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The Classification of Diffeomorphism Classes of
Real Bott Manifolds

Admi Nazra

Abstract—A real Bott manifold (RBM ) is obtained as the orbit
space of the n − torus Tn by a free action of an elementary
abelian 2− group (Z2)

n. This paper deals with the classification
of some particular types of RBM s of dimension n, so that we
know the number of diffeomorphism classes in such RBM s.

Index Terms—Real Bott manifolds, orbit space, diffeomor-
phism classes, Seifert fiber space.

I. INTRODUCTION

KAMISHIMA et al. [1], [2] defined a real Bott manifold
of dimension n (RBM n) as the total space Bn of the

sequence of RP 1-bundles

Bn → Bn−1 → · · · → B2 → B1 → {a point} (1)

starting with a point, where each RP 1-bundle Bi → Bi−1 is
the projectivization of the Whitney sum of a real line bundle
Li and the trivial line bundle over Bi−1. Then, from the
viewpoint of group actions, it was explained that a RBMn is
the quotient of the torus of dimension n, Tn = S1× · · ·×S1

by the product (Z2)n of cyclic group of order 2. Such RBM n

can be expressed by an upper triangular matrix A of size
n (called a Bott matrix of size n, BMn) whose entries are
either 1 or 0 except the diagonal entries which are 0. Each
row of the BM n A express the free action of (Z2)n on Tn

and the orbit space Mn(A) = Tn/(Z2)n is the RBM n. In
fact, Mn(A) is a Riemannian flat manifold (compact Euclidean
space form). To classify RBM ns, we can apply the Bieberbach
Theorem [3] and by this theorem, it was obtained in [1], [4]
the classification of RBM s up to dimension 4.

Kamishima and Nazra proved in [2] that every RBM n

Mn(A) admits an injective Seifert fibred structure which
has the form Mn(A) = T k ×(Z2)s M(B), that is there is
a k-torus action on Mn(A) whose quotient space is an
(n − k)-dimensional real Bott orbifold Mn−k(B)/(Z2)s by
some (Z2)s-action (1 ≤ s ≤ k). Moreover, they have
proved the smooth rigidity that two RBM ns Mn(A1) and
Mn(A2) are diffeomorphic if and only if the corresponding
actions ((Z2)s1 ,Mn−k1(B1)) and ((Z2)s2 ,Mn−k2(B2)) are
equivariantly diffeomorphic. By the above rigidity we can
determine the diffeomorphism classes of higher dimensional
RBMs when the low dimensional ones with (Z2)s-actions
are classified. RBMs up to dimension 5 have been classified
(see [5], [6]).

This paper aims to study the number of diffeomorphism
classes in some particular types of RBM ns.
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II. PRELIMINARIES

In this section, we shall review some concepts from [2]
related to the RBM .

A. Seifert fiber space

In a BM n A, each i-th row defines a Z2-action on Tn by

gi(z1, z2, . . . , zn) = (z1, . . . , zi−1,−zi, z̃i+1, . . . , z̃n)

where z̃m is either zm or z̄m depending on whether (i,m)-
entry (i < m) is 0 or 1 respectively while (i, i)-(diagonal)
entry 0 acts as zi → −zi. Note that z̄ is the conjugate of
the complex number z ∈ S1. It is always trivial; zm → zm
whenever m < i. Here (z1, . . . , zn) are the standard coordi-
nates of the n-dimensional torus Tn = S1 × · · · × S1 whose
universal covering is the n-dimensional Euclidean space Rn.
The projection p : Rn → Tn is denoted by

p(x1, . . . , xn) = (e2πix1 , . . . , e2πixn) = (z1, . . . , zn).

Those g1, . . . , gn constitute the generators of (Z2)n. In fact,
(Z2)n acts freely on Tn such that the orbit space Mn(A) =
Tn/(Z2)n is a smooth compact n-dimensional manifold. In
this way, given a BMn A, we obtain a free action of (Z2)n on
Tn.

Let π(A) = 〈g̃1, . . . , g̃n〉 be the lift of (Z2)n = 〈g1, . . . , gn〉
to Rn. Then, we get

g̃i(x1, x2, . . . , xn) = (x1, . . . , xi−1,
1

2
+ xi, x̃i+1, . . . , x̃n)

where x̃m is either xm or −xm. One can see that π(A) acts
properly discontinuously and freely on Rn as Euclidean mo-
tions. Note that π(A) is a Bieberbach group which is a discrete
uniform subgroup of the Euclidean group E(n) = RnoO(n)
(cf. [3]). It follows that

Rn/π(A) = Tn/(Z2)n = Mn(A).

Now, we consider the following moves (I, II, III) to A under
which the diffeomorphism class of RBM n Mn(A) does not
change.
I If the j-th column has all 0-entries for some j > 1, then
interchange the j-th column and the (j − 1)-th column. Next,
interchange the j-th row and the (j − 1)-th row.

We perform move I iteratively to get a BM n A
′.

A =

 0 ∗
. . .

0 0

 , A′ =

(
Ok C
0 B

)
,
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B =

 0 ∗
. . .

0 0

 .

Ok is a k× k zero matrix (1 ≤ k ≤ n) and we call it a block
zero matrix of size k.

Note the following.
(1) Ok is a maximal block of zero matrix.
(2) As B is an (n − k)-dimensional Bott matrix, we obtain

a real Bott manifold Mn−k(B) = Tn−k/(Z2)n−k.
(3)

Mn(A) =
T k × Tn−k

(Z2)k × (Z2)n−k
= T k ×

(Z2)k
Mn−k(B)

= Mn(A′).

(4) The matrix C corresponds to (Z2)k -action on Tn−k.
II For an m-th row (1 ≤ m ≤ k) whose entries in C are all
zero, divide T k ×Mn−k(B) by the corresponding Z2-action.
III If there are two rows, p-th row and `-th row (1 ≤ p <
` ≤ k), having the common entries in the C, then compose the
Z2-action of p-th row and `-th row and divide T k×Mn−k(B)
by Z2-action.

By using II, III, the quotient is again diffeomorphic to
T k ×(Z2)k Mn−k(B) but consequently the (Z2)k-action is
reduced to the effective (Z2)s-action on T k × Mn−k(B).
Therefore A′ reduces to

A′′ =

 0k−s 0 0
0 0s ∗
0 0 B

 (2)

in which Mn(A′) = T k ×(Z2)k
Mn−k(B) =

Tk−s×T s×Mn−k(B)
(Z2)k−s×(Z2)s

= Mn(A′′). Since (Z2)k−s acts trivially
on T s×Mn−k(B), we have Mn(A′′) ∼= T k ×(Z2)s

Mn−k(B).

Hereinafter, we write Mn(A) in place of Mn(A′′).
Remark 1: Concerning ∗ in (2), the group (Z2)s =

〈gk−s+1, . . . , gk〉 acts on T k ×Mn−k(B) by

gi(z1, . . . , zk−s+1, . . . , zk, [zk+1, . . . , zn])

= (z1, . . . , zk−s+1, . . . ,−zi, . . . , zk, [z̃k+1, . . . , z̃n])
(3)

where z̃ = z̄ or z. So there induces an action of (Z2)s on
Mn−k(B) by

gi([zk+1, . . . , zn]) = [z̃k+1, . . . , z̃n]. (4)

Moreover in [2], it was obtained the following theorem.
Theorem 1 (Structure): For a RBM n Mn(A), there is

a maximal T k-action (k ≥ 1) such that Mn(A) =
T k ×(Z2)s

Mn−k(B) is an injective Seifert fiber space over
the (n− k)-dimensional real Bott orbifold Mn−k(B)/(Z2)s;

T k →Mn(A)→Mn−k(B)/(Z2)s. (5)

There exist a central extension of the fundamental group π(A)
of Mn(A):

1→ Zk → π(A)→ QB → 1 (6)

such that
(i) Zk is the maximal central free abelian subgroup

(ii) The induced group QB is the semidirect product π(B)o
(Z2)s for which Rn−k/π(B) = Mn−k(B).

See [2] for the proof.
Using this theorem, a RBM n Mn(A) which admits a

maximal T k-action (k ≥ 1) can be created from an RBM n−k
Mn−k(B) by a (Z2)s-action, and the corresponding BM n A
has the form as in (2) above.

B. Affine maps between real Bott manifolds
Next, to check whether two RBM s are diffeomorphic, we

can apply the following theorem.
Theorem 2 (Rigidity): Suppose that Mn(A1) and Mn(A2)

are RBM ns and 1 → Zki → π(Ai) → QBi → 1 is the
associated group extensions (i = 1, 2). Then, the following
are equivalent:
(i) π(A1) is isomorphic to π(A2).

(ii) There exists an isomorphism of QB1
= π(B1) o (Z2)s1

onto QB2
= π(B2) o (Z2)s2 preserving π(B1) and

π(B2).
(iii) The action ((Z2)s1 ,Mn−k(B1)) is equivariantly diffeo-

morphic to the action
((Z2)s2 ,Mn−k(B2)).

See [2] for the proof. Here Bott matrices A1 and A2 are created
from B1 and B2 respectively.

Note that two RBM ns Mn(A1) and Mn(A2) are diffeo-
morphic if and only if π(A1) is isomorphic to π(A2) by the
Bieberbach theorem [3]. Moreover, by Theorem 1 and 2 we
have,

Remark 2: Let RBM ns Mn(Ai) = T ki ×(Z2)si Mn−ki(Bi)
(i = 1, 2). If Mn(A1) and Mn(A2) are diffeomorphic then
the following hold.
(i) k1 = k2.

(ii) Mn−k1(B1) and Mn−k2(B2) are diffeomorphic.
(iii) s1 = s2.
If two RBM s have the same maximal T k-action, then the quo-
tients ((Z2)si ,Mn−ki(Bi)) are compared. So, what we have
to do next is to distinguish the (Z2)si -action on Mn−ki(Bi)
when it is the case that s1 = s2 = s and Mn−k1(B1) is
diffeomorphic to Mn−k2(B2).

C. Type of fixed point set
Note that from (4), the action of (Z2)s on Mn−k(B)

is defined by α[(z1, . . . , zn−k)] = [α(z1, . . . , zn−k)] =
[(z̃1, . . . , z̃n−k)] for α ∈ (Z2)s and z̃ = z or z̄. Since
Mn−k(B) = Tn−k/(Z2)n−k, the action 〈α〉 lifts to a lin-
ear (affine) action on Tn−k naturally: α(z1, . . . , zn−k) =
(z̃1, . . . , z̃n−k). Then, the fixed point set is characterized by
the equation: (z̃1, . . . , z̃n−k) = g(z1, . . . , zn−k) for some
g ∈ (Z2)n−k. It is also an affine subspace of Tn−k. So the
fixed point sets of (Z2)s are affine subspaces in Mn−k(B).

Let B be the Bott matrix as in above. By a repetition of
move I, B has the form

B =


0b2 C23 . . . . . . C2`

0b3 C34 . . . C3`

. . . . . .
0 0b`−1

C(`−1)`
0b`

 (7)
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where rank B = b2 + · · · + b` = n − k (bi ≥ 1), Cjt (j =
2, . . . , `− 1, t = 3, . . . , `) is a bj × bt matrix.

Note that by the Bieberbach theorem (cf. [3]), if f is an
isomorphism of π(A1) onto π(A2), then there exists an affine
element g = (h,H) ∈A(n) = Rn o GL(n,R) such that

f(r) = grg−1 (∀r ∈ π(A1)). (8)

Recall that if Mn(A1) is diffeomorphic to Mn(A2) then
Mn−k(B1) is diffeomorphic to Mn−k(B2). This implies that
B1 and B2 have the form as in (7).

Using (8) and according to the form of B in (7) we obtain
that

g =




h1

h2

...
h`

 ,


H1

H2 0

0 . . .
H`


 (9)

where hi is an bi×1 (si=rank Ii) column matrix (h1 is a k×1
column matrix), Hi ∈GL(bi,R) (i = 2, . . . , `), H1 ∈GL(k,R)
(see Remark 3.2 [2]).

Let f̄ : QB1 → QB2 be the induced isomorphism from
f (cf.Theorem 2). Now the affine equivalence ḡ : Rn−k →
Rn−k has the form

ḡ =


 h2

...
h`

 ,

 H2 0
. . .

0 H`


 (10)

which is equivariant with respect to f̄ . The pair
(f̄ , ḡ) induces an equivariant affine diffeomorphism
(f̂ , ĝ) : ((Z2)s,Mn−k(B1))→ ((Z2)s, Mn−k(B2)).

Let rankHi = bi (i = 2, . . . , `). (Note that b2 + · · ·+ b` =
n − k.) Since Mn−k(B1) = Tn−k/(Z2)n−k, ḡ induces an

affine map g̃ of Tn−k. Put Xb2 =

 x1
...
xb2

 , . . . , Xb` =

xb`′+1

...
xb`′+b`

 , wbi = p(Xbi) ∈ T bi (i = 2, . . . , `), b`′ =

b2 + · · · + b`−1. Since g̃p = pḡ, g̃(twb2 , . . . ,
twb`) =

(tw′b2 , . . . ,
tw′b`) where w′bi = p(hi + HiXbi) ∈ T bi . That

is, g̃ preserves each T bi of Tn−k = T b2 × · · · × T b` , so does
ĝ on
Mn−k(B1) =
{[z1, . . . , zb2 ; zb2+1, . . . , zb2+b3 ; . . . . . . ; zb`′+1, . . . , zb`′+b` ]}.

We say that ĝ preserves the type (b2, . . . , b`) of Mn−k(B1).
As ĝ is f̂ -equivariant, it also preserves the type corresponding
to the fixed point sets between ((Z2)s,Mn−k(B1)) and
((Z2)s,Mn−k(B2)).

Proposition 1: The (Z2)s-action on Mn−k(B) is distin-
guished by the number of components and types of each
positive dimensional fixed point subsets.
See [2] for the proof.

Definition 1: We say that two Bott matrices A and A′ are
equivalent (denoted by A ∼ A′) if Mn(A) and Mn(A′) are
diffeomorphic.

III. CLASSIFICATION OF PARTICULAR TYPES OF RBMnS

In this part, we will review some results from [6] and prove
some new results regarding the classification of certain n-
dimensional real Bott manifolds in order to obtain how many
diffeomorphism classes of some particular types of RBM ns.

Proposition 2: [6] There are 4 diffeomorphism classes of
RBM ns (n ≥ 4) which admit the maximal Tn−2-actions
(i.e. s = 1, 2 ):

Mn(A) = T (n−2) ×
(Z2)s

M2(B).

Proposition 3: [6] The diffeomorphism class is unique for
the RBM of the form Mn(A) = T k ×

Z2

Tn−k for any k (1 ≤
k ≤ n− 1). In particular, if k = n then Mn(A) = Tn.

Remark 3: By Proposition 3, for n ≥ 2 there are n distinct
diffeomorphism classes of RBM ns Mn(A) = T k ×Z2

Tn−k

(1 ≤ k ≤ n).
Corollary 1: [6] If the RBM M(A) = S1×Z2 M(B) where

M(B) = T k ×Z2
S1, then for any k ≥ 1 there is only one

diffeomorphism class.
Remark 4: By Corollary 1, for n ≥ 3 there are n −

2 distinct diffeomorphism classes of RBM ns Mn(A) =
T k ×Z2

Mn−k(B) (k = 1, . . . , n − 2) where Mn−k(B) =
T k
′ ×Z2

S1 (k′ = n− k − 1).
Corollary 2: [6] Let M(A) be a real Bott manifold which

fibers S1 over the real Bott manifold M(B) for which M(B)
is T k ×(Z2)s K (k ≥ 2). Here K is Klein bottle. Then the
number of diffeomorphism classes of such M(A) is 3.

Remark 5: By Corollary 2, for n ≥ 5 there are 3(n −
4) distinct diffeomorphism classes of RBM ns Mn(A) =
T k ×Z2

Mn−k(B) (k = 1, . . . , n − 4) where Mn−k(B) =
T k
′ ×(Z2)s K (k′ = n− k − 2 ≥ 2, s = 1, 2).
Corollary 3: [6] Let M(A) be a real Bott manifold which

fibers S1 over the real Bott manifold M(B) for which M(B)
is T k×(Z2)s T

2 (k ≥ 2). Then the number of diffeomorphism
classes of such M(A) is 3.

Remark 6: By Corollary 3, for n ≥ 5 there are 3(n −
4) distinct diffeomorphism classes of RBM ns Mn(A) =
T k ×Z2 Mn−k(B) (k = 1, . . . , n − 4) where Mn−k(B) =
T k
′ ×(Z2)s T

2 (k′ = n− k − 2 ≥ 2, s = 1, 2).
Proposition 4: [6] Let M(A) be a real Bott manifold which

fibers S1 over the real Bott manifold M(B) where M(B) =
S1 ×Z2

T k (k ≥ 2), then the diffeomorphism classes of such
M(A) is [k2 ] + 1. Here [x] is the integer part of x.

Remark 7: By Proposition 4, for n ≥ 4 there are∑n−2
k′=2([k

′

2 ] + 1) distinct diffeomorphism classes of RBM ns
Mn(A) = T k ×Z2 M(n−kB) (k = 1, . . . , n − 3) where
Mn−k(B) = S1×Z2

T k
′

(k′ = n− k − 1 ≥ 2).
Proposition 5: For any k ≥ 1 and m ≥ 2 (n − 3 ≥ k +

m = t ≥ 3), there are [n−t2 ] + 1 diffeomorphism classes in
RBM ns Mn(A) = T k ×Z2

Mn−k(B), where Mn−k(B) =
Tm×Z2

Tn−k−m.
Proof: Similar with the proof of Proposition 4 (see [6]).

Remark 8: By Proposition 5, for n ≥ 6 there are
n−5∑
k=1

n−3∑
t=k+2

(
[n− t

2

]
+ 1)
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distinct diffeomorphism classes of RBM ns
Mn(A) = T k ×Z2 Mn−k(B) (k = 1, . . . , n − 5) where
Mn−k(B) = Tm×Z2 T

n−t (m ≥ 2, n− 3 ≥ t ≥ 3).
Proposition 6: [6] Let Mn(A) = S1 ×Z2 Mn−k(B) be a

RBM n. Suppose that B is either one of the list in (11). Then
Mn−k(B) are diffeomorphic to each other and the number
of diffeomorphism classes of such RBMns Mn(A) above is
(k + 1)2n−k−3 (k ≥ 2, n− k ≥ 3).

B1 =


0 1 1 . . . . . . . . . 1

0 1 . . . . . . . . . 1

. . .
.
.
.

0 1 . . . 1

0 Ok

,

B2 =


0 1 0 . . . . . . . . . 0

0 1 . . . . . . . . . 1

. . .
.
.
.

0 1 . . . 1

0 Ok

, . . . ,

Bn−k−1 =


0 1 0 . . . . . . . . . . . . 0

0 1 0 . . . . . . . . . 0

. . .
.
.
.

0 1 0 . . . 0
0 1 . . . 1

0 Ok

,

Bn−k =



0 1 0 . . . . . . . . . . . . . . . . . . 0
0 1 0 . . . . . . . . . . . . . . . 0

. . .
.
.
.

0 1 0 0 0 . . . 0
0 1 1 0 . . . 0

0 1 0 . . . 0
0 1 . . . 1

0 Ok

, . . . ,

Bn−k+(n−k−4) =


0 1 . . . . . . 1 0 . . . 0

0 . . . . . . 1 0 . . . 0

. . .
.
.
.

.

.

.

.

.

.
0 1 0 . . . 0

0 1 . . . 1

0 Ok

.
(11)

Remark 9: By Proposition 6, for n ≥ 5 there are

n∑
`=5

`−3∑
k=2

(k + 1)2`−k−3

distinct diffeomorphism classes of RBM ns
Mn(A) = T k

′ ×Z2
Mn−k′(B) (k′ = 1, . . . , n − 4) where B

is either one of the list in (11).
Now we consider the other type of real Bott manifolds.
Proposition 7: Let Mn(A) = T k ×(Z2)2 T

`, (n = k + ` ≥
5, ` ≥ 3) be a RBM n. Then the number of diffeomorphism
classes of such Mn(A) is

n−2∑
`=3

(
[ `
2

]
+

[ `3 ]∑
x=1

(
[`− x

2

]
− (x− 1))).

Proof: The proposition follows from Lemmas 1, 2 below.

Lemma 1: Let Mn(A) be an RBM n (n ≥ 5) corresponding
to the Bott matrix

A =


0

Ok 0 . . . 0 1 . . . 1
1 . . . 1 0 . . . 0

0 O`

 (` ≥ 3). (14)

Then the number of diffeomorphism classes of such Mn(A)
is
∑n−2
`=3 [ `2 ].
Proof: We associate with the pair (y, x) the Bott matrix

(14) where y = n−x and x are the numbers of zero entries in
the (k−1)-th row and k-th row respectively of the right-upper
block matrix. Here 1 ≤ x ≤ ` − 1. Because of move I, we
may assume that x ≤ ` − x. So 1 ≤ x ≤ [ `2 ]. For a fixed
numbers ` and x, it is easy to check that the fixed point sets
of ((Z2)2, T `) corresponding to (14) are 2x components T `−x

and 2`−x components T x.
For a fixed number `, suppose that Bott matrices A1 and A2

correspond to the pairs (y1, x1) and (y2, x2) respectively. If
x1 6= x2, then by Proposition 1, Mn(A1) is not diffeomorphic
to Mn(A2).

Therefore for a fixed number `, there are [ `2 ] diffeomorphism
classes of such RBM ns. This implies the lemma.

Lemma 2: Let Mn(A) be a RBM n (n ≥ 5) corresponding
to the Bott matrix

A =


0

Ok 0 . . . 0 1 . . . 1 1 . . . 1
1 . . . 1 1 . . . 1 0 . . . 0

0 O`

 (` ≥ 3).

(15)

Then the number of diffeomorphism classes of such Mn(A)
is

n−2∑
`=3

[ `3 ]∑
x=1

(
[`− x

2

]
− (x− 1)).

Proof: We associate with the pair (t, x) the Bott matrix
(15) where x is the number of zero entries in the k-th row
of the right-upper block matrix and t( 6= 0) is the number of
columns having two non zero entries. Because of move I, we
may assume that 1 ≤ x ≤ t ≤ ` − x − t and x ≤ [ `3 ]. So
1 ≤ x ≤ t ≤ [ `−x2 ]. For fixed numbers `, x and t, it is easy to
check that the fixed point sets of ((Z2)2, T `) corresponding to
(15) are 2t+x components T `−x−t and 2`−x components T x.

For a fixed number `, suppose that Bott matrices A1 and
A2 correspond to the pairs (t1, x1) and (t2, x2) respectively.
If t1 6= t2 or(and) x1 6= x2 , then by Proposition 1, A1 is not
equivalent to A2.

Therefore for fixed numbers ` and x, there are
[
`−x
2

]
−(x−

1) diffeomorphism classes of such RBM ns. Hence there are

n−2∑
`=3

[ `3 ]∑
x=1

(
[`− x

2

]
− (x− 1))

diffeomorphism classes of such Mn(A) corresponding to Bott
matrices as in (15).

Since the fixed point sets of ((Z2)2, T `) corresponding to
Bott matrices (14) and (15) are different, the corresponding
real Bott manifolds are not diffeomorphics.
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A =



0
1 . . . 1

0 1 . . . 1
.

Ok .
.

1 . . . 1 0
1 . . . 1

0 O`


(12)

(` ≥ 3) (13)

Remark 10: It is hard task algebraically to determine the
number of n-dimensional Mn(A) = T k ×(Z2)s T

` for 3 ≤
s ≤ min{n− `, `}. However we shall consider a special type
in (12).

We associate with (`1, `2, . . . , `s−1, `s) the Bott matrix (12)
where `1 = `−

∑s
i=2 `i, `2, `3, . . . , `s−1, `s are the number of

nonzero entries at k-row, (k−1)-row, (k−2)-row, . . . , (k−(s−
2))-row, (k−(s−1))-row respectively in the right-upper block
matrix. As in the arguments in the proof of Lemmas 1, 2 above,
in order to obtain the diffeomorphism classes RBM M(A),
we may assume that `1 ≥ `2 ≥ `3 ≥ · · · ≥ `s−1 ≥ `s ≥ 1
and 1 ≤ `s ≤ [ `s ]. For any `s we determine the values of
`s−1, namely `s ≤ `s−1 ≤ [ `−`ss−1 ]. For any `s−1, similarly we
can determine that `s−1 ≤ `s−2 ≤ [ `−`s−`s−1

s−2 ]. Repeating the
previous argument, we obtain that

`t+1 ≤ `t ≤
[`−∑s

i=t+1 `i

t

]
, t = 2, . . . , s− 2, s− 1.

It is easy to check that for fixed natural numbers `t, t =

3, 4, . . . , s − 1, s and `, there are
[ `−∑s

i=3 `i
2

]
− (`3 − 1)

diffeomorphism classes of RBM M(A). Hence for fixed
numbers ` and s, there are

Ns
` =

[ `s ]∑
`s=1

[ `−`s
s−1 ]∑

`s−1=`s

· · ·

[
`−

∑s
i=t+1 `i
t

]∑
`t=`t+1

· · ·

[
`−

∑s
i=4 `i
3

]∑
`3=`4[`−∑s
i=3 `i

2

]
− (`3 − 1)

diffeomorphism classes of M(A) for 3 ≤ s ≤ min{n− `, `}.
Hence the number of diffeomorphism classes of RBM

M(A) is
n−3∑
`=3

min{n−`,`}∑
s=3

Ns
` .

Let Nn be the number of diffeomorphism classes of
RBM ns.

Choi[7] classified RBM ns corresponding to the following
Bott matrices. He considers `×` Bott matrices A` of rank `−1
all of whose diagonals are 0. Then for such each A`, (i, i+1)-
entry must be 1 for i = 1, . . . , `−1. Masuda[8] proved that for
such matrices, there are 2(`−2)(`−3)/2 diffeomorphism classes
of `-dimensional real Bott manifolds.

Next Choi considers an n× n Bott matrix A such that the
rank of submatrix consisting of the first ` columns is `−1 and

the last n−` columns are zero vectors (i.e, A =

(
A` 0
0 0

)
).

By move I, the Bott matrix A is equivalent to

A =

(
0 0
0 A`

)
. (16)

By using the result of Masuda above, Choi [7] obtained that the
number of diffeomorphism classes of RBMns corresponding
to Bott matrices (16) for ` = 2, . . . , n is

∑n
`=2 2(`−2)(`−3)/2.

Masuda [8] found that

2(n−2)(n−3)/2 ≤ Nn,

by considering the Bott matrices A` above. Then, Choi [7]
improved the Masuda’s result where he considers Bott matrices
(16).

Theorem 3 ([7]): 2(n−2)(n−3)/2 <
∑n
`=2 2(`−2)(`−3)/2 ≤

Nn.

By using Propositions 7, 2, Theorem 3, Remarks 3, 4, 5, 6,
7, 8, 9, 10, we obtain an improvement of the previous results
about Nn.

Theorem 4: For n ≥ 4,

Nn ≥ 8n+

n∑
`=2

2(`−2)(`−3)/2 +

n−2∑
`=2

(
[ `
2

]
+ 1)+

n−5∑
k=1

n−3∑
t=k+2

(
[n− t

2

]
+ 1)

n∑
`=5

`−3∑
m=2

(m+ 1)2`−m−3+

n−2∑
`=3

([
`

2
] +

[ `3 ]∑
x=1

(
[`− x

2

]
− (x− 1)))+

n−3∑
`=3

min{n−`,`}∑
s=3

Ns
` − 26

with

Ns
` =

[ `s ]∑
`s=1

[ `−`s
s−1 ]∑

`s−1=`s

· · ·

[
`−

∑s
i=t+1 `i
t

]∑
`t=`t+1

· · ·

[
`−

∑s
i=4 `i
3

]∑
`3=`4[`−∑s
i=3 `i

2

]
− (`3 − 1).

We assume that if u < u0 in a summation
∑u
`=u0

, the value
of such summation is equal to zero.
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