I-Vague Vector Spaces

Zelalem Teshome Wale

Abstract

The notions of I-vague vector spaces of vector spaces with membership and non-membership functions taking values in an involutary dually residuated lattice ordered semigroup are introduced which generalizes the notions with truth values in a Boolean algebra as well as those usual vague sets whose membership and non-membership functions taking values in the unit interval $[0,1]$. We discuss some properties of I-vague vector spaces.

Index Terms-Involutary dually residuated lattice ordered semigroup, I-vague sets, I-vague vector spaces.

I. Introduction

RAMAKRISHNA and Eswarlal [1] studied Boolean vague sets where the vague set of the universe X is defined by the pair of functions $\left(t_{A}, f_{A}\right)$ where t_{A} and f_{A} are mappings from a set X into a Boolean algebra satisfying the condition $t_{A}(x) \leq f_{A}(x)^{\prime}$ for all $x \in X$ where $f_{A}(x)^{\prime}$ is the complement of $f_{A}(x)$ in the Boolean algebra. K.L.N Swamy [2], [3], [4] introduced the concept of a Dually Residuated Lattice Ordered Semigroup (in short DRL-semigroup) which is a common abstraction of Boolean algebras and lattice ordered groups. The subclass of DRL-semigroups which are bounded and involutary (i.e. having 0 as the least, 1 as the greatest and satisfying $1-(1-x)=x)$ which is categorically equivalent to the class of MV-algebras of Chang [5] and well studied offer a natural generalization of the closed unit interval $[0,1]$ of real numbers as well as Boolean algebras. Thus, the study of vague sets $\left(t_{A}, f_{A}\right)$ with values in an involutary DRL-semigroup promises a unified study of real valued vague sets and also those Boolean valued vague sets.
T. Eswarlal and N. Ramakrishna [6] studied vague fields and vector spaces. Moreover, K.V. Rama Rao and Amarendra Babu V. [7] studied vague vector spaces and vague Modules. In this paper, using the definition of I-vague sets in [8], we defined and studied I-vague vector spaces where I is an involutary DRL-semigroup which generalizes the work of vector spaces discussed in T. Eswarlal and N. Ramakrishna [6] and K.V. Rama Rao and Amarendra Babu V. [7].

II. Preliminaries

Definition 1: A system $A=(A,+, \leq,-)$ is called a dually residuated lattice ordered semigroup (in short DRLsemigroup) if and only if
i) $A=(A,+)$ is a commutative semigroup with zero " 0 ";
ii) $A=(A, \leq)$ is a lattice such that $a+(b \cup c)=(a+b) \cup$ $(a+c)$ and $a+(b \cap c)=(a+b) \cap(a+c)$ for all $a, b, c \in$ A;

[^0]iii) Given $a, b \in A$, there exists a least x in A such that $b+x \geq a$, and we denote this x by $a-b$ (for a given a, b this x is uniquely determined);
iv) $(a-b) \cup 0+b \leq a \cup b$ for all $a, b \in A$;
v) $a-a \geq 0$ for all $a \in A$.

Theorem 1: Any DRL-semigroup is a distributive lattice.
Definition 2: A DRL-semigroup A is said to be involutary if there is an element $1(\neq 0)(0$ is the identity w.r.t. +$)$ such that
(i) $a+(1-a)=1+1$;
(ii) $\quad 1-(1-a)=a$ for all $a \in \mathrm{~A}$.

Theorem 2: In a DRL-semigroup with 1,1 is unique.
Theorem 3: If a DRL-semigroup contains a least element x, then $x=0$. Dually, if a DRL-semigroup with 1 contains a largest element α, then $\alpha=1$.

Throughout this paper let $I=(I,+,-, \vee, \wedge, 0,1)$ be a dually residuated lattice ordered semigroup satisfying $1-(1-a)=a$ for all $a \in I$.

Lemma 1: Let 1 be the largest element of I. Then for $a, b \in$ I, the following holds
(i) $a+(1-a)=1$;
(ii) $1-a=1-b \Longleftrightarrow a=b$;
(iii) $1-(a \cup b)=(1-a) \cap(1-b)$.

Lemma 2: Let I be complete. If $a_{\alpha} \in I$ for every $\alpha \in \Delta$, then
(i) $1-\bigvee a_{\alpha}=\bigwedge\left(1-a_{\alpha}\right)$.
(ii) $1-\bigwedge_{\alpha \in \Delta}^{\alpha \in \Delta} a_{\alpha}=\bigvee_{\alpha \in \Delta}^{\alpha \in \Delta}\left(1-a_{\alpha}\right)$.

Definition 3: An I-vague set A of a non-empty set W is a pair $\left(t_{A}, f_{A}\right)$ where $t_{A}: W \rightarrow I$ and $f_{A}: W \rightarrow I$ with $t_{A}(x) \leq 1-f_{A}(x)$ for all $x \in W$.

Definition 4: The interval $\left[t_{A}(x), 1-f_{A}(x)\right]$ is called the I-vague value of $x \in \mathrm{~W}$ and is denoted by $V_{A}(x)$.
Definition 5: Let $B_{1}=\left[a_{1}, b_{1}\right]$ and $B_{2}=\left[a_{2}, b_{2}\right]$ be two I-vague values. We say $B_{1} \geq B_{2}$ if and only if $a_{1} \geq a_{2}$ and $b_{1} \geq b_{2}$.

Definition 6: Let $A=\left(t_{A}, f_{A}\right)$ and $B=\left(t_{B}, f_{B}\right)$ be I-vague sets on a non empty set W. A is said to be contained in B written as $A \subseteq B$ if and only if $t_{A}(x) \leq t_{B}(x)$ and $f_{A}(x) \geq f_{B}(x)$ for all $x \in \mathrm{~W}$. A is said to be equal to B written as $\mathrm{A}=\mathrm{B}$ if and only if $A \subseteq B$ and $B \subseteq A$.

Definition 7: An I-vague set A of W with $V_{A}(x)=V_{A}(y)$ for all $x, y \in W$ is called a constant I-vague set of W.

Definition 8: Let A be an I-vague set of a non empty set W. Let $A_{(\alpha, \beta)}=\left\{x \in W: V_{A}(x) \geq[\alpha, \beta]\right\}$ where $\alpha, \beta \in I$ and $\alpha \leq \beta$. Then $A_{(\alpha, \beta)}$ is called the (α, β) cut of the I-vague set A.

Definition 9: Let $S \subseteq W$. The characteristic function of S denoted as $\chi_{S}=\left(t_{\chi_{S}}, f_{\chi_{S}}\right)$, which takes values in I is defined as follows:

$$
t_{\chi_{S}}(x)=\left\{\begin{array}{ll}
1 & \text { if } x \in S \\
0 & \text { otherwise }
\end{array} \quad f_{\chi_{S}}(x)= \begin{cases}0 & \text { if } x \in S \\
1 & \text { otherwise }\end{cases}\right.
$$

χ_{S} is called the I-vague characteristic set of S in I. Thus

$$
V_{\chi_{S}}(x)= \begin{cases}{[1,1]} & \text { if } x \in S \\ {[0,0]} & \text { otherwise }\end{cases}
$$

Definition 10: Let $A=\left(t_{A}, f_{A}\right)$ and $B=\left(t_{B}, f_{B}\right)$ be I-vague sets of a set W.
(i) Their union $A \cup B$ is defined as $A \cup B=\left(t_{A \cup B}, f_{A \cup B}\right)$ where $t_{A \cup B}(x)=t_{A}(x) \vee t_{B}(x)$ and $f_{A \cup B}(x)=f_{A}(x) \wedge f_{B}(x)$ for each $x \in \mathrm{~W}$.
(ii) Their intersection $A \cap B$ is defined as $A \cap B=\left(t_{A \cap B}, f_{A \cap B}\right)$ where $t_{A \cap B}(x)=t_{A}(x) \wedge t_{B}(x)$ and $f_{A \cap B}(x)=f_{A}(x) \vee f_{B}(x)$ for each $x \in \mathrm{G}$.
Definition 11: Let $B_{1}=\left[a_{1}, b_{1}\right]$ and $B_{2}=\left[a_{2}, b_{2}\right]$ be I-vague values. Then
(i) $\operatorname{isup}\left\{B_{1}, B_{2}\right\}=\left[\sup \left\{a_{1}, a_{2}\right\}, \sup \left\{b_{1}, b_{2}\right\}\right]$.
(ii) $\operatorname{iinf}\left\{B_{1}, B_{2}\right\}=\left[\inf \left\{a_{1}, a_{2}\right\}, \inf \left\{b_{1}, b_{2}\right\}\right]$.

Lemma 3: Let A and B be I-vague sets of a set W. Then $A \cup B$ and $A \cap B$ are also I-vague sets of W.

Let $x \in \mathrm{~W}$. From the definition of $A \cup B$ and $A \cap B$ we have
(i) $V_{A \cup B}(x)=\operatorname{isup}\left\{V_{A}(x), V_{B}(x)\right\}$;
(ii) $V_{A \cap B}(x)=\operatorname{iinf}\left\{V_{A}(x), V_{B}(x)\right\}$.

Definition 12: Let I be complete and $\left\{A_{i}=\left(t_{A_{i}}, f_{A_{i}}\right): i \in \triangle\right\}$ be a non empty family of I vague sets of W. Then for each $x \in W$,
(i) $\operatorname{isup}\left\{V_{A_{i}}(x): i \in \triangle\right\}=\left[\bigvee_{i \in \triangle} t_{A_{i}}(x), \underset{i \in \triangle}{\bigvee}\left(1-f_{A_{i}}\right)(x)\right]$.
(i) $\operatorname{iinf}\left\{V_{A_{i}}(x): i \in \triangle\right\}=\left[\bigwedge_{i \in \triangle}^{i \in \triangle} t_{A_{i}}(x), \bigwedge_{i \in \triangle}^{i \in \triangle}\left(1-f_{A_{i}}\right)(x)\right]$.

Lemma 4: Let I be complete. If $\left\{A_{i}: i \in \triangle\right\}$ is a non empty family of I-vague sets of W , then $\bigcup_{i \in \triangle} A_{i}$ and $\bigcap A_{i}$ are also an I-vague sets of W.

Definition 13: Let I be complete and $\left\{A_{i}=\left(t_{A_{i}}, f_{A_{i}}\right): i \in \triangle\right\}$ be a non empty family of I vague sets of W . Then for each $x \in W$,
(i) $\operatorname{isup}\left\{V_{A_{i}}(x): i \in \triangle\right\}=\left[\bigvee_{i \in \triangle} t_{A_{i}}(x), \underset{i \in \triangle}{\bigvee}\left(1-f_{A_{i}}\right)(x)\right]$.
(ii) $\operatorname{iinf}\left\{V_{A_{i}}(x): i \in \triangle\right\}=\left[\bigwedge_{i \in \triangle}^{i \in \triangle} t_{A_{i}}(x), \bigwedge_{i \in \triangle}^{i \in \triangle}\left(1-f_{A_{i}}\right)(x)\right]$.

Definition 14: Let $\Phi: X \rightarrow Y$ be a mapping from a set X into a set Y. Let B be an I-vague set of Y. Then the preimage of $B, \Phi^{-1}(B)=\left(t_{\Phi^{-1}(B)}, f_{\Phi^{-1}(B)}\right)$ is given by $t_{\Phi^{-1}(B)}: X \rightarrow I$ and $f_{\Phi^{-1}(B)}: X \rightarrow I$ where $t_{\Phi^{-1}(B)}(x)=t_{B}(\Phi(x))$ and $f_{\Phi^{-1}(B)}(x)=$ $t_{B}(\Phi(x))$ for each $x \in X$.

Lemma 5: Let $\Phi: X \rightarrow Y$ be a mapping from a set X into a set Y. If B be an I-vague set of Y, then $\Phi^{-1}(B)$ is an I-vague set of X and $V_{\Phi^{-1}(B)}(x)=V_{B} \Phi(x)$ for each $x \in X$.

Definition 15: Let I be complete and $\Phi: X \rightarrow Y$ be a mapping from a set X into a set Y. Let $\mathrm{A}=\left(t_{A}, f_{A}\right)$ be an I-vague set of X. Then the image of $A, \Phi(A)=\left(t_{\Phi(A)}, f_{\Phi(A)}\right)$ is given by

$$
t_{\Phi(A)}(y)= \begin{cases}\bigvee_{x \in \Phi^{-1}(y)} t_{A}(z) & \text { if } \Phi^{-1}(y) \neq \emptyset \\ 0 & \text { otherwise }\end{cases}
$$

$$
f_{\Phi(A)}(y)= \begin{cases}\bigwedge_{x \in \Phi^{-1}(y)} t_{A}(z) & \text { if } \Phi^{-1}(y) \neq \emptyset \\ 1 & \text { otherwise }\end{cases}
$$

Lemma 6: Let I be complete and $\Phi: X \rightarrow Y$ be a mapping from a set X into a set Y. If A be an I-vague set of X, then $\Phi(A)$ is an I-vague set of Y.

Theorem 4: Let I be complete and $\Phi: X \rightarrow Y$ be a mapping from a set X into a set Y. If A is an I-vague set of X, then

$$
V_{\Phi(A)}(y)= \begin{cases}\operatorname{isup}\left\{V_{A}(z): z \in \Phi^{-1}(y)\right\} & \text { if } \Phi^{-1}(y) \neq \emptyset \\ {[0,0]} & \text { otherwise }\end{cases}
$$

III. I-Vague Vector Spaces

Definition 16: Let W be a vector space over a field F and A be an I-vague set of W. Then A is said to be an I-vague subspace of W if
(i) $V_{A}(x+y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$
(ii) $V_{A}(\lambda x) \geq V_{A}(x)$ for all $x, y \in \mathrm{~W}$ and $\lambda \in F$

Example 1: Let I be the unit interval $[0,1]$ of real numbers. Let $a \oplus b=\min \{1, a+b\}$. with the usual ordering $(I, \oplus, \leq,-)$ is an involutary DRL-semigroup. Consider the vector space $W=\mathfrak{R}^{2}$ over \mathfrak{R}. Let $A=\left(t_{A}, f_{A}\right)$ where $t_{A}: \mathfrak{R}^{2} \rightarrow[0,1]$ by $t_{A}(x, y)=1$ and $f_{A}: \mathfrak{R}^{2} \rightarrow[0,1]$ by $f_{A}(x, y)=0$ for all $(x, y) \in \mathfrak{R}^{2}$. Then A is an I-vague subspace of W .

Lemma 7: Let A be an I-vague subspace of W. Then
(i) $V_{A}(0) \geq V_{A}(x)$ for all $x \in \mathrm{~W}$.
(ii) $V_{A}(\lambda x)=V_{A}(x)$ for all $x \in \mathrm{~W}$ and $\lambda \neq 0$.

Proof: Let A be an I-vague subspace of W.
(i) $V_{A}(0) \doteq V_{A}(0 x) \geq V_{A}(x)$. Hence $V_{A}(0) \geq V_{A}(x)$ for all $x \in \mathrm{~W}$.
(ii) Let $\lambda \neq 0$ and $x \in W$. Then $V_{A}(x)=V_{A}\left(\left(\lambda^{-1} \lambda\right) x\right)=$ $V_{A}\left(\left(\lambda^{-1}\right)(\lambda x)\right) \geq V_{A}(\lambda x) \geq V_{A}(x)$.
Hence $V_{A}(\lambda x)=V_{A}(x)$ for all $\lambda \in F \backslash\{0\}$.
Lemma 8: Let W be a vector space over a field F. A is an I-vague subspace of W iff $V_{A}(\lambda x+\mu y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$ for all $\lambda, \mu \in F$ and $x, y \in W$.

Proof: Let A be an I-vague subspace of W. Let $x, y \in \mathrm{~W}$ and $\lambda, \mu \in \mathrm{F}$. Then $V_{A}(\lambda x) \geq V_{A}(x)$ and $V_{A}(\mu y) \geq V_{A}(y)$. Since A is an I-vague subspace of $\mathrm{W}, \quad V_{A}(\lambda x+\mu y) \geq \operatorname{iinf}\left\{V_{A}(\lambda x), V_{A}(\mu y)\right\}$. Moreover $\operatorname{iinf}\left\{V_{A}(\lambda x), V_{A}(\mu y)\right\} \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$. Hence $V_{A}(\lambda x+\mu y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$. Conversely, suppose that $V_{A}(\lambda x+\mu y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$ for all $\lambda, \mu \in F$ and $x, y \in W$. Put $\lambda=\mu=1$. Then $V_{A}(x+y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$. Moreover, $V_{A}(\lambda x)=V_{A}(\lambda x+0 x) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(x)\right\}=V_{A}(x)$. This proves the lemma.

Moreover, $V_{A}(x-y)=V_{A}(x+-1 y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$.
Lemma 9: Let W be a vector space over a field F and A be an I-vague subspace of W. Then $V_{A}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots+\lambda_{n} x_{n}\right) \geq$ $\operatorname{iinf}\left\{V_{A}\left(x_{1}\right), V_{A}\left(x_{2}+\ldots+V_{A}\left(x_{n}\right)\right\}\right.$ for all $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in F$ and $x_{1}, x_{2}, \ldots, x_{n} \in W$.

Proof: We use proof by induction. Clearly the statement is true for $n=2$. Assume that the statement is true for n.

$$
\begin{aligned}
& V_{A}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots+\lambda_{n} x_{n}+\lambda_{n+1} x_{n+1}\right) \\
& =V_{A}\left(\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots+\lambda_{n} x_{n}\right)+\lambda_{n+1} x_{n+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geq \operatorname{iinf}\left\{V_{A}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots+\lambda_{n} x_{n}\right), V_{A}\left(\lambda_{n+1} x_{n+1}\right)\right\} \\
& \geq \operatorname{iinf}\left\{\operatorname{iinf}\left\{V_{A}\left(x_{1}\right), V_{A}\left(x_{2}\right), \ldots, V_{A}\left(x_{n}\right)\right\}, V_{A}\left(x_{n+1}\right)\right\} \\
& =\operatorname{iinf}\left\{V_{A}\left(x_{1}\right), V_{A}\left(x_{2}\right), \ldots, V_{A}\left(x_{n}\right), V_{A}\left(x_{n+1}\right)\right\}
\end{aligned}
$$

Therefore $V_{A}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots+\lambda_{n} x_{n}+\lambda_{n+1} x_{n+1}\right) \geq$ $\operatorname{iinf}\left\{V_{A}\left(x_{1}\right), V_{A}\left(x_{2}\right), \ldots, V_{A}\left(x_{n}\right), V_{A}\left(x_{n+1}\right)\right\}$. Hence the lemma follows.

Theorem 5: An I-vague set A of a vector space W is an I-vague subspace of W iff for all $\alpha, \beta \in I$ with $\alpha \leq \beta$, the I-vague cut $A_{(\alpha, \beta)}$ of W whenever it is non empty.

Proof: Let A be an I-vague set of a vector space W. Suppose that A is an I-vague subspace of W. We prove that $A_{(\alpha, \beta)}$ is a subspace of W whenever it is non empty. Let $x, y \in A_{(\alpha, \beta)}$. Then $V_{A}(x) \geq[\alpha, \beta]$ and $V_{A}(y) \geq[\alpha, \beta]$. It follows that $\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\} \geq[\alpha, \beta]$. Since $V_{A}(x+y) \geq$ $\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}, V_{A}(x+y) \geq[\alpha, \beta]$. Hence $x+y \in A_{(\alpha, \beta)}$. Let $x \in A_{(\alpha, \beta)}$ and $\lambda \in F$. Then $V_{A}(\lambda x) \geq V_{A}(x) \geq[\alpha, \beta]$. Hence $\lambda x \in A_{(\alpha, \beta)}$. Therefore $A_{(\alpha, \beta)}$ is a subspace of W.

Conversely, suppose that $A_{(\alpha, \beta)}$ is a subspace of W whenever it is non empty. We prove that A is an I -vague subspace of W. Let $x, y \in W$. Suppose $V_{A}(x)=[\alpha, \beta]$ and $V_{A}(y)=[\gamma, \delta]$ for some $\alpha, \beta, \gamma, \delta \in I$. $\inf \left\{V_{A}(x), V_{A}(y)\right\}=[\alpha \wedge \gamma, \beta \wedge \delta]=$ $[\xi, \eta]$ for some $\xi, \eta \in I$. Hence $x, y \in A_{(\xi, \eta)}$. Since $A_{(\xi, \eta)}$ is a subspace of $W, \lambda x+\mu y \in A_{(\xi, \eta)}$ for $\lambda, \mu \in F$. Hence $V_{A}(\lambda x+\mu y) \geq[\xi, \eta]=\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$. Thus, $V_{A}(\lambda x+$ $\mu y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$. Hence the theorem follows.

Lemma 10: Let A be an I-vague subspace of a vector space W. Then the set $W_{A}=\left\{x \in W: V_{A}(x)=V_{A}(0)\right\}$ is a subspace of W.

Proof: Since $0 \in W_{A}, W_{A} \neq \emptyset$. Let $x, y \in W_{A}$. Then $V_{A}(x)=$ $V_{A}(y)=V_{A}(0)$. Hence $V_{A}(x+y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}=V_{A}(0)$. Since $V_{A}(0) \geq V_{A}(x+y), V_{A}(x+y)=V_{A}(0)$. Hence $x+y \in W_{A}$. Let $\lambda \in \mathrm{F}$ and $x \in W_{A}$. Then $V_{A}(x)=V_{A}(0) . V_{A}(\lambda x) \geq V_{A}(x)=$ $V_{A}(0)$. Thus $V_{A}(\lambda x)=V_{A}(0)$. Hence $\lambda x \in W_{A}$. Therefore W_{A} is a subspace of W.

Lemma 11: Let U be a subspace of a vector space W with $\alpha, \beta, \gamma, \delta \in I, \alpha \leq \beta, \gamma \leq \delta$ and $[\gamma, \delta] \leq[\alpha, \beta]$. Then the I-vague set A of W defined by

$$
V_{A}(x)= \begin{cases}{[\alpha, \beta]} & \text { if } x \in U \\ {[\gamma, \delta]} & \text { otherwise }\end{cases}
$$

is an I-vague subspace of W.
Proof: Let U be a subspace of W. We have the following three cases:
(i) Let $x, y \in U$. Since U is a subspace of $W, \lambda x+\mu y \in U$ for $\lambda, \mu \in F . V_{A}(\lambda x+\mu y)=[\alpha, \beta]=\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$. It follows that $V_{A}(\lambda x+\mu y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$.
(ii) Exactly one of x or y does not belong to U. Suppose $x \in U$ and $y \notin U . \lambda x+\mu y \notin U$ for any $\mu \neq 0 . V_{A}(\lambda x+$ $\mu y)=[\gamma, \delta]=\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$. Hence $V_{A}(\lambda x+\mu y) \geq$ $\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$.
(iii) Both x and y does not belong to $U . \lambda x+\mu y \notin U$ for any $\lambda, \mu, \neq 0$. $\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}=[\gamma, \delta]=V_{A}(\lambda x+\mu y)$. Hence $V_{A}(\lambda x+\mu y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}$.
This proves the lemma.
Lemma 12: Let A and B be I-vague subspaces of a vector space W. Then $A \cap B$ is also I-vague subspace of W.

Proof: Let A and B be I-vague subspaces of W. We prove that $A \cap B$ is also an I-vague subspace of W. By Lemma 3, $A \cap B$ is an I-vague set of W. Let $x, y \in \mathrm{~W}$.

$$
\begin{aligned}
V_{A \cap B}(x+y) & =\operatorname{iinf}\left\{V_{A}(x+y), V_{B}(x+y)\right\} \\
& \geq \operatorname{iinf}\left\{\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}, \operatorname{iinf}\left\{V_{B}(x), V_{B}(y)\right\}\right\} \\
& =\operatorname{iinf}\left\{\operatorname { i i n f } \left\{\left\{V_{A}(x), V_{B}(x)\right\}, \operatorname{iinf}\left\{\left\{V_{A}(y), V_{B}(y)\right\}\right\}\right.\right. \\
& =\operatorname{iinf}\left\{V_{A \cap B}(x), V_{A \cap B}(y)\right\}
\end{aligned}
$$

Hence $V_{A \cap B}(x+y) \geq \operatorname{iinf}\left\{V_{A \cap B}(x), V_{A \cap B}(y)\right\} . \quad V_{A \cap B}(\lambda x)=$ $\operatorname{iinf}\left\{V_{A}(\lambda x), V_{B}(\lambda x)\right\} \geq \operatorname{iinf}\left\{V_{A}(x), V_{B}(x)\right\}=V_{A \cap B}(x)$. Thus $V_{A \cap B}(\lambda x) \geq V_{A \cap B}(x)$. Therefore $A \cap B$ is an I-vague subspace of W.

Lemma 13: Let I be complete. If $\left\{A_{i}: i \in \triangle\right\}$ is a non empty family of I-vague subspaces of W, then $\bigcap A_{i}$ is an I-vague subspace of W.

Proof: Let $\left\{A_{i}: i \in \triangle\right\}$ be a non empty family of I-vague subspaces of W. Let $A=\bigcap_{i \in \triangle} A_{i}$. We prove that A is an I-vague subspace of W. By Lemma 4, A is an I-vague set of W.Let $x, y \in W$. Then

$$
\begin{aligned}
V_{A}(x+y) & =\operatorname{iinf}\left\{V_{A_{i}}(x+y): i \in \triangle\right\} \\
& \geq \operatorname{iinf}\left\{\operatorname{iinf}\left\{V_{A_{i}}(x), V_{A_{i}}(y)\right\}: i \in \triangle\right\} \\
& =\operatorname{iinf}\left\{\operatorname{iinf}\left\{V_{A_{i}}(x): i \in \triangle\right\}, \operatorname{iinf}\left\{V_{A_{i}}(y): i \in \triangle\right\}\right\} \\
& =\operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\} .
\end{aligned}
$$

Thus $V_{A}(x+y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\} . V_{A}(\lambda x)=\operatorname{iinf}\left\{V_{A_{i}}(\lambda x):\right.$ $\left.i \in \triangle\}\} \geq \operatorname{iinf}\left\{V_{A_{i}}(x): i \in \triangle\right\}\right\}=V_{A}(x)$. Hence the lemma follows.

Example 2: Consider $W=\mathfrak{R}^{2}$ over \mathfrak{R}.Then $W_{1}=\{(x, y)$: $x+y=0\}$
and $W_{2}=\{(x, y): x-y=0\}$ are subspaces of W.
$V_{A}(x)=\left\{\begin{array}{lll}{[\alpha, \beta]} & \text { if } x \in W_{1} \\ {[\gamma, \delta]} & \text { otherwise. }\end{array} \quad V_{B}(x)= \begin{cases}{[\alpha, \beta]} & \text { if } x \in W_{2} \\ {[\gamma, \delta]} & \text { otherwise }\end{cases}\right.$
with $\alpha, \beta, \gamma, \delta \in I, \alpha \leq \beta, \gamma \leq \delta$ and $[\alpha, \beta] \leq[\gamma, \delta]$. We show that $A \cup B$ is not an I-vague subspace of W. Let $\mathrm{u}=(1,-1)$ and $\mathrm{v}=(1,1)$.

$$
\begin{gathered}
V_{A \cup B}(u+v)=V_{A \cup B}(2,0)=\operatorname{isup}\left\{V_{A}(2,0), V_{B}(2,0)=[\gamma, \delta] .\right. \\
V_{A \cup B}(u)=V_{A \cup B}(1,-1)=\operatorname{isup}\left\{V_{A}(1,-1), V_{B}(1,-1)=[\alpha, \beta] .\right. \\
V_{A \cup B}(v)=V_{A \cup B}(1,1)=\operatorname{isup}\left\{V_{A}(1,1), V_{B}(1,1)\right\}=[\alpha, \beta] . \\
\operatorname{iinf}\left\{V_{A \cup B}(u), V_{A \cup B}(v)\right\}=[\alpha, \beta] . \\
V_{A \cup B}(u+v)=[\gamma, \delta] \nsupseteq[\alpha, \beta]=\operatorname{iinf}\left\{V_{A \cup B}(u), V_{A \cup B}(v)\right\} .
\end{gathered}
$$

Therefore $A \cup B$ is not an I-vague subspace of W.
Lemma 14: Let $U \neq \emptyset$. The I-vague characteristic function set of U, χ_{U} is an I-vague subspace of W iff U is a subspace of W.

Proof: Suppose that χ_{U} is an I-vague subspace of W. Let $x, y \in \mathrm{U}$. Then $V_{\chi_{U}}(x)=[1,1]$ and $V_{\chi_{U}}(y)=[1,1]$. Since χ_{U} is an I-vague subspace of $W, V_{\chi_{U}}(x+y) \geq$ $\operatorname{iinf}\left\{V_{\chi_{U}}(x), V_{\chi_{U}}(y)\right\}=[1,1]$. Hence $V_{\chi_{U}}(x+y)=[1,1]$. So, $x+y \in U . V_{\chi_{U}}(\lambda x) \geq V_{\chi_{U}}(x)=[1,1]$. It follows that $V_{\chi_{U}}(\lambda x)=[1,1]$. Hence $\lambda x \in U$. Therefore U is a subspace
of W. Conversely, suppose that U is a subspace of W. Then Consider

$$
V_{\chi_{U}}(x)= \begin{cases}{[1,1]} & \text { if } x \in U \\ {[0,0]} & \text { otherwise }\end{cases}
$$

By Lemma 11, χ_{U} is an I-vague subspace of W.
Theorem 6: Let A be an I-vague subspace of a vector space W. If $V_{A}(x-y)=V_{A}(0)$ for all $x, y \in W$, then $V_{A}(x)=V_{A}(y)$.

Proof: Let A be an I-vague subspace of a vector space W. Suppose that $V_{A}(x-y)=V_{A}(0)$ for $x, y \in W$. We prove that $V_{A}(x)=V_{A}(y) . V_{A}(x-y)=V_{A}(0)$ implies that $V_{A}(y-x)=$ $V_{A}(0)$.

$$
\begin{aligned}
V_{A}(x) & =V_{A}((x-y)+y) \\
& \geq \operatorname{iinf}\left\{V_{A}(x-y), V_{A}(y)\right\} \\
& =\operatorname{iinf}\left\{V_{A}(0), V_{A}(y)\right\} \\
& =V_{A}(y)
\end{aligned}
$$

Thus $\quad V_{A}(x) \geq V_{A}(y)$. Similarly, $\quad V_{A}(y)=V_{A}((y-x)+$ $x) \geq \operatorname{iinf}\left\{V_{A}(y-x), V_{A}(x)\right\}=\operatorname{iinf}\left\{V_{A}(0), V_{A}(x)\right\}=V_{A}(x)$. Thus $V_{A}(y) \geq V_{A}(x)$. Hence $V_{A}(x)=V_{A}(y)$.

The following example shows that the converse of the above theorem is not true.

Example 3: Let I be the unit interval $[0,1]$ of real numbers. Define $a \oplus b=\min \{1, a+b\}$. With the usual ordering $(I, \oplus, \leq$, -) is an involutary DRL-semigroup. Let $W=\mathfrak{R}^{2}$ over \mathfrak{R}. Then $U=\{(x, y): x+2 y=0\}$ is a subspace of W. Define the I-vague subspace A of W by

$$
V_{A}(u)= \begin{cases}{\left[\frac{1}{2}, 1\right]} & \text { if } u \in U \\ {\left[0, \frac{1}{4}\right]} & \text { otherwise }\end{cases}
$$

Let $u=(-2,2)$ and $v=(1,2) . V_{A}(u)=V_{A}(v)=\left[0, \frac{1}{4}\right]$ and $V_{A}(u-v)=V_{A}(-3,0)=\left[0, \frac{1}{4}\right] \neq V_{A}(0)$. Thus $V_{A}(u)=V_{A}(v)$ but $V_{A}(u-v) \neq V_{A}(0)$.

Theorem 7: Let A be an I-vague subspace of a vector space W and $x \in W$. Then $V_{A}(x+y)=V_{A}(y)$ for all $y \in W$ iff $V_{A}(x)=$ $V_{A}(0)$.

Proof: Let A be an I-vague subspace of a vector space W and $x \in W$. Suppose that $V_{A}(x+y)=V_{A}(y)$ for all $y \in W$. Take $y=0$. Hence $V_{A}(x)=V_{A}(0)$. Conversely, suppose that $V_{A}(x)=$ $V_{A}(0)$. Let $y \in W$. Then $V_{A}(x+y) \geq \operatorname{iinf}\left\{V_{A}(x), V_{A}(y)\right\}=V_{A}(y)$. It follows that $V_{A}(x+y) \geq V_{A}(y)$.

$$
\begin{aligned}
V_{A}(y) & =V_{A}(-x+x+y) \\
& \geq \operatorname{iinf}\left\{V_{A}(-x), V_{A}(x+y)\right\} \\
& =\operatorname{iinf}\left\{V_{A}(x), V_{A}(x+y)\right\} \\
& =\operatorname{iinf}\left\{V_{A}(0), V_{A}(x+y)\right\} \\
& =V_{A}(x+y)
\end{aligned}
$$

Thus $V_{A}(y) \geq V_{A}(x+y)$. It follows that $V_{A}(x+y)=V_{A}(y)$.
Theorem 8: Let A be an I-vague subspace of a vector space W. If $V_{A}(x-y)=V_{A}(0)$ for all $x, y \in W$, then $V_{A}(x)=V_{A}(y)$.

Proof: Let A be an I-vague subspace of a vector space W. $V_{A}(x)=V_{A}((x-y)+y) \geq \operatorname{iinf}\left\{V_{A}(x-y), V_{A}(y)\right\}=$ $\operatorname{iinf}\left\{V_{A}(0), V_{A}(y)\right\}=V_{A}(y)$. Similarly, $V_{A}(y)=V_{A}((y-x)+$ $x) \geq \operatorname{iinf}\left\{V_{A}(y-x), V_{A}(x)\right\}=\operatorname{iinf}\left\{V_{A}(0), V_{A}(x)\right\}=V_{A}(x)$. Hence $V_{A}(x)=V_{A}(y)$.

Theorem 9: Let W_{1} and W_{2} be vector spaces over a field F, and let T be a linear transformation from W_{1} into W_{2}. If
A is an I-vague subspace of W_{2}, then $T^{-1}(A)$ is an I-vague subspace of W_{1}.

Proof: Let T be a linear transformation from W_{1} into W_{2} and A be an I-vague subspace of W_{2}.

$$
\begin{aligned}
V_{T^{-1}(A)}(\lambda x+\mu y) & =V_{A}(T(\lambda x+\mu y)) \\
& =V_{A}(\lambda T(x)+\mu T(y)) \\
& \geq \operatorname{iinf}\left\{V_{A}(\lambda T(x)), V_{A}(\mu T(y))\right\} \\
& \geq \operatorname{iinf}\left\{V_{A}(T(x)), V_{A}(T(y))\right\} \\
& =\operatorname{iinf}\left\{V_{T^{-1}(A)}(x), V_{T^{-1}(A)}(y)\right\}
\end{aligned}
$$

This completes the proof.
Theorem 10: Let I be complete and infinitely meet distributive. Let U and V be vector spaces over a field F and $T: U \rightarrow V$ be a linear transformation. If A is an I-vague subspace of U, then $T(A)$ is an I-vague subspace of V.

Proof: Let $T: U \rightarrow V$ be a linear transformation and A be an I-vague subspace of U.

$$
\begin{aligned}
& V_{T(A)}\left(y_{1}+y_{2}\right)= \operatorname{isup}\left\{V_{A}(z): z \in T^{-1}\left(y_{1}+y_{2}\right)\right\} \\
& \geq \operatorname{isup}\left\{V_{A}(z): z=x_{1}+x_{2} \text { where } x_{1} \in T^{-1}\left(y_{1}\right)\right. \\
&\left.\quad \quad \operatorname{and} x_{2} \in T^{-1}\left(y_{2}\right)\right\} \\
&= \operatorname{isup}\left\{V_{A}\left(x_{1}+x_{2}\right): x_{1} \in T^{-1}\left(y_{1}\right)\right. \text { and } \\
&\left.\quad x_{2} \in T^{-1}\left(y_{2}\right)\right\} \\
& \geq \operatorname{isup}\left\{\operatorname{iinf}\left\{V_{A}\left(x_{1}\right), V_{A}\left(x_{2}\right)\right\}: x_{1} \in T^{-1}\left(y_{1}\right)\right. \\
&\left.\quad \quad \quad \operatorname{and} x_{2} \in T^{-1}\left(y_{2}\right)\right\} \\
&= \operatorname{iinf}\left\{\operatorname{isup}\left\{V_{A}\left(x_{1}\right), V_{A}\left(x_{2}\right)\right\}: x_{1} \in T^{-1}\left(y_{1}\right)\right. \\
&\left.\quad \operatorname{and} x_{2} \in T^{-1}\left(y_{2}\right)\right\}
\end{aligned}
$$

since I is infinitely meet distributive

$$
\begin{aligned}
& =\operatorname{iinf}\left\{V_{T(A)}\left(y_{1}\right), V_{T(A)}\left(y_{2}\right)\right\} \\
V_{T(A)}(y)= & \operatorname{isup}\left\{V_{A}(z): z \in T^{-1}(y)\right\} \\
= & \operatorname{isup}\left\{V_{A}(z): T(z)=(y)\right\} \\
\leq & \operatorname{isup}\left\{V_{A}(\lambda z): T(z)=y \text { for any } \lambda \in F\right\} \\
= & \operatorname{isup}\left\{V_{A}(\lambda z): T(\lambda z)=\lambda y\right\} \\
= & \operatorname{isup}\left\{V_{A}(u): T(u)=\lambda y\right\} \\
= & V_{T(A)}(\lambda y)
\end{aligned}
$$

This proves the theorem.

References

[1] N. Ramakrishna and T. Eswarlal, "Boolean vague sets," International Journal of Computational Cognition, vol. 5, no. 4, 2007.
[2] K. Swamy, "Dually residuated lattice ordered semigroups," Mathematische Annalen, vol. 159, no. 2, pp. 105-114, 1965.
[3] ——, "Dually residuated lattice ordered semigroups, ii," Mathematische Annalen, vol. 160, no. 1, pp. 64-71, 1965.
[4] ——, "Dually residuated lattice ordered semigroups, iii," Mathematische Annalen, vol. 167, no. 1, pp. 71-74, 1966.
[5] C. Chang, "Algebraic analysis of many valued logics," Transactions of the American Mathematical society, vol. 88, no. 2, pp. 467-490, 1958.
[6] T. Eswarlal and N. Ramakrishna, "Vague fields and vague vector spaces," International Journal of pure and applied Mathematics, vol. 94, no. 3, pp. 295-305, 2014.
[7] K. R. Rao, "Vague vector space and vague modules," International Journal of Pure and Applied Mathematics, vol. 111, no. 2, pp. 179-188, 2016.
[8] T. Zelalem, "I-vague sets and I-vague relations," International Journal of Computational Cognition, vol. 8, no. 4, pp. 102-109, 2010.

[^0]: Manuscript received January 30, 2019; accepted April 7, 2020.
 Z.T. Wale is with the Department of Mathematics, College of Natural and Computational Sciences, Addis Ababa University, Ethiopia. E-mail: zelalem.teshome@aau.edu.et

