Theorem 1: Any DRL-semigroup is a distributive lattice.

Definition 2: A DRL-semigroup A is said to be involutary if there is an element $1 \ (\neq 0)$ (0 is the identity w.r.t. +) such that

(i)
$$a + (1 - a) = 1 + 1;$$

(ii)
$$1-(1-a) = a$$
 for all $a \in A$.

Theorem 2: In a DRL-semigroup with 1, 1 is unique.

Theorem 3: If a DRL-semigroup contains a least element x, then x = 0. Dually, if a DRL-semigroup with 1 contains a largest element α , then $\alpha = 1$.

Throughout this paper let $I = (I, +, -, \lor, \land, 0, 1)$ be a dually residuated lattice ordered semigroup satisfying 1 - (1 - a) = a for all $a \in I$.

Lemma 1: Let 1 be the largest element of I. Then for $a, b \in$ I, the following holds

(i)
$$a + (1-a) = 1;$$

(ii) $1-a = 1-b \iff a = b;$
(iii) $1-(a \cup b) = (1-a) \cap (1-b);$

Lemma 2: Let *I* be complete. If $a_{\alpha} \in I$ for every $\alpha \in \Delta$, then

(i)
$$1 - \bigvee_{\substack{\alpha \in \Delta \\ \alpha \in \Delta}} a_{\alpha} = \bigwedge_{\substack{\alpha \in \Delta \\ \alpha \in \Delta}} (1 - a_{\alpha}).$$

(ii) $1 - \bigwedge_{\substack{\alpha \in \Delta \\ \alpha \in \Delta}} a_{\alpha} = \bigvee_{\substack{\alpha \in \Delta \\ \alpha \in \Delta}} (1 - a_{\alpha}).$

Definition 3: An I-vague set A of a non-empty set W is a pair (t_A, f_A) where $t_A : W \to I$ and $f_A : W \to I$ with $t_A(x) \le 1 - f_A(x)$ for all $x \in W$.

Definition 4: The interval $[t_A(x), 1 - f_A(x)]$ is called the I-vague value of $x \in W$ and is denoted by $V_A(x)$.

Definition 5: Let $B_1 = [a_1, b_1]$ and $B_2 = [a_2, b_2]$ be two I-vague values. We say $B_1 \ge B_2$ if and only if $a_1 \ge a_2$ and $b_1 \ge b_2$.

Definition 6: Let $A = (t_A, f_A)$ and $B = (t_B, f_B)$ be I-vague sets on a non empty set W. A is said to be contained in B written as $A \subseteq B$ if and only if $t_A(x) \le t_B(x)$ and $f_A(x) \ge f_B(x)$ for all $x \in W$. A is said to be equal to B written as A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Definition 7: An I-vague set A of W with $V_A(x) = V_A(y)$ for all x, $y \in W$ is called a constant I-vague set of W.

Definition 8: Let A be an I-vague set of a non empty set W. Let $A_{(\alpha,\beta)} = \{x \in W : V_A(x) \ge [\alpha,\beta]\}$ where $\alpha, \beta \in I$ and $\alpha \le \beta$. Then $A_{(\alpha,\beta)}$ is called the (α,β) cut of the I-vague set A.

Z.T. Wale is with the Department of Mathematics, College of Natural and Computational Sciences, Addis Ababa University, Ethiopia. E-mail: zelalem.teshome@aau.edu.et

Definition 9: Let S \subseteq W. The characteristic function of S denoted as $\chi_s = (t_{\chi_s}, f_{\chi_s})$, which takes values in I is defined as follows:

$$t_{\chi_S}(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases} f_{\chi_S}(x) = \begin{cases} 0 & \text{if } x \in S \\ 1 & \text{otherwise.} \end{cases}$$

 χ_s is called the I-vague characteristic set of S in I. Thus

$$V_{\chi_S}(x) = \begin{cases} [1, 1] & \text{if } x \in S \\ [0, 0] & \text{otherwise} \end{cases}$$

Definition 10: Let $A = (t_A, f_A)$ and $B = (t_B, f_B)$ be I-vague sets of a set W.

- (i) Their union $A \cup B$ is defined as $A \cup B = (t_{A \cup B}, f_{A \cup B})$ where $t_{A \cup B}(x) = t_A(x) \lor t_B(x)$ and $f_{A \cup B}(x) = f_A(x) \land f_B(x)$ for each $x \in W$.
- (ii) Their intersection $A \cap B$ is defined as $A \cap B = (t_{A \cap B}, f_{A \cap B})$ where $t_{A \cap B}(x) = t_A(x) \wedge t_B(x)$ and $f_{A \cap B}(x) = f_A(x) \vee f_B(x)$ for each $x \in G$.

Definition 11: Let $B_1 = [a_1, b_1]$ and $B_2 = [a_2, b_2]$ be I-vague values. Then

- (i) $\operatorname{isup}\{B_1, B_2\} = [\operatorname{sup}\{a_1, a_2\}, \operatorname{sup}\{b_1, b_2\}].$
- (ii) $\inf\{B_1, B_2\} = [\inf\{a_1, a_2\}, \inf\{b_1, b_2\}].$

Lemma 3: Let A and B be I-vague sets of a set W. Then $A \cup B$ and $A \cap B$ are also I-vague sets of W.

Let $x \in W$. From the definition of $A \cup B$ and $A \cap B$ we have (i) $V_{A \cup B}(x) = i \sup \{V_A(x), V_B(x)\};$

(ii) $V_{A \cap B}(x) = \inf\{V_A(x), V_B(x)\}.$

Definition 12: Let I be complete and $\{A_i = (t_{A_i}, f_{A_i}) : i \in \triangle\}$ be a non empty family of I vague sets of W. Then for each $x \in W$,

(i)
$$\operatorname{isup}\{V_{A_i}(x): i \in \Delta\} = [\bigvee_{i \in \Delta} t_{A_i}(x), \bigvee_{i \in \Delta} (1 - f_{A_i})(x)].$$

(i) $\operatorname{iinf}\{V_{A_i}(x): i \in \Delta\} = [\bigwedge_{i \in \Delta} t_{A_i}(x), \bigwedge_{i \in \Delta} (1 - f_{A_i})(x)].$

Lemma 4: Let I be complete. If $\{A_i : i \in \Delta\}$ is a non empty family of I-vague sets of W, then $\bigcup_{i \in \Delta} A_i$ and $\bigcap_{i \in \Delta} A_i$ are also an

I-vague sets of W.

Definition 13: Let I be complete and $\{A_i = (t_{A_i}, f_{A_i}) : i \in \Delta\}$ be a non empty family of I vague sets of W. Then for each $x \in W$,

(i)
$$\operatorname{isup}\{V_{A_i}(x): i \in \Delta\} = [\bigvee_{i \in \Delta} t_{A_i}(x), \bigvee_{i \in \Delta} (1 - f_{A_i})(x)].$$

(ii) $\operatorname{iinf}\{V_{A_i}(x): i \in \Delta\} = [\bigwedge_{i \in \Delta} t_{A_i}(x), \bigwedge_{i \in \Delta} (1 - f_{A_i})(x)].$

Definition 14: Let $\Phi: X \to Y$ be a mapping from a set X into a set Y. Let B be an I-vague set of Y. Then the preimage of $B, \Phi^{-1}(B) = (t_{\Phi^{-1}(B)}, f_{\Phi^{-1}(B)})$ is given by $t_{\Phi^{-1}(B)}: X \to I$ and $f_{\Phi^{-1}(B)}: X \to I$ where $t_{\Phi^{-1}(B)}(x) = t_B(\Phi(x))$ and $f_{\Phi^{-1}(B)}(x) = t_B(\Phi(x))$ for each $x \in X$.

Lemma 5: Let $\Phi: X \to Y$ be a mapping from a set X into a set Y. If B be an I-vague set of Y, then $\Phi^{-1}(B)$ is an I-vague set of X and $V_{\Phi^{-1}(B)}(x) = V_B \Phi(x)$ for each $x \in X$.

Definition 15: Let I be complete and $\Phi: X \to Y$ be a mapping from a set X into a set Y. Let $A = (t_A, f_A)$ be an I-vague set of X. Then the image of A, $\Phi(A) = (t_{\Phi(A)}, f_{\Phi(A)})$ is given by

$$t_{\Phi(A)}(y) = \begin{cases} \bigvee_{x \in \Phi^{-1}(y)} t_A(z) & \text{if } \Phi^{-1}(y) \neq \emptyset\\ 0 & \text{otherwise} \end{cases}$$

$$f_{\Phi(A)}(y) = \begin{cases} \bigwedge_{x \in \Phi^{-1}(y)} t_A(z) & \text{if } \Phi^{-1}(y) \neq \emptyset\\ 1 & \text{otherwise.} \end{cases}$$

Lemma 6: Let *I* be complete and $\Phi: X \to Y$ be a mapping from a set *X* into a set *Y*. If *A* be an I-vague set of *X*, then $\Phi(A)$ is an I-vague set of *Y*.

Theorem 4: Let *I* be complete and $\Phi: X \to Y$ be a mapping from a set *X* into a set *Y*. If *A* is an I-vague set of *X*, then

$$V_{\Phi(A)}(y) = \begin{cases} isup\{V_A(z) : z \in \Phi^{-1}(y)\} & \text{if } \Phi^{-1}(y) \neq \emptyset\\ [0,0] & \text{otherwise.} \end{cases}$$

III. I-VAGUE VECTOR SPACES

Definition 16: Let W be a vector space over a field F and A be an I-vague set of W. Then A is said to be an I-vague subspace of W if

- (i) $V_A(x+y) \ge iinf\{V_A(x), V_A(y)\}$
- (ii) $V_A(\lambda x) \ge V_A(x)$ for all $x, y \in W$ and $\lambda \in F$

Example 1: Let *I* be the unit interval [0,1] of real numbers. Let $a \oplus b = \min \{1, a+b\}$. with the usual ordering $(I, \oplus, \leq, -)$ is an involutary DRL-semigroup. Consider the vector space $W = \Re^2$ over \Re . Let $A = (t_A, f_A)$ where $t_A : \Re^2 \to [0,1]$ by $t_A(x,y)=1$ and $f_A : \Re^2 \to [0,1]$ by $f_A(x,y)=0$ for all $(x,y) \in \Re^2$. Then A is an I-vague subspace of W.

Lemma 7: Let A be an I-vague subspace of W. Then

- (i) $V_A(0) \ge V_A(x)$ for all $x \in W$.
- (ii) $V_A(\lambda x) = V_A(x)$ for all $x \in W$ and $\lambda \neq 0$. *Proof:* Let A be an I-vague subspace of W.
- (i) $V_A(0) \doteq V_A(0x) \ge V_A(x)$. Hence $V_A(0) \ge V_A(x)$ for all $x \in W$.
- (ii) Let $\lambda \neq 0$ and $x \in W$. Then $V_A(x) = V_A((\lambda^{-1}\lambda)x) = V_A((\lambda^{-1})(\lambda x)) \ge V_A(\lambda x) \ge V_A(x)$. Hence $V_A(\lambda x) = V_A(x)$ for all $\lambda \in F \setminus \{0\}$.

Lemma 8: Let *W* be a vector space over a field *F*. A is an I-vague subspace of *W* iff $V_A(\lambda x + \mu y) \ge iinf\{V_A(x), V_A(y)\}$ for all $\lambda, \mu \in F$ and $x, y \in W$.

Proof: Let A be an I-vague subspace of W. Let $x, y \in W$ and $\lambda, \mu \in F$. Then $V_A(\lambda x) \geq V_A(x)$ and $V_A(\mu y) \geq V_A(y)$. Since A is an I-vague subspace of W, $V_A(\lambda x + \mu y) \geq iinf\{V_A(\lambda x), V_A(\mu y)\}$. Moreover $iinf\{V_A(\lambda x), V_A(\mu y)\} \geq iinf\{V_A(x), V_A(y)\}$. Hence $V_A(\lambda x + \mu y) \geq iinf\{V_A(x), V_A(y)\}$. Conversely, suppose that $V_A(\lambda x + \mu y) \geq iinf\{V_A(x), V_A(y)\}$ for all $\lambda, \mu \in F$ and $x, y \in W$. Put $\lambda = \mu = 1$. Then $V_A(x + y) \geq iinf\{V_A(x), V_A(y)\}$. Moreover, $V_A(\lambda x) = V_A(\lambda x + 0x) \geq iinf\{V_A(x), V_A(x)\} = V_A(x)$. This proves the lemma.

Moreover, $V_A(x - y) = V_A(x + -1y) \ge iinf\{V_A(x), V_A(y)\}.$

Lemma 9: Let *W* be a vector space over a field *F* and *A* be an I-vague subspace of *W*. Then $V_A(\lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_n x_n) \ge$ $iinf\{V_A(x_1), V_A(x_2 + ... + V_A(x_n)\}$ for all $\lambda_1, \lambda_2, ..., \lambda_n \in F$ and $x_1, x_2, ..., x_n \in W$.

Proof: We use proof by induction. Clearly the statement is true for n = 2. Assume that the statement is true for n.

$$V_A(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n + \lambda_{n+1} x_{n+1})$$

= $V_A((\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n) + \lambda_{n+1} x_{n+1})$

$$\geq \inf\{V_A(\lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_n x_n), V_A(\lambda_{n+1} x_{n+1})\}$$

$$\geq \inf\{\inf\{V_A(x_1), V_A(x_2), ..., V_A(x_n)\}, V_A(x_{n+1})\}$$

$$= \inf\{V_A(x_1), V_A(x_2), ..., V_A(x_n), V_A(x_{n+1})\}$$

Therefore $V_A(\lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_n x_n + \lambda_{n+1} x_{n+1}) \ge iinf\{V_A(x_1), V_A(x_2), ..., V_A(x_n), V_A(x_{n+1})\}$. Hence the lemma follows.

Theorem 5: An I-vague set *A* of a vector space *W* is an I-vague subspace of *W* iff for all $\alpha, \beta \in I$ with $\alpha \leq \beta$, the I-vague cut $A_{(\alpha,\beta)}$ of *W* whenever it is non empty.

Proof: Let A be an I-vague set of a vector space W. Suppose that A is an I-vague subspace of W. We prove that $A_{(\alpha,\beta)}$ is a subspace of W whenever it is non empty. Let $x, y \in A_{(\alpha,\beta)}$. Then $V_A(x) \ge [\alpha,\beta]$ and $V_A(y) \ge [\alpha,\beta]$. It follows that $\inf\{V_A(x), V_A(y)\} \ge [\alpha,\beta]$. Since $V_A(x+y) \ge \inf\{V_A(x), V_A(y)\}, V_A(x+y) \ge [\alpha,\beta]$. Hence $x+y \in A_{(\alpha,\beta)}$. Let $x \in A_{(\alpha,\beta)}$ and $\lambda \in F$. Then $V_A(\lambda x) \ge V_A(x) \ge [\alpha,\beta]$. Hence $\lambda x \in A_{(\alpha,\beta)}$. Therefore $A_{(\alpha,\beta)}$ is a subspace of W.

Conversely, suppose that $A_{(\alpha,\beta)}$ is a subspace of W whenever it is non empty. We prove that A is an I-vague subspace of W. Let $x, y \in W$. Suppose $V_A(x) = [\alpha, \beta]$ and $V_A(y) = [\gamma, \delta]$ for some $\alpha, \beta, \gamma, \delta \in I$. iinf $\{V_A(x), V_A(y)\} = [\alpha \land \gamma, \beta \land \delta] =$ $[\xi, \eta]$ for some $\xi, \eta \in I$. Hence $x, y \in A_{(\xi,\eta)}$. Since $A_{(\xi,\eta)}$ is a subspace of W, $\lambda x + \mu y \in A_{(\xi,\eta)}$ for $\lambda, \mu \in F$. Hence $V_A(\lambda x + \mu y) \ge [\xi, \eta] = \inf\{V_A(x), V_A(y)\}$. Thus, $V_A(\lambda x + \mu y) \ge \inf\{V_A(x), V_A(y)\}$. Hence the theorem follows.

Lemma 10: Let A be an I-vague subspace of a vector space W. Then the set $W_A = \{x \in W : V_A(x) = V_A(0)\}$ is a subspace of W.

Proof: Since $0 \in W_A$, $W_A \neq \emptyset$. Let $x, y \in W_A$. Then $V_A(x) = V_A(y) = V_A(0)$. Hence $V_A(x+y) \ge \inf \{V_A(x), V_A(y)\} = V_A(0)$. Since $V_A(0) \ge V_A(x+y), V_A(x+y) = V_A(0)$. Hence $x+y \in W_A$. Let $\lambda \in F$ and $x \in W_A$. Then $V_A(x) = V_A(0)$. $V_A(\lambda x) \ge V_A(x) = V_A(0)$. Thus $V_A(\lambda x) = V_A(0)$. Hence $\lambda x \in W_A$. Therefore W_A is a subspace of W.

Lemma 11: Let *U* be a subspace of a vector space W with $\alpha, \beta, \gamma, \delta \in I$, $\alpha \leq \beta, \gamma \leq \delta$ and $[\gamma, \delta] \leq [\alpha, \beta]$. Then the I-vague set *A* of *W* defined by

$$V_A(x) = \begin{cases} [\alpha, \beta] & \text{if } x \in U \\ [\gamma, \delta] & \text{otherwise.} \end{cases}$$

is an I-vague subspace of W.

Proof: Let U be a subspace of W. We have the following three cases:

- (i) Let $x, y \in U$. Since U is a subspace of W, $\lambda x + \mu y \in U$ for $\lambda, \mu \in F$. $V_A(\lambda x + \mu y) = [\alpha, \beta] = \inf \{V_A(x), V_A(y)\}$. It follows that $V_A(\lambda x + \mu y) \ge \inf \{V_A(x), V_A(y)\}$.
- (ii) Exactly one of x or y does not belong to U. Suppose $x \in U$ and $y \notin U$. $\lambda x + \mu y \notin U$ for any $\mu \neq 0$. $V_A(\lambda x + \mu y) = [\gamma, \delta] = \inf \{V_A(x), V_A(y)\}$. Hence $V_A(\lambda x + \mu y) \ge \inf \{V_A(x), V_A(y)\}$.
- (iii) Both x and y does not belong to U. $\lambda x + \mu y \notin U$ for any $\lambda, \mu, \neq 0$. iinf $\{V_A(x), V_A(y)\} = [\gamma, \delta] = V_A(\lambda x + \mu y)$. Hence $V_A(\lambda x + \mu y) \ge \text{iinf } \{V_A(x), V_A(y)\}$.

This proves the lemma.

Lemma 12: Let A and B be I-vague subspaces of a vector space W. Then $A \cap B$ is also I-vague subspace of W.

Proof: Let *A* and *B* be I-vague subspaces of *W*. We prove that $A \cap B$ is also an I-vague subspace of *W*. By Lemma $3, A \cap B$ is an I-vague set of *W*. Let $x, y \in W$.

$$V_{A\cap B}(x+y) = \inf\{V_A(x+y), V_B(x+y)\}$$

$$\geq \inf\{\inf\{iinf\{V_A(x), V_A(y)\}, iinf\{V_B(x), V_B(y)\}\}$$

$$= \inf\{iinf\{V_A(x), V_B(x)\}, iinf\{\{V_A(y), V_B(y)\}\}$$

$$= \inf\{V_{A\cap B}(x), V_{A\cap B}(y)\}$$

Hence $V_{A\cap B}(x + y) \ge \inf\{V_{A\cap B}(x), V_{A\cap B}(y)\}$. $V_{A\cap B}(\lambda x) = \inf\{V_A(\lambda x), V_B(\lambda x)\} \ge \inf\{V_A(x), V_B(x)\} = V_{A\cap B}(x)$. Thus $V_{A\cap B}(\lambda x) \ge V_{A\cap B}(x)$. Therefore $A \cap B$ is an I-vague subspace of W.

Lemma 13: Let *I* be complete. If $\{A_i : i \in \Delta\}$ is a non empty family of I-vague subspaces of *W*, then $\bigcap_{i \in \Delta} A_i$ is an I-vague subspace of *W*.

Proof: Let $\{A_i : i \in \Delta\}$ be a non empty family of I-vague subspaces of W. Let $A = \bigcap_{i \in \Delta} A_i$. We prove that A is an I-vague subspace of W. By Lemma 4, A is an I-vague set of W.Let $x, y \in W$. Then

$$V_{A}(x+y) = \inf\{V_{A_{i}}(x+y) : i \in \Delta\}$$

$$\geq \inf\{\inf\{V_{A_{i}}(x), V_{A_{i}}(y)\} : i \in \Delta\}$$

$$= \inf\{iinf\{V_{A_{i}}(x) : i \in \Delta\}, iinf\{V_{A_{i}}(y) : i \in \Delta\}\}$$

$$= \inf\{V_{A}(x), V_{A}(y)\}.$$

Thus $V_A(x+y) \ge \inf\{V_A(x), V_A(y)\}$. $V_A(\lambda x) = \inf\{V_{A_i}(\lambda x) : i \in \Delta\}\} \ge \inf\{V_{A_i}(x) : i \in \Delta\}\} = V_A(x)$. Hence the lemma follows.

Example 2: Consider $W = \Re^2$ over \Re . Then $W_1 = \{(x, y) : x + y = 0\}$

and $W_2 = \{(x, y) : x - y = 0\}$ are subspaces of W.

$$V_A(x) = \begin{cases} [\alpha, \beta] & \text{if } x \in W_1 \\ [\gamma, \delta] & \text{otherwise.} \end{cases} \quad V_B(x) = \begin{cases} [\alpha, \beta] & \text{if } x \in W_2 \\ [\gamma, \delta] & \text{otherwise} \end{cases}$$

with $\alpha, \beta, \gamma, \delta \in I$, $\alpha \leq \beta, \gamma \leq \delta$ and $[\alpha, \beta] \leq [\gamma, \delta]$. We show that $A \cup B$ is not an I-vague subspace of *W*. Let u = (1,-1) and v = (1,1).

$$V_{A\cup B}(u+v) = V_{A\cup B}(2,0) = \sup\{V_A(2,0), V_B(2,0) = [\gamma, \delta].$$

$$V_{A\cup B}(u) = V_{A\cup B}(1,-1) = \sup\{V_A(1,-1), V_B(1,-1) = [\alpha, \beta].$$

$$V_{A\cup B}(v) = V_{A\cup B}(1,1) = \sup\{V_A(1,1), V_B(1,1)\} = [\alpha, \beta].$$

$$\inf\{V_{A\cup B}(u), V_{A\cup B}(v)\} = [\alpha, \beta].$$

$$V_{A\cup B}(u+v) = [\gamma, \delta] \not\geq [\alpha, \beta] = \inf\{V_{A\cup B}(u), V_{A\cup B}(v)\}.$$

Therefore $A \cup B$ is not an I-vague subspace of W.

Lemma 14: Let $U \neq \emptyset$. The I-vague characteristic function set of U, χ_U is an I-vague subspace of W iff U is a subspace of W.

Proof: Suppose that χ_U is an I-vague subspace of W. Let $x, y \in U$. Then $V_{\chi_U}(x) = [1, 1]$ and $V_{\chi_U}(y) = [1, 1]$. Since χ_U is an I-vague subspace of W, $V_{\chi_U}(x+y) \ge iinf\{V_{\chi_U}(x), V_{\chi_U}(y)\} = [1, 1]$. Hence $V_{\chi_U}(x+y) = [1, 1]$. So, $x + y \in U$. $V_{\chi_U}(\lambda x) \ge V_{\chi_U}(x) = [1, 1]$. It follows that $V_{\chi_U}(\lambda x) = [1, 1]$. Hence $\lambda x \in U$. Therefore U is a subspace of W. Conversely, suppose that U is a subspace of W. Then Consider

$$V_{\chi_U}(x) = \begin{cases} [1, 1] & \text{if } x \in U\\ [0, 0] & \text{otherwise.} \end{cases}$$

By Lemma 11, χ_U is an I-vague subspace of W.

Theorem 6: Let A be an I-vague subspace of a vector space W. If $V_A(x-y) = V_A(0)$ for all $x, y \in W$, then $V_A(x) = V_A(y)$.

Proof: Let *A* be an I-vague subspace of a vector space *W*. Suppose that $V_A(x - y) = V_A(0)$ for $x, y \in W$. We prove that $V_A(x) = V_A(y)$. $V_A(x - y) = V_A(0)$ implies that $V_A(y - x) = V_A(0)$.

$$V_A(x) = V_A((x-y)+y).$$

$$\geq \inf\{V_A(x-y), V_A(y)\}$$

$$= \inf\{V_A(0), V_A(y)\}$$

$$= V_A(y)$$

Thus $V_A(x) \ge V_A(y)$. Similarly, $V_A(y) = V_A((y - x) + x) \ge \inf\{V_A(y - x), V_A(x)\} = \inf\{V_A(0), V_A(x)\} = V_A(x)$. Thus $V_A(y) \ge V_A(x)$. Hence $V_A(x) = V_A(y)$.

The following example shows that the converse of the above theorem is not true.

Example 3: Let *I* be the unit interval [0, 1] of real numbers. Define $a \oplus b = \min\{1, a+b\}$. With the usual ordering $(I, \oplus, \leq, -)$ is an involutary DRL-semigroup. Let $W = \Re^2$ over \Re . Then $U = \{(x, y) : x + 2y = 0\}$ is a subspace of *W*. Define the I-vague subspace *A* of *W* by

$$V_A(u) = \begin{cases} \begin{bmatrix} \frac{1}{2}, & 1 \end{bmatrix} & \text{if } u \in U\\ \begin{bmatrix} 0, & \frac{1}{4} \end{bmatrix} & \text{otherwise} \end{cases}$$

Let u = (-2,2) and v = (1,2). $V_A(u) = V_A(v) = [0, \frac{1}{4}]$ and $V_A(u-v) = V_A(-3,0) = [0, \frac{1}{4}] \neq V_A(0)$. Thus $V_A(u) = V_A(v)$ but $V_A(u-v) \neq V_A(0)$.

Theorem 7: Let A be an I-vague subspace of a vector space W and $x \in W$. Then $V_A(x+y) = V_A(y)$ for all $y \in W$ iff $V_A(x) = V_A(0)$.

Proof: Let *A* be an I-vague subspace of a vector space *W* and $x \in W$. Suppose that $V_A(x+y) = V_A(y)$ for all $y \in W$. Take y = 0. Hence $V_A(x) = V_A(0)$. Conversely, suppose that $V_A(x) = V_A(0)$. Let $y \in W$. Then $V_A(x+y) \ge \inf\{V_A(x), V_A(y)\} = V_A(y)$. It follows that $V_A(x+y) \ge V_A(y)$.

$$V_A(y) = V_A(-x + x + y)$$

$$\geq \inf\{V_A(-x), V_A(x + y)\}$$

$$= \inf\{V_A(x), V_A(x + y)\}$$

$$= \inf\{V_A(0), V_A(x + y)\}$$

$$= V_A(x + y)$$

Thus $V_A(y) \ge V_A(x+y)$. It follows that $V_A(x+y) = V_A(y)$.

Theorem 8: Let A be an I-vague subspace of a vector space W. If $V_A(x-y) = V_A(0)$ for all $x, y \in W$, then $V_A(x) = V_A(y)$.

Proof: Let A be an I-vague subspace of a vector space W. $V_A(x) = V_A((x-y)+y) \ge \inf\{V_A(x-y), V_A(y)\} = \inf\{V_A(0), V_A(y)\} = V_A(y)$. Similarly, $V_A(y) = V_A((y-x)+x) \ge \inf\{V_A(y-x), V_A(x)\} = \inf\{V_A(0), V_A(x)\} = V_A(x)$. Hence $V_A(x) = V_A(y)$.

Theorem 9: Let W_1 and W_2 be vector spaces over a field F, and let T be a linear transformation from W_1 into W_2 . If

A is an I-vague subspace of W_2 , then $T^{-1}(A)$ is an I-vague subspace of W_1 .

Proof: Let T be a linear transformation from W_1 into W_2 and A be an I-vague subspace of W_2 .

$$V_{T^{-1}(A)}(\lambda x + \mu y) = V_A(T(\lambda x + \mu y))$$

= $V_A(\lambda T(x) + \mu T(y))$
 $\geq \inf\{V_A(\lambda T(x)), V_A(\mu T(y))\}$
 $\geq \inf\{V_A(T(x)), V_A(T(y))\}$
= $\inf\{V_{T^{-1}(A)}(x), V_{T^{-1}(A)}(y)\}$

This completes the proof.

Theorem 10: Let I be complete and infinitely meet distributive. Let U and V be vector spaces over a field F and $T: U \rightarrow V$ be a linear transformation. If A is an I-vague subspace of U, then T(A) is an I-vague subspace of V.

Proof: Let $T: U \to V$ be a linear transformation and A be an I-vague subspace of U.

$$\begin{split} V_{T(A)}(y_1 + y_2) &= \mathrm{isup}\{V_A(z) : z \in T^{-1}(y_1 + y_2)\}\\ &\geq \mathrm{isup}\{V_A(z) : z = x_1 + x_2 \text{ where } x_1 \in T^{-1}(y_1)\\ &\text{ and } x_2 \in T^{-1}(y_2)\}\\ &= \mathrm{isup}\{V_A(x_1 + x_2) : x_1 \in T^{-1}(y_1) \text{ and }\\ &x_2 \in T^{-1}(y_2)\}\\ &\geq \mathrm{isup}\{\mathrm{iinf}\{V_A(x_1), V_A(x_2)\} : x_1 \in T^{-1}(y_1)\\ &\text{ and } x_2 \in T^{-1}(y_2)\}\\ &= \mathrm{iinf}\{\mathrm{isup}\{V_A(x_1), V_A(x_2)\} : x_1 \in T^{-1}(y_1)\\ &\text{ and } x_2 \in T^{-1}(y_2)\}\\ &\text{ since } I \text{ is infinitely meet distributive}\\ &= \mathrm{iinf}\{V_{T(A)}(y_1), V_{T(A)}(y_2)\} \end{split}$$

$$V_{T(A)}(y) = isup\{V_A(z) : z \in T^{-1}(y)\}$$

= $isup\{V_A(z) : T(z) = (y)\}$
 $\leq isup\{V_A(\lambda z) : T(z) = y \text{ for any } \lambda \in F\}$
= $isup\{V_A(\lambda z) : T(\lambda z) = \lambda y\}$
= $isup\{V_A(u) : T(u) = \lambda y\}$
= $V_{T(A)}(\lambda y)$

(-- ()

This proves the theorem.

REFERENCES

- [1] N. Ramakrishna and T. Eswarlal, "Boolean vague sets," *International Journal of Computational Cognition*, vol. 5, no. 4, 2007.
- [2] K. Swamy, "Dually residuated lattice ordered semigroups," *Mathematis-che Annalen*, vol. 159, no. 2, pp. 105–114, 1965.
- [3] —, "Dually residuated lattice ordered semigroups, ii," *Mathematische Annalen*, vol. 160, no. 1, pp. 64–71, 1965.
- [4] —, "Dually residuated lattice ordered semigroups, iii," *Mathematische Annalen*, vol. 167, no. 1, pp. 71–74, 1966.
- [5] C. Chang, "Algebraic analysis of many valued logics," *Transactions of the American Mathematical society*, vol. 88, no. 2, pp. 467–490, 1958.
- [6] T. Eswarlal and N. Ramakrishna, "Vague fields and vague vector spaces," *International Journal of pure and applied Mathematics*, vol. 94, no. 3, pp. 295–305, 2014.
- [7] K. R. Rao, "Vague vector space and vague modules," *International Journal of Pure and Applied Mathematics*, vol. 111, no. 2, pp. 179–188, 2016.
- [8] T. Zelalem, "I-vague sets and I-vague relations," *International Journal of Computational Cognition*, vol. 8, no. 4, pp. 102–109, 2010.