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I-Vague Vector Spaces

Zelalem Teshome Wale

Abstract—The notions of I-vague vector spaces of vector spaces
with membership and non-membership functions taking values
in an involutary dually residuated lattice ordered semigroup
are introduced which generalizes the notions with truth values
in a Boolean algebra as well as those usual vague sets whose
membership and non-membership functions taking values in the
unit interval [0, 1]. We discuss some properties of I-vague vector
spaces.

Index Terms—Involutary dually residuated lattice ordered
semigroup, I-vague sets, I-vague vector spaces.

I. INTRODUCTION

AMAKRISHNA and Eswarlal [1] studied Boolean vague

sets where the vague set of the universe X is defined by
the pair of functions (¢4, f4) where t4 and fs are mappings
from a set X into a Boolean algebra satisfying the condition
t4(x) < fa(x) for all x € X where f4(x) is the complement
of fa(x) in the Boolean algebra. K.L.N Swamy [2], [3], [4]
introduced the concept of a Dually Residuated Lattice Ordered
Semigroup (in short DRL-semigroup) which is a common
abstraction of Boolean algebras and lattice ordered groups.
The subclass of DRL-semigroups which are bounded and
involutary (i.e. having O as the least, 1 as the greatest and
satisfying 1 — (1 —x) =x) which is categorically equivalent to
the class of MV-algebras of Chang [5] and well studied offer a
natural generalization of the closed unit interval [0, 1] of real
numbers as well as Boolean algebras. Thus, the study of vague
sets (t4, fa) with values in an involutary DRL-semigroup
promises a unified study of real valued vague sets and also
those Boolean valued vague sets.

T. Eswarlal and N. Ramakrishna [6] studied vague fields and
vector spaces. Moreover, K.V. Rama Rao and Amarendra Babu
V. [7] studied vague vector spaces and vague Modules. In this
paper, using the definition of I-vague sets in [8], we defined
and studied I-vague vector spaces where I is an involutary
DRL-semigroup which generalizes the work of vector spaces
discussed in T. Eswarlal and N. Ramakrishna [6] and K.V.
Rama Rao and Amarendra Babu V. [7].

II. PRELIMINARIES

Definition 1: A system A = (A,+,<,—) is called a du-
ally residuated lattice ordered semigroup (in short DRL-
semigroup) if and only if

i) A= (A, +) is a commutative semigroup with zero “0”;

ii) A= (A, <) is a lattice such that a+ (bUc) = (a+b)U
(a+c) and a+(bNc) = (a+b)N(a+c) forall a, b, c €
A;
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iii) Given a, b € A, there exists a least x in A such that
b+x > a, and we denote this x by a—b (for a given a, b
this x is uniquely determined);

iv) (a—b) U 04+b<aUb for all a, b€ A;

v) a—a >0 for all a € A.

Theorem 1: Any DRL-semigroup is a distributive lattice.

Definition 2: A DRL-semigroup A is said to be involutary
if there is an element 1 (# 0) (O is the identity w.r.t. +) such
that

i a+(l—a)=1+1,;
(i) 1—(1—a)=aforall ac A.

Theorem 2: In a DRL-semigroup with 1, 1 is unique.

Theorem 3: If a DRL-semigroup contains a least element
x, then x = 0. Dually, if a DRL-semigroup with 1 contains a
largest element ¢, then o = 1.

Throughout this paper let I = (I,+,—,V,A,0, 1) be a dually
residuated lattice ordered semigroup satisfying 1 — (1 —a) =a
forall a € 1.

Lemma 1: Let 1 be the largest element of 1. Then for a, b €
I, the following holds

@) a+(1—a)=1,
(i) l—a=1-b<=a=hb;
(iii) 1—(aUb)=(1—a)N(l—b).

Lemma 2: Let I be complete. If ay € I for every o € A,
then

@ 1I-=Vag= A (1_aoc)~

. aceA acA
(i) 1= A ag=V (1-aq).
acA aceA

Definition 3: An I-vague set A of a non-empty set W is a pair
(ta, fa) whereta : W — T and fy : W — I with 74 (x) <1— fa(x)
for all x e W.

Definition 4: The interval [t4(x), 1 — fa(x)] is called the
I-vague value of x € W and is denoted by Vj(x).

Definition 5: Let By = [al, bl} and B) = [az, bz] be two
I-vague values. We say B; > B, if and only if a; > a; and
by > b;.

Definition 6: Let A = (t4, fa) and B = (1, fp) be I-vague
sets on a non empty set W. A is said to be contained in B
written as A C B if and only if 74 (x) < #p(x) and fa(x) > f5(x)
for all x € W. A is said to be equal to B written as A = B if
and only if A C B and B C A.

Definition 7: An I-vague set A of W with V,(x) = V4(y) for
all x, y € W is called a constant I-vague set of W.

Definition 8: Let A be an I-vague set of a non empty set
W. Let A(g gy = {x € W : V4(x) > [, ]} where a, B €1 and
a <. Then A(q, p) is called the (¢, B) cut of the I-vague
set A.
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Definition 9: Let S CW. The characteristic function of S
denoted as x; = (y, f,), which takes values in I is defined

as follows:
1 ifxeS 0 ifxeS
t X) = X) =
s ) {O otherwise fxs ) {1 otherwise.
X, is called the I-vague characteristic set of S in I. Thus
[ 1, 1] ifxesS
Vis (x) = { [0, 0] otherwise.

Definition 10: Let A =
sets of a set W.

(1) Their union AUB is defined as AUB =
taup(x) = ta(x) V1p(x) and faup(x)
each x € W.

(ii) Their intersection ANB is defined as ANB = (tans, fanB)
where tanp(x) =14 (x) Atg(x) and fanp(x) = fa(x) V fp(x)
for each x € G.
Definition 11: Let By =
values. Then

(i) isup{B1,Ba2} = [sup{ai, a2}, sup{b1, ba2}].

(11) iinf{Bl ,Bz} = [inf{al, az}, inf{b1, bz}]

Lemma 3: Let A and B be I-vague sets of a set W. Then
AUB and ANB are also I-vague sets of W.

Let x € W. From the definition of AUB and ANB we have

(i) Vaug(x) = isup{Va(x), Va(x)};

(11) VAﬂB (x) :iinf{VA ()C), VB(X)}.

Definition 12: Let I be complete and {A; = (14,, fa,): i€ A}
be a non empty family of I vague sets of W. Then for each
xew,

(t4, fa) and B = (1g, fp) be I-vague

(taus, faus) where

= fa(x) A fp(x) for

[ai, bi] and B, = [ay, by] be I-vague

(i) isup{Vy(x): i€ A} = [V a; (%), V (1= fa) ().
(i) iinf{Vy;(x): i€ A} = [/\ tA() E/\(1—19\)(%)}

Lemma 4: Let I be complete. If {A;:i€ A} is a non empty
family of I-vague sets of W, then |J A; and () A; are also an

ieA IISTAN
I-vague sets of W.
Definition 13: Let I be complete and {A; = (ta,, fa,): i€ A}
be a non empty family of I vague sets of W. Then for each
xew,

(i) isup{Va,(x): i€ A} = [\/ ta; (%), \/(l—fA)( )]
(i) iinf{Vy,(x): i€ A} = [/\ 1, (%), E/\(l—fA)( x)].

Definition 14: Let ®: X — Y be a mapping from a set X into
a set Y. Let B be an I-vague set of Y. Then the preimage of
B, @ (B) = (tg-1(p), fo-1()) is given by tg-1(p) : X — I and
Jo-1(p) 1 X — I where tg15)(x) = t5(P(x)) and fo-1()(x) =
t5(®(x)) for each x € X.

Lemma 5: Let ®: X — Y be a mapping from a set X into a
set Y. If B be an I-vague set of Y, then ®~!(B) is an I-vague
set of X and Vg1 (x) = Vp®P(x) for each x € X.

Definition 15: Let I be complete and ® : X — Y be a
mapping from a set X into a set Y. Let A = (#4, f4) be an
I-vague set of X. Then the image of A, ®(A) = (tqp(a) fo(a))
is given by

Voo if@(y)#0
xed~1(y)

0 otherwise

39

A taz) i@y A0
xe@~1(y)

1 otherwise.

Lemma 6: Let I be complete and ® : X — Y be a mapping
from a set X into a set Y. If A be an I-vague set of X, then
®(A) is an I-vague set of Y.

Theorem 4: Let I be complete and & : X — Y be a mapping
from a set X into a set Y. If A is an I-vague set of X, then

_ Jisup{Va(z) :ze @7 '(n)}  if @7'(n) #0
Vo) = {[0,0] otherwise.

III. I-VAGUE VECTOR SPACES

Definition 16: Let W be a vector space over a field F' and
A be an I-vague set of W. Then A is said to be an I-vague
subspace of W if

(i) Va(x+y) >iinf{Va(x),Va(y)}
(i) Va(Ax) > V4(x) for all x,y €W and AL € F

Example 1: Let I be the unit interval [0, 1] of real numbers.
Let a®b = min {1,a+b}. with the usual ordering (1,4, <, —)
is an involutary DRL-semigroup. Consider the vector space
W = R2 over R. Let A = (t4, fa) where #4 : R> — [0,1] by
ta(x,y)=1 and f4 : R2 — [0,1] by fa(x,y)=0 for all (x,y) € R
Then A is an I-vague subspace of W.

Lemma 7: Let A be an I-vague subspace of W. Then

(i) Va(0) > V4(x) for all x€ W.
(ii) V4(Ax) =V4(x) for all x€ W and A # 0.
Proof: Let A be an I-vague subspace of W.
(i) V4(0) = V4(0x) > V4(x). Hence V4(0) > V4(x) for all
x EW.
(i) Let A# 0 and x € W. Then V4(x) = V4((A~'A)x) =
Va((A71)(Ax)) > Va(Ax) > Va ().
Hence V4 (Ax) = Va(x) for all A € F\{0}.
|

Lemma 8: Let W be a vector space over a field F. A is an
I-vague subspace of W iff Vi(Ax+ py) > iinf{Va(x),Va(y)}
forall A,u € F and x,y € W.

Proof: Let A be an I-vague subspace of W. Let
x,y € W and A,u € F Then V4(Ax) > V4(x) and
Va(uy) > Va(y). Since A is an I-vague subspace of
W, Va(Ax + py) > iinf{Va(Ax),Va(uy)}. Moreover
inf{V4(Ax),Va(uy)} > iinf{Va(x),Va(y)}. Hence
Va(Ax + py) > iinf{Va(x),Va(y)}. Conversely, suppose
that Vs (Ax+ wy) > iinf{Va(x),Va(y)} for all A,u € F and
x,y EW.Put A = =1. Then Va(x+y) > iinf{Va(x),Va(y)}.
Moreover,Va (Ax) = Va(Ax+0x) > iinf{Vs(x),Va(x)} = Va(x).
This proves the lemma. [ ]

Moreover,Va(x —y) = Va(x+ —1y) > iinf{Va(x),Va(y)}.

Lemma 9: Let W be a vector space over a field F and A be
an I-vague subspace of W. Then V4 (A1x; +Aoxa + ...+ Aux,) >
iinf{Va(x1),Va(xa+ ...+ Va(x,) } for all A;,2,...,4, € F and
X1,X0, .0 Xy €W,

Proof: We use proof by induction. Clearly the statement
is true for n = 2. Assume that the statement is true for n.

Va(Mixr +Aoxa + oo+ Xy + Ay 1X041)
= VA((llxl +Axr+ ..+ lnx”) +7Ln+1xn+1)
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> iinf{Va (A1x1 + 222 + oo+ X)), Va (A 1xn+1) }
> iinf{iinf{Va (x1), Va(x2), .., Va(xn) }, Va (Xn11) }
= iinf{Va(x1),Va(x2), ., Va(n), Va (Xn1) }

Therefore  Vi(Aix1 + Aoxo + oo + Lxn + Apg1Xnr1) >
iinf{Va(x1),Va(x2),...,Va(x),Va(xy4+1)}. Hence the lemma
follows. ]

Theorem 5: An I-vague set A of a vector space W is an
I-vague subspace of W iff for all o, € I with o < f3, the
I-vague cut A(4 g) of W whenever it is non empty.

Proof: Let A be an I-vague set of a vector space W.
Suppose that A is an I-vague subspace of W. We prove
that A4 g) is a subspace of W whenever it is non empty.
Let x,y € A(gp). Then Vy(x) > [o, B] and Va(y) > [e, B].
It follows that iinf{V4(x),Va(y)} > [@,B]. Since Va(x+y) >
iin f {Va(x), V() }.Va(x +3) > [ot. ). Hence x+y € A(qp).
Let x € A(gqp) and A € F. Then Vi(Ax) > Va(x) > [a,fB].
Hence Ax € A(q ). Therefore A4 p) is a subspace of W.

Conversely, suppose that A, g is a subspace of W when-
ever it is non empty. We prove that A is an I-vague subspace
of W. Let x,y € W. Suppose V4 (x) = [a, B] and V4(y) = [, 3]
for some «,f,7,6 € I. iinf{Va(x),Va(y)} = [0 AY,BAS] =
[§,n] for some &,n € I. Hence x,y €A(ey). Since A )
is a subspace of W, Ax+ uy € Ag ) for A, € F. Hence
Va(Ax + py) > [E,m] = iinf{Va(x),Va(y)}. Thus, Vi(Ax+
wy) > iinf{V4(x),Va(y)}. Hence the theorem follows. [ |

Lemma 10: Let A be an I-vague subspace of a vector space
W. Then the set Wy = {x € W : Va(x) =V4(0)} is a subspace
of W.

Proof: Since 0 € Wy, Wy #0. Let x,y € Wy. Then V4 (x) =
Va(y) =Va(0). Hence V4(x+y) > iinf {V4(x),Va(y)} = Va(0).
Since V4(0) > V4(x+y),Va(x+y) =V4(0). Hence x+y € Wy.
Let A € F and x € Wy. Then V, (x) =Wy (0) Vi (AX)ZVA (x) =
Va(0). Thus V4(Ax) = V4(0). Hence Ax € Wy. Therefore Wy
is a subspace of W. [ |

Lemma 11: Let U be a subspace of a vector space W with
o,B,v,6 €I, o < B,y< 38 and [y, 6] <[at, B]. Then the
I-vague set A of W defined by

ifxelU
otherwise.

wo={ 58

is an I-vague subspace of W.
Proof: Let U be a subspace of W. We have the following
three cases:

(i) Let x,y € U. Since U is a subspace of W, Ax + uy € U
for A,u € F. Va(Ax+ uy) = [e, B] = iinf {Va(x),Va(y)}.
It follows that Va(Ax+ uy) > iinf {V4(x),Va(y)}.

(i) Exactly one of x or y does not belong to U. Suppose

x€Uand y¢ U. Ax+uy ¢ U for any p #0. V4(Ax+

uy) = [y, 6]=iinf {V4(x),Va(y)}. Hence V4(Ax+ uy) >

finf {Va(x), Va(y)}.

Both x and y does not belong to U. Ax+ puy ¢ U for

any )’7“77&0 iinf {VA(x)aVA(y)} = [Y? 5] = VA(AX“!‘N)})'

Hence V4 (Ax+ py) > iinf {V4(x),Va(y)}.

This proves the lemma. ]

Lemma 12: Let A and B be I-vague subspaces of a vector
space W. Then AN B is also I-vague subspace of W.

(iii)

Proof: Let A and B be I-vague subspaces of W. We prove
that AN B is also an [-vague subspace of W. By Lemma 3,ANB
is an I-vague set of W. Let x,y € W.

Vang(x+y) = iinf{Va(x+y),Va(x+y)}
> iinf{iinf{Va(x),Va(y) },iinf{Vp(x),Vg(y)} }
= iinf{iinf{{Va(x),Vs(x)},iinf{{Va(y),Vs(y)} }
= 1inf{Vang(x),Vane (»)}

Hence Ving(x + y) Ziinf{VAmB(x),VAmB(y)}. Vang(Ax) =
iinf {V4(Ax),Ve(Ax)} >iinf{V4(x),Vs(x)} =Vanp(x). Thus
Vans(Ax) > Vanp(x). Therefore ANB is an I-vague subspace
of W. |

Lemma 13: Let I be complete. If {A;:i € A} is a non empty

family of I-vague subspaces of W, then () A; is an I-vague
IISVAN

subspace of W.

Proof: Let {A;:i€ A} be a non empty family of I-vague
subspaces of W. Let A = () A;. We prove that A is an I-vague

[ISVAN

subspace of W. By Lemma 4, A is an I-vague set of W.Let
x,y € W. Then

Va(x+y) =iinf{Vy,(x+y):ie A}
> jinf{iinf{Vy, (x),V4,(y)} :i € A}
=iinf{iinf{Va,(x) :i € A}, iinf{Vs,(y):i€ A}}
= iinf{Vy (x), Va(v) }-
Thus Va(x+y) > iinf{V4(x),Va(y)}. Va(Ax) = iinf{Vy,(Ax) :
i€ A}y >iinf{Vy,(x) : i € A}} =Va(x). Hence the lemma
follows. [ ]
Example 2: Consider W = R? over R.Then W; = {(x,) :
x+y=0}
and Wh = {(x,y) : x—y =0} are subspaces of W.

[o, B] [o, B]
\% = v, =
A6 {[y, 51 ) {[% 51

with o, 8,7,6 €I, « <B,y< 38 and [, B] <[y, 8]. We show
that AUB is not an I-vague subspace of W. Let u =(1,-1) and
v=(1,1).

if xeW;
otherwise.

ifxeWw,
otherwise.

Vaup(u+v) = Vaup(2,0) = isup{Va(2,0),V5(2,0) = [y, §].
Vaug(u) = Vaug(l,—1) =isup{Va(1,-1),Vs(1,—-1) = [, B].
Vaus(v) = Vaug(1,1) = isup{Vx(1,1),V5(1,1)} = [, B].
iinf{Vaup (), Vaug(v) } = [&¢, B].

Vaug(u+v) =1y, 8] # |a, B] =iinf{Vaup(u),Vaur(v)}.

Therefore AUB is not an I-vague subspace of W.

Lemma 14: Let U # 0. The I-vague characteristic function
set of U, xy is an I-vague subspace of W iff U is a subspace
of W.

Proof: Suppose that xy is an I-vague subspace of W.
Let x,y € U. Then Vy (x) = [1, 1] and Vy (y) = [1,1].
Since xy is an I-vague subspace of W, V, (x+y) >
iinf{Vy, (x),Vy, )} = [1, 1]. Hence Vy (x+y)=[1, 1].
So, x+y € U. Vy (Ax) = Vy (x) = [1, 1]. It follows that
Vy, (Ax) =1, 1]. Hence Ax € U. Therefore U is a subspace
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of W. Conversely, suppose that U is a subspace of W. Then
Consider

[, 1] ifxeU
Va, (%) = { [0, 0] otherwise.
By Lemma 11, yy is an I-vague subspace of W. ]

Theorem 6: Let A be an I-vague subspace of a vector space
W.If Vai(x—y) = V4(0) for all x,y € W, then V4(x) =Va(y).
Proof: Let A be an I-vague subspace of a vector space

W. Suppose that V4(x —y) = V4(0) for x,y € W. We prove

that V (x) = Va(y). Va(x—) = Va(0) implies that V(y ~x) =
V4(0).
Va(x) =Va((x—y)+y).
> §inf{Va(x—y),Va(y)}
= iinf{V4(0),Va(y)}
=Va(y)

Thus Vi(x) > Va(y). Similarly, Vi(y) = Va((y — x) +
x) > iinf{V4(y —x),Va(x)} = 1inf{V4(0), V4 (x) }= V4 (x). Thus
Va (y) >V (x) Hence V4 ()C) =Wu (y) |

The following example shows that the converse of the above
theorem is not true.

Example 3: Let I be the unit interval [0, 1] of real numbers.
Define a®b = min{1,a+b}. With the usual ordering (I,®, <
,—) is an involutary DRL-semigroup. Let W = R? over R.
Then U = {(x,y) : x+ 2y =0} is a subspace of W. Define the
I-vague subspace A of W by

_ [0

Va(u) = { [0, 1]
Let u = (—2,2) and v = (1,2).
Va(u—v) = Va(-3,0)=[0, 1]
but VA(M — V) 7£ Va (0)

Theorem 7: Let A be an I-vague subspace of a vector space
W and x € W. Then Vj(x+y) =Va(y) forall y € W iff V4 (x) =
Va(0).

Proof: Let A be an I-vague subspace of a vector space W
and x € W. Suppose that V4 (x+y) = V4(y) for all y € W. Take
y=0. Hence V4 (x) = V4(0). Conversely, suppose that V4 (x) =
Va(0). Let y € W. Then V4 (x+y) > iinf{ V4 (x),Va(y) } = Va(y).
It follows that V4 (x+y) > Va(y).

Va(y) = Va(—x+x+y)

> iinf{V4(—x),Va(x+y)}

=iinf{V4 (x),Va(x+y)}

= unf{VA (0) R Va (X + y)}

=Valx+y)
Thus V4(y) > Va(x+y). It follows that V4 (x+y) =Va(y). ®

Theorem 8: Let A be an I-vague subspace of a vector space

W.If Vi(x—y) =V4(0) for all x,y € W, then V4(x) = Va(y).

Proof: Let A be an I-vague subspace of a vector
space W. Va(x) = Va((x—y) +y) = iinf{Va(x —y),Va(y)} =

fuelU
otherwise.

Va(u) = Va(v)=[0, 3] and
7A VA (0) Thus VA (u) = VA (V)

iinf{V4(0),Va(y)} = Va(y). Similarly, V4(y) = Va((y —x) +
x) > iinf{V4(y — x),Va(x)} = iinf{V4(0),Va(x)} = Va(x).
Hence V4 (x) = Va(y). [ |

Theorem 9: Let Wy and W, be vector spaces over a field
F, and let T be a linear transformation from W, into W,. If

41

A is an I-vague subspace of W, then 7!
subspace of Wj.

Proof: Let T be a linear transformation from W; into W,
and A be an I-vague subspace of W,.

14y (Ax+ py) = Va(T (Ax+ py))
= Va(AT (x) +uT(y))

(A) is an I-vague

> 1inf{Vs (AT (x)),Va(uT ()}
> iinf{V4(T (x)),Va(T(y))}
= Ginf{Vr-1(4) (%), Vr14) ()}
This completes the proof. u

Theorem 10: Let I be complete and infinitely meet distribu-
tive. Let U and V be vector spaces over afield Fand T : U —V
be a linear transformation. If A is an I-vague subspace of U,
then T(A) is an I-vague subspace of V.

Proof: Let T : U — V be a linear transformation and A
be an I-vague subspace of U.
Va1 +y2) =isup{Va(z) :2€ T (y1 +2)}
> isup{Va(z) : z=x| +xp where x; € T~
'(y2)}
= isup{Vy (x; +x2) :x; € T~
x €T ()}
> isup{iinf{VA(xl),VA(xz)} xreT™
and x, € 7! (yz)}
= iinf{isup{Va (x1),Va(x2)} :x; € T~
(32)}

since [ is infinitely meet distributive
= iinf{Vp(4) (1), Vr(a)(02)}

Ve (y) = isup{Va(z) :z€ T (y)}
=isup{Va(2) : T(2) = (v)}
<isup{Va(Az):T(z) =y for
=isup{Va(Az) : T(Az) = Ay}
=isup{Va(u) : T (u) = Ay}
= Vr@)(4y)

This proves the theorem. [ ]

')

and x, e T—
(y1) and

(1)

(1)

and xp € 77!

v

any A € F}
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