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I-Vague Vector Spaces
Zelalem Teshome Wale

Abstract—The notions of I-vague vector spaces of vector spaces
with membership and non-membership functions taking values
in an involutary dually residuated lattice ordered semigroup
are introduced which generalizes the notions with truth values
in a Boolean algebra as well as those usual vague sets whose
membership and non-membership functions taking values in the
unit interval [0, 1]. We discuss some properties of I-vague vector
spaces.

Index Terms—Involutary dually residuated lattice ordered
semigroup, I-vague sets, I-vague vector spaces.

I. INTRODUCTION

RAMAKRISHNA and Eswarlal [1] studied Boolean vague
sets where the vague set of the universe X is defined by

the pair of functions (tA, fA) where tA and fA are mappings
from a set X into a Boolean algebra satisfying the condition
tA(x) ≤ fA(x)

′
for all x ∈ X where fA(x)

′
is the complement

of fA(x) in the Boolean algebra. K.L.N Swamy [2], [3], [4]
introduced the concept of a Dually Residuated Lattice Ordered
Semigroup (in short DRL-semigroup) which is a common
abstraction of Boolean algebras and lattice ordered groups.
The subclass of DRL-semigroups which are bounded and
involutary (i.e. having 0 as the least, 1 as the greatest and
satisfying 1− (1−x) = x) which is categorically equivalent to
the class of MV-algebras of Chang [5] and well studied offer a
natural generalization of the closed unit interval [0, 1] of real
numbers as well as Boolean algebras. Thus, the study of vague
sets (tA, fA) with values in an involutary DRL-semigroup
promises a unified study of real valued vague sets and also
those Boolean valued vague sets.

T. Eswarlal and N. Ramakrishna [6] studied vague fields and
vector spaces. Moreover, K.V. Rama Rao and Amarendra Babu
V. [7] studied vague vector spaces and vague Modules. In this
paper, using the definition of I-vague sets in [8], we defined
and studied I-vague vector spaces where I is an involutary
DRL-semigroup which generalizes the work of vector spaces
discussed in T. Eswarlal and N. Ramakrishna [6] and K.V.
Rama Rao and Amarendra Babu V. [7].

II. PRELIMINARIES

Definition 1: A system A = (A,+,≤,−) is called a du-
ally residuated lattice ordered semigroup (in short DRL-
semigroup) if and only if

i) A = (A, +) is a commutative semigroup with zero “0”;
ii) A = (A, ≤) is a lattice such that a+(b∪ c) = (a+b)∪

(a+c) and a+(b∩c) = (a+b)∩(a+c) for all a, b, c∈
A;
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iii) Given a, b ∈ A, there exists a least x in A such that
b+x≥ a, and we denote this x by a−b (for a given a, b
this x is uniquely determined);

iv) (a−b) ∪ 0+b≤ a∪b for all a, b ∈ A;
v) a−a≥ 0 for all a ∈ A.

Theorem 1: Any DRL-semigroup is a distributive lattice.
Definition 2: A DRL-semigroup A is said to be involutary

if there is an element 1 (6= 0) (0 is the identity w.r.t. +) such
that

(i) a+(1−a) = 1+1;
(ii) 1− (1−a) = a for all a ∈ A.

Theorem 2: In a DRL-semigroup with 1, 1 is unique.
Theorem 3: If a DRL-semigroup contains a least element

x, then x = 0. Dually, if a DRL-semigroup with 1 contains a
largest element α , then α = 1.

Throughout this paper let I = (I,+,−,∨,∧,0,1) be a dually
residuated lattice ordered semigroup satisfying 1−(1−a) = a
for all a ∈ I.

Lemma 1: Let 1 be the largest element of I. Then for a, b∈
I, the following holds

(i) a+(1−a) = 1;
(ii) 1−a = 1−b⇐⇒ a = b;

(iii) 1− (a∪b) = (1−a)∩ (1−b).

Lemma 2: Let I be complete. If aα ∈ I for every α ∈ ∆,
then

(i) 1−
∨

α∈∆

aα =
∧

α∈∆

(1−aα).

(ii) 1−
∧

α∈∆

aα =
∨

α∈∆

(1−aα).

Definition 3: An I-vague set A of a non-empty set W is a pair
(tA, fA) where tA :W→ I and fA :W→ I with tA(x)≤ 1− fA(x)
for all x ∈W .

Definition 4: The interval [tA(x), 1− fA(x)] is called the
I-vague value of x ∈ W and is denoted by VA(x).

Definition 5: Let B1 = [a1, b1] and B2 = [a2, b2] be two
I-vague values. We say B1 ≥ B2 if and only if a1 ≥ a2 and
b1 ≥ b2.

Definition 6: Let A = (tA, fA) and B = (tB, fB) be I-vague
sets on a non empty set W. A is said to be contained in B
written as A⊆ B if and only if tA(x)≤ tB(x) and fA(x)≥ fB(x)
for all x ∈ W. A is said to be equal to B written as A = B if
and only if A⊆ B and B⊆ A.

Definition 7: An I-vague set A of W with VA(x) =VA(y) for
all x, y ∈W is called a constant I-vague set of W .

Definition 8: Let A be an I-vague set of a non empty set
W. Let A(α,β ) = {x ∈W : VA(x)≥ [α,β ]} where α, β ∈ I and
α ≤ β . Then A(α, β ) is called the (α, β ) cut of the I-vague
set A.
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Definition 9: Let S ⊆W. The characteristic function of S
denoted as χS = (tχS

, fχS
), which takes values in I is defined

as follows:

tχS
(x) =

{
1 if x ∈ S
0 otherwise

fχS
(x) =

{
0 if x ∈ S
1 otherwise.

χS is called the I-vague characteristic set of S in I. Thus

VχS
(x) =

{
[1, 1] if x ∈ S
[0, 0] otherwise.

Definition 10: Let A = (tA, fA) and B = (tB, fB) be I-vague
sets of a set W.
(i) Their union A∪B is defined as A∪B=(tA∪B, fA∪B) where

tA∪B(x) = tA(x)∨ tB(x) and fA∪B(x) = fA(x)∧ fB(x) for
each x ∈ W.

(ii) Their intersection A∩B is defined as A∩B= (tA∩B, fA∩B)
where tA∩B(x) = tA(x)∧ tB(x) and fA∩B(x) = fA(x)∨ fB(x)
for each x ∈ G.

Definition 11: Let B1 = [a1, b1] and B2 = [a2, b2] be I-vague
values. Then
(i) isup{B1,B2}= [sup{a1, a2}, sup{b1, b2}].

(ii) iinf{B1,B2}= [inf{a1, a2}, inf{b1, b2}].
Lemma 3: Let A and B be I-vague sets of a set W . Then

A∪B and A∩B are also I-vague sets of W .
Let x ∈ W. From the definition of A∪B and A∩B we have

(i) VA∪B(x) = isup{VA(x), VB(x)};
(ii) VA∩B(x) =iinf{VA(x), VB(x)}.

Definition 12: Let I be complete and {Ai =(tAi , fAi) : i∈4}
be a non empty family of I vague sets of W. Then for each
x ∈W ,
(i) isup{VAi(x) : i ∈4}= [

∨
i∈4

tAi(x),
∨

i∈4
(1− fAi)(x)].

(i) iinf{VAi(x) : i ∈4}= [
∧

i∈4
tAi(x),

∧
i∈4

(1− fAi)(x)].

Lemma 4: Let I be complete. If {Ai : i ∈4} is a non empty
family of I-vague sets of W, then

⋃
i∈4

Ai and
⋂

i∈4
Ai are also an

I-vague sets of W.
Definition 13: Let I be complete and {Ai =(tAi , fAi) : i∈4}

be a non empty family of I vague sets of W. Then for each
x ∈W ,
(i) isup{VAi(x) : i ∈4}= [

∨
i∈4

tAi(x),
∨

i∈4
(1− fAi)(x)].

(ii) iinf{VAi(x) : i ∈4}= [
∧

i∈4
tAi(x),

∧
i∈4

(1− fAi)(x)].

Definition 14: Let Φ : X→Y be a mapping from a set X into
a set Y . Let B be an I-vague set of Y . Then the preimage of
B, Φ−1(B) = (t

Φ−1(B), f
Φ−1(B)) is given by t

Φ−1(B) : X → I and
f
Φ−1(B) : X → I where t

Φ−1(B)(x) = tB(Φ(x)) and f
Φ−1(B)(x) =

tB(Φ(x)) for each x ∈ X .
Lemma 5: Let Φ : X →Y be a mapping from a set X into a

set Y . If B be an I-vague set of Y , then Φ−1(B) is an I-vague
set of X and V

Φ−1(B)(x) =VBΦ(x) for each x ∈ X .
Definition 15: Let I be complete and Φ : X → Y be a

mapping from a set X into a set Y . Let A = (tA, fA) be an
I-vague set of X . Then the image of A, Φ(A) = (tΦ(A), fΦ(A))
is given by

tΦ(A)(y) =


∨

x∈Φ−1(y)
tA(z) if Φ−1(y) 6= /0

0 otherwise

fΦ(A)(y) =


∧

x∈Φ−1(y)
tA(z) if Φ−1(y) 6= /0

1 otherwise.

Lemma 6: Let I be complete and Φ : X → Y be a mapping
from a set X into a set Y . If A be an I-vague set of X , then
Φ(A) is an I-vague set of Y .

Theorem 4: Let I be complete and Φ : X→Y be a mapping
from a set X into a set Y . If A is an I-vague set of X , then

VΦ(A)(y) =

{
isup{VA(z) : z ∈Φ−1(y)} if Φ−1(y) 6= /0
[0,0] otherwise.

III. I-VAGUE VECTOR SPACES

Definition 16: Let W be a vector space over a field F and
A be an I-vague set of W . Then A is said to be an I-vague
subspace of W if
(i) VA(x+ y)≥ iin f{VA(x),VA(y)}

(ii) VA(λx)≥VA(x) for all x,y ∈W and λ ∈ F
Example 1: Let I be the unit interval [0,1] of real numbers.

Let a⊕b = min {1,a+b}. with the usual ordering (I,⊕,≤,−)
is an involutary DRL-semigroup. Consider the vector space
W = ℜ2 over ℜ. Let A = (tA, fA) where tA : ℜ2 → [0,1] by
tA(x,y)=1 and fA : ℜ2→ [0,1] by fA(x,y)=0 for all (x,y)∈ℜ2.
Then A is an I-vague subspace of W.

Lemma 7: Let A be an I-vague subspace of W . Then
(i) VA(0)≥VA(x) for all x ∈ W.

(ii) VA(λx) =VA(x) for all x ∈ W and λ 6= 0.
Proof: Let A be an I-vague subspace of W .

(i) VA(0)
.
= VA(0x) ≥ VA(x). Hence VA(0) ≥ VA(x) for all

x ∈W.
(ii) Let λ 6= 0 and x ∈ W . Then VA(x) = VA((λ

−1λ )x) =
VA((λ

−1)(λx))≥VA(λx)≥VA(x).
Hence VA(λx) =VA(x) for all λ ∈ F\{0}.

Lemma 8: Let W be a vector space over a field F . A is an
I-vague subspace of W iff VA(λx+ µy) ≥ iin f{VA(x),VA(y)}
for all λ ,µ ∈ F and x,y ∈W .

Proof: Let A be an I-vague subspace of W . Let
x,y ∈ W and λ ,µ ∈ F. Then VA(λx) ≥ VA(x) and
VA(µy) ≥ VA(y). Since A is an I-vague subspace of
W, VA(λx + µy) ≥ iin f{VA(λx),VA(µy)}. Moreover
iinf{VA(λx),VA(µy)} ≥ iin f{VA(x),VA(y)}. Hence
VA(λx + µy) ≥ iin f{VA(x),VA(y)}. Conversely, suppose
that VA(λx + µy) ≥ iin f{VA(x),VA(y)} for all λ ,µ ∈ F and
x,y ∈W . Put λ = µ = 1. Then VA(x+y)≥ iin f{VA(x),VA(y)}.
Moreover,VA(λx)=VA(λx+0x)≥ iin f{VA(x),VA(x)}=VA(x).
This proves the lemma.

Moreover,VA(x− y) =VA(x+−1y)≥ iin f{VA(x),VA(y)}.
Lemma 9: Let W be a vector space over a field F and A be

an I-vague subspace of W . Then VA(λ1x1+λ2x2+ ...+λnxn)≥
iin f{VA(x1),VA(x2 + ...+VA(xn)} for all λ1,λ2, ...,λn ∈ F and
x1,x2, ...,xn ∈W .

Proof: We use proof by induction. Clearly the statement
is true for n = 2. Assume that the statement is true for n.

VA(λ1x1 +λ2x2 + ...+λnxn +λn+1xn+1)

=VA((λ1x1 +λ2x2 + ...+λnxn)+λn+1xn+1)
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≥ iinf{VA(λ1x1 +λ2x2 + ...+λnxn),VA(λn+1xn+1)}
≥ iinf{iinf{VA(x1),VA(x2), ...,VA(xn)},VA(xn+1)}
= iinf{VA(x1),VA(x2), ...,VA(xn),VA(xn+1)}

Therefore VA(λ1x1 + λ2x2 + ... + λnxn + λn+1xn+1) ≥
iin f{VA(x1),VA(x2), ...,VA(xn),VA(xn+1)}. Hence the lemma
follows.

Theorem 5: An I-vague set A of a vector space W is an
I-vague subspace of W iff for all α,β ∈ I with α ≤ β , the
I-vague cut A(α,β ) of W whenever it is non empty.

Proof: Let A be an I-vague set of a vector space W .
Suppose that A is an I-vague subspace of W . We prove
that A(α,β ) is a subspace of W whenever it is non empty.
Let x,y ∈ A(α,β ). Then VA(x) ≥ [α,β ] and VA(y) ≥ [α,β ].
It follows that iinf{VA(x),VA(y)} ≥ [α,β ]. Since VA(x+ y) ≥
iin f{VA(x),VA(y)},VA(x+ y) ≥ [α,β ]. Hence x+ y ∈ A(α,β ).
Let x ∈ A(α,β ) and λ ∈ F . Then VA(λx) ≥ VA(x) ≥ [α,β ].
Hence λx ∈ A(α,β ). Therefore A(α,β ) is a subspace of W .

Conversely, suppose that A(α,β ) is a subspace of W when-
ever it is non empty. We prove that A is an I-vague subspace
of W . Let x,y ∈W . Suppose VA(x) = [α,β ] and VA(y) = [γ,δ ]
for some α,β ,γ,δ ∈ I. iinf{VA(x),VA(y)} = [α ∧ γ,β ∧ δ ] =
[ξ ,η ] for some ξ ,η ∈ I. Hence x,y ∈A(ξ ,η). Since A(ξ ,η)

is a subspace of W , λx+ µy ∈ A(ξ ,η) for λ ,µ ∈ F . Hence
VA(λx + µy) ≥ [ξ ,η ] = iinf{VA(x),VA(y)}. Thus, VA(λx +
µy)≥ iinf{VA(x),VA(y)}. Hence the theorem follows.

Lemma 10: Let A be an I-vague subspace of a vector space
W . Then the set WA = {x ∈W : VA(x) =VA(0)} is a subspace
of W .

Proof: Since 0 ∈WA, WA 6= /0. Let x,y ∈WA. Then VA(x) =
VA(y) =VA(0). Hence VA(x+y)≥ iinf {VA(x),VA(y)}=VA(0).
Since VA(0)≥VA(x+y),VA(x+y) =VA(0). Hence x+y ∈WA.
Let λ ∈ F and x ∈WA. Then VA(x) =VA(0). VA(λx)≥VA(x) =
VA(0). Thus VA(λx) = VA(0). Hence λx ∈WA. Therefore WA
is a subspace of W.

Lemma 11: Let U be a subspace of a vector space W with
α,β ,γ,δ ∈ I, α ≤ β ,γ ≤ δ and [γ, δ ] ≤ [α, β ]. Then the
I-vague set A of W defined by

VA(x) =
{

[α, β ] if x ∈U
[γ, δ ] otherwise.

is an I-vague subspace of W .
Proof: Let U be a subspace of W . We have the following

three cases:
(i) Let x,y ∈U . Since U is a subspace of W , λx + µy ∈U

for λ ,µ ∈ F . VA(λx+µy) = [α, β ] = iinf {VA(x),VA(y)}.
It follows that VA(λx+µy)≥ iinf {VA(x),VA(y)}.

(ii) Exactly one of x or y does not belong to U . Suppose
x ∈U and y /∈U . λx+ µy /∈U for any µ 6= 0. VA(λx+
µy) = [γ, δ ]=iinf {VA(x),VA(y)}. Hence VA(λx+ µy) ≥
iinf {VA(x),VA(y)}.

(iii) Both x and y does not belong to U . λx + µy /∈ U for
any λ ,µ, 6= 0. iinf {VA(x),VA(y)}= [γ, δ ] =VA(λx+µy).
Hence VA(λx+µy)≥ iinf {VA(x),VA(y)}.

This proves the lemma.
Lemma 12: Let A and B be I-vague subspaces of a vector

space W . Then A∩B is also I-vague subspace of W .

Proof: Let A and B be I-vague subspaces of W . We prove
that A∩B is also an I-vague subspace of W . By Lemma 3,A∩B
is an I-vague set of W . Let x,y ∈ W.

VA∩B(x+ y) = iinf{VA(x+ y),VB(x+ y)}
≥ iinf{iin f{VA(x),VA(y)}, iin f{VB(x),VB(y)}}
= iinf{iin f{{VA(x),VB(x)}, iin f{{VA(y),VB(y)}}
= iinf{VA∩B(x),VA∩B(y)}

Hence VA∩B(x + y) ≥iinf{VA∩B(x),VA∩B(y)}. VA∩B(λx) =
iinf {VA(λx),VB(λx)} ≥iinf{VA(x),VB(x)} =VA∩B(x). Thus
VA∩B(λx) ≥ VA∩B(x). Therefore A∩B is an I-vague subspace
of W .

Lemma 13: Let I be complete. If {Ai : i∈4} is a non empty
family of I-vague subspaces of W , then

⋂
i∈4

Ai is an I-vague

subspace of W .
Proof: Let {Ai : i∈4} be a non empty family of I-vague

subspaces of W . Let A =
⋂

i∈4
Ai. We prove that A is an I-vague

subspace of W . By Lemma 4, A is an I-vague set of W.Let
x,y ∈W . Then

VA(x+ y) = iinf{VAi(x+ y) : i ∈4}
≥ iinf{iinf{VAi(x),VAi(y)} : i ∈4}
= iinf{iin f{VAi(x) : i ∈4}, iin f{VAi(y) : i ∈4}}
= iinf{VA(x),VA(y)}.

Thus VA(x+ y) ≥ iinf{VA(x),VA(y)}. VA(λx) = iinf{VAi(λx) :
i ∈ 4}} ≥ iinf{VAi(x) : i ∈ 4}} =VA(x). Hence the lemma
follows.

Example 2: Consider W = ℜ2 over ℜ.Then W1 = {(x,y) :
x+ y = 0}
and W2 = {(x,y) : x− y = 0} are subspaces of W .

VA(x)=

{
[α, β ] if x ∈W1

[γ, δ ] otherwise.
VB(x)=

{
[α, β ] if x ∈W2

[γ, δ ] otherwise.

with α,β ,γ,δ ∈ I, α ≤ β ,γ ≤ δ and [α, β ]≤ [γ, δ ]. We show
that A∪B is not an I-vague subspace of W . Let u =(1,-1) and
v=(1,1).

VA∪B(u+ v) =VA∪B(2,0) = isup{VA(2,0),VB(2,0) = [γ, δ ].

VA∪B(u) =VA∪B(1,−1) = isup{VA(1,−1),VB(1,−1) = [α, β ].

VA∪B(v) =VA∪B(1,1) = isup{VA(1,1),VB(1,1)}= [α, β ].

iinf{VA∪B(u),VA∪B(v)}= [α, β ].

VA∪B(u+ v) = [γ, δ ]� [α, β ] = iinf{VA∪B(u),VA∪B(v)}.

Therefore A∪B is not an I-vague subspace of W .
Lemma 14: Let U 6= /0. The I-vague characteristic function

set of U,χU is an I-vague subspace of W iff U is a subspace
of W .

Proof: Suppose that χU is an I-vague subspace of W .
Let x,y ∈ U. Then VχU

(x) = [1, 1] and VχU
(y) = [1,1].

Since χU is an I-vague subspace of W , VχU
(x + y) ≥

iinf{VχU
(x),VχU

(y)} = [1, 1]. Hence VχU
(x + y) = [1, 1].

So, x + y ∈ U . VχU
(λx) ≥ VχU

(x) = [1, 1]. It follows that
VχU

(λx) = [1, 1]. Hence λx ∈U . Therefore U is a subspace
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of W . Conversely, suppose that U is a subspace of W . Then
Consider

VχU
(x) =

{
[1, 1] if x ∈U
[0, 0] otherwise.

By Lemma 11, χU is an I-vague subspace of W .
Theorem 6: Let A be an I-vague subspace of a vector space

W . If VA(x− y) =VA(0) for all x,y ∈W , then VA(x) =VA(y).
Proof: Let A be an I-vague subspace of a vector space

W . Suppose that VA(x− y) = VA(0) for x,y ∈W . We prove
that VA(x) =VA(y). VA(x−y) =VA(0) implies that VA(y−x) =
VA(0).

VA(x) =VA((x− y)+ y).

≥ iinf{VA(x− y),VA(y)}
= iinf{VA(0),VA(y)}
=VA(y)

Thus VA(x) ≥ VA(y). Similarly, VA(y) = VA((y − x) +
x)≥ iinf{VA(y− x),VA(x)}= iinf{VA(0),VA(x)}=VA(x). Thus
VA(y)≥VA(x). Hence VA(x) =VA(y).

The following example shows that the converse of the above
theorem is not true.

Example 3: Let I be the unit interval [0, 1] of real numbers.
Define a⊕b = min{1,a+b}. With the usual ordering (I,⊕,≤
,−) is an involutary DRL-semigroup. Let W = ℜ2 over ℜ.
Then U = {(x,y) : x+2y = 0} is a subspace of W . Define the
I-vague subspace A of W by

VA(u) =
{

[ 1
2 , 1] if u ∈U

[0, 1
4 ] otherwise.

Let u = (−2,2) and v = (1,2). VA(u) = VA(v)=[0, 1
4 ] and

VA(u− v) = VA(−3,0)=[0, 1
4 ] 6= VA(0). Thus VA(u) = VA(v)

but VA(u− v) 6=VA(0).
Theorem 7: Let A be an I-vague subspace of a vector space

W and x∈W . Then VA(x+y) =VA(y) for all y∈W iff VA(x) =
VA(0).

Proof: Let A be an I-vague subspace of a vector space W
and x ∈W . Suppose that VA(x+y) =VA(y) for all y∈W . Take
y = 0. Hence VA(x) =VA(0). Conversely, suppose that VA(x) =
VA(0). Let y∈W . Then VA(x+y)≥ iinf{VA(x),VA(y)}=VA(y).
It follows that VA(x+ y)≥VA(y).

VA(y) =VA(−x+ x+ y)

≥ iinf{VA(−x),VA(x+ y)}
= iinf{VA(x),VA(x+ y)}
= iinf{VA(0),VA(x+ y)}
=VA(x+ y)

Thus VA(y)≥VA(x+ y). It follows that VA(x+ y) =VA(y).
Theorem 8: Let A be an I-vague subspace of a vector space

W . If VA(x− y) =VA(0) for all x,y ∈W , then VA(x) =VA(y).
Proof: Let A be an I-vague subspace of a vector

space W . VA(x) = VA((x− y)+ y) ≥ iinf{VA(x− y),VA(y)} =
iinf{VA(0),VA(y)} = VA(y). Similarly, VA(y) = VA((y− x) +
x) ≥ iinf{VA(y − x),VA(x)} = iinf{VA(0),VA(x)} = VA(x).
Hence VA(x) =VA(y).

Theorem 9: Let W1 and W2 be vector spaces over a field
F , and let T be a linear transformation from W1 into W2. If

A is an I-vague subspace of W2, then T−1(A) is an I-vague
subspace of W1.

Proof: Let T be a linear transformation from W1 into W2
and A be an I-vague subspace of W2.

VT−1(A)(λx+µy) =VA(T (λx+µy))

=VA(λT (x)+µT (y))

≥ iinf{VA(λT (x)),VA(µT (y))}
≥ iinf{VA(T (x)),VA(T (y))}
= iinf{VT−1(A)(x),VT−1(A)(y)}

This completes the proof.
Theorem 10: Let I be complete and infinitely meet distribu-

tive. Let U and V be vector spaces over a field F and T :U→V
be a linear transformation. If A is an I-vague subspace of U ,
then T (A) is an I-vague subspace of V .

Proof: Let T : U → V be a linear transformation and A
be an I-vague subspace of U .

VT (A)(y1 + y2) = isup{VA(z) : z ∈ T−1(y1 + y2)}
≥ isup{VA(z) : z = x1 + x2 where x1 ∈ T−1(y1)

and x2 ∈ T−1(y2)}
= isup{VA(x1 + x2) : x1 ∈ T−1(y1) and

x2 ∈ T−1(y2)}
≥ isup{iinf{VA(x1),VA(x2)} : x1 ∈ T−1(y1)

and x2 ∈ T−1(y2)}
= iinf{isup{VA(x1),VA(x2)} : x1 ∈ T−1(y1)

and x2 ∈ T−1(y2)}
since I is infinitely meet distributive
= iinf{VT (A)(y1),VT (A)(y2)}

VT (A)(y) = isup{VA(z) : z ∈ T−1(y)}
= isup{VA(z) : T (z) = (y)}
≤ isup{VA(λ z) : T (z) = y for any λ ∈ F}
= isup{VA(λ z) : T (λ z) = λy}
= isup{VA(u) : T (u) = λy}
=VT (A)(λy)

This proves the theorem.
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