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Mathematical Modeling and Simulation to Control
the Spread of Multidrug-Resistant Tuberculosis

Sulasri Suddin and Elinora Naikteas Bano

Abstract—Tuberculosis is an infectious disease caused by
Mycobacterium tuberculosis. Tuberculosis that fails treatment
will develop into multidrug-resistant tuberculosis. Research on
the TB epidemic continues, particularly in the field of applied
mathematics with modeling. In this study, we analyzed a suitable
strategy in controlling the development of susceptible individuals
to active tuberculosis and even multidrug-resistant tuberculosis.
In this work, local stability analysis was carried out around the
equilibrium point. Also, to see the most influential parameters
in the epidemic, a sensitivity analysis was performed on basic
reproductive factors. Besides, the final work was to do numerical
simulations with some cases, so that the model could describe the
disease’s phenomena and characteristics.

Index Terms—Tuberculosis, multidrug-Resistant, stability, sen-
sitivity analysis.

I. INTRODUCTION

TUBERCULOSIS (TB) is an infectious disease caused by
Mycobacterium tuberculosis (Mtb). This disease is spread

through the patient’s saliva splashes. Irregular TB treatment
causes TB to develop into drug-resistant TB or multidrug-
resistant TB (MDR-TB) and even rifampicin-resistant (RR-
TB). WHO has published a global TB report every year since
1997. TB causes death in about a quarter of the world’s
population and 5-10% of people with latent TB can develop
active TB disease during their life if the immune system
declines. However, the potential for the development of active
TB is higher among people with HIV.

In 2018, WHO announced around 1.2 million (range,
1.1−1.3 million) TB deaths among HIV negative patients and
around 251, 000 deaths (range, 223, 000 − 281, 000) among
HIV positive patients. Meanwhile, the total case of MDR /
RR-TB globally is 186, 772. Moreover, Indonesia is one of the
countries with a high MDR-TB burden in the world, around
24 thousand MDR / RR-TB cases have increased compared
to the previous year [1]. The vaccine used to fight TB is
Bacille Calmette – Guérin (BCG), developed in 1921. At
present, an experimental vaccine is designed to stop latent TB
from becoming TB disease. Recently, a study indicates that
administering vaccine with M72/AS01E to susceptible adults
can provide immunity and protect against the progression of
pulmonary TB disease for at least three years [2]. Therefore,
the development of vaccines that can limit initial infection and
reactivation of latent TB needs to be done to control TB [3].
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The research development of TB is carried out to achieve
sustainable development goals and final TB strategies. Re-
search on the dynamics of TB has been carried out by Liu
and Zhang [4] concerning the effects of vaccination and treat-
ment. Furthermore, about vaccination, Suddin [5] developed
a research related to endogenous reactivation and exogenous
reinfection of TB spread. On the other hand, Ronoh et al.
[6] developed a deterministic model for MDR-TB, which
subsequently by Nagar et al. [7] considered first and second-
line treatment in populations infected with MDR-TB. Then,
by paying attention to treatment, Mishra and Srivasta [8]
constructed MDR-TB models in the presence of quarantine
and vaccination in vulnerable individuals.

However, work on strategies for eradicating the MDR-
TB outbreak using a combination of vaccine and treatment
continues to be very limited. Therefore, the researchers intend
to carry out research related to controlling MDR-TB outbreaks.
One of them is that vaccination plays an important role in
the spread of TB and also considers other things, such as the
presence of endogenous reactivation in latent TB individuals.
Based on the information described, the researcher is interested
in conducting similar research by applying it to the research
environment, which is the Kefamenanu City sub-district area.

This research is expected to provide a strong scientific basis
for determining the rate of vaccination in controlling MDR-
TB. This research is important as an information to support the
development of multidisciplinary science, mathematics, and
medical science regarding the spread of MDR-TB. In addition,
it can be used as a reference and comparison for health services
in Kefamenanu regarding MDR-TB transmission.

In this work, the paper is structured as follows. Section II
presents a formulation of a mathematical model for controlling
MDR-TB epidemics and equilibrium stability. Section III
presents sensitivity analysis. Section IV presents numerical
simulations. The conclusions section is presented in Section
V.

II. ANALYSIS OF THE MODEL

A. Formulation of the Epidemic Model

In the epidemic model, the researchers assumed that the
effect of vaccination for both the susceptible and exposed
humans was reinforced by the presence of a new vaccine
being developed for people. The compartment model is divided
into six classes namely susceptible human S(t), exposed
human E(t), infected human I(t), resistant infected human
Rmd(t), recovered human R(t), and vaccinated human V (t)
at the time t, respectively. The parameters used in this model
are the recruitment in the population by births with rate δ,
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Fig. 1. The compartmental diagram for epidemic model of MDR-TB in the
population.

natural death rate of human with rate µ, disease-induced
deaths in infected TB human and MDR-TB with rate d1
and d2 respectively, the susceptible became exposed with
rate β, endogenous reactivation with rate ε, recovery rate of
infected human from infected TB and MDR-TB after treatment
with k and α respectively, resistance rate of treatment γ,
the vaccination rate coefficient for the susceptible human and
exposed human ρ and ψ, respectively.

Based on the facts and assumptions, the following system
of differential equations was obtained which is described in
Fig. 1.

dS

dt
= δ − βSI − (ρ+ µ)S

dE

dt
= βSI − (ε+ ψ + µ)E

dI

dt
= εE − (γ + k + µ+ d1)I

dRmd
dt

= γI − (α+ µ+ d2)Rmd

dR

dt
= kI + αRmd − µR

dV

dt
= ρS + ψE − µV (1)

B. Existence of Equilibrium Points

To obtain the equilibrium points for (1) by solving each of
the equations to zero as shown below

δ − βSI − (ρ+ µ)S = 0

βSI − (ε+ ψ + µ)E = 0

εE − (γ + k + µ+ d1)I = 0

γI − (α+ µ+ d2)Rmd = 0

kI + αRmd − µR = 0

ρS + ψE − µV = 0 (2)

By solving (2), we have two possible equilibriume,
i.e. disease-free equilibrium and endemic equilibirum. The
disease-free equilibrium for Mtb free state, e0, can be written
as follows (

δ

ρ+ µ
, 0, 0, 0, 0,

ρ

µ

)

and the endemic equilibrium, e∗, can be written as follows:

S∗ = (
(ψ + ε+ µ)(γ + k + µ+ d1)

εβ

E∗ =
( εβδ
(ρ+µ)(ψ+ε+µ)(γ+k+µ+d1)

− 1)(ρ+ µ)(γ + k + µ+ d1)

εβ

I∗ =
( εβδ
(ρ+µ)(ψ+ε+µ)(γ+k+µ+d1)

− 1)(ρ+ µ)

β

R∗
md =

( εβδ
(ρ+µ)(ψ+ε+µ)(γ+k+µ+d1)

− 1)γ(ρ+ µ)

β(α+ µ+ d2)

R∗ =
( εβδ
(ρ+µ)(ψ+ε+µ)(γ+k+µ+d1)

− 1)(ρ+ µ)

βµ
(k +

αγ

α+ µ+ d2
)

V ∗ =
1

µ
(
ρ(ψ + ε+ µ)(γ + k + µ+ d1)

εβ
+

( εβδ
(ρ+µ)(ψ+ε+µ)(γ+k+µ+d1)

− 1)ψ(ρ+ µ)(γ + k + µ+ d1)

εβ
))

exists if εβδ
(ρ+µ)(ψ+ε+µ)(γ+k+µ+d1)

> 1.

C. Computation of Basic Reproduction Number

Reproduction number, denoted by R0, is a key quantity,
i.e. very important role, in epidemiological models. It can
represent the average number of new infections by an infected
individual. It is useful to predict how strong a disease outbreak
and can be used to guide and evaluate the control strategies
for the disease.

The researchers use the next generation matrix [9] for the
model to set the reproduction number. The next generation
matrix is divided in two states, infected (F ) and non-infected
(V ). F is a matrix which contains new infection rate and V
is a matrix which contains the transfer of individuals inside
and outside of the infectious compartment, not new infection).
Then, the spectral radius of FV −1 is equal to R0. From system
(1), we define

F =

0 βδ
ρ+µ 0

ε 0 0
0 γ 0

 and V =

c1 0 0
0 c2 0
0 0 c3


. Therefore,

FV −1 =

 0 βδ
(ρ+µ)c2

0
ε
c1

0 0

0 γ
c2

0

 .
Since |FV −1| = 0, we obtain R0 for the model (1) is

R0 =
εβδ

(ρ+ µ)c1c2
(3)

where c1 = ψ + ε+ µ, c2 = γ + k + µ, c3 = α+ µ+ d2.

D. Local Stability Analysis

In this subsection, we will determine the stability of the
equilibrium points by linearizing the system of differential
equations (1) by obtaining its Jacobian at the equilibrium
point.
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By Jacobian matrix of the system (1) at disease-free equi-
librium e0, we have

J(e0) =



− (ρ+ µ) 0 −β δ
ρ+µ 0 0 0

0 −c1 β δ
ρ+µ 0 0 0

0 ε −c2 0 0 0
0 0 γ −c3 0 0
0 0 k α −µ 0
ρ ψ 0 0 0 −µ


Theorem 1: If R0 < 1, system (1) is locally asymptotically

stable at disease-free equilibrium e0. If R0 = 1 then e0 is
stable. If R0 > 1 then e0 is unstable.

Proof: We have following the characteristic equation of
the Jacobian Matrix at e0, (−λ − µ)2(−λ − ρ − µ)(−λ −
c3)(λ

2 + (c1 + c2)λ − c1c2 (R0 − 1)) = 0. Therefore, the
eigenvalues from Jacobian matrix are λ1,2 = −µ, λ3 = −(ρ+
µ), λ4 = −c3, and λ5,6 =

−(c1+c2)±
√

(c1+c2)2+c1c2(R0−1)

2 .
We observed form above that all the eigenvalues are neg-

ative except λ5,6. Clearly, λ5,6 < 0 if only if R0 < 1.
Hence, the system (1) at the disease-free equilibrium is locally
asymptotically stable.

The endemic equilibrium point e∗ can be expressed in the
following R0 form:

(
c1c2
εβ

,
(R0 − 1)(ρ+ µ)c2

εβ
,
(R0 − 1)(ρ+ µ)

β
,

(R0 − 1)γ(ρ+ µ)

βc3
,
(R0 − 1)(ρ+ µ)

βµ
(k +

αγ

c3
),

1

µ
(
ρc1c2
εβ

+
(R0 − 1)ψ(ρ+ µ)c2

εβ
)).

The Jacobian matrix of the system (1) at endemic equilib-
rium e∗ is given by

J(e∗) =


−R0 0 − c1c2ε 0 0 0

(R0 − 1)(ρ+ µ) −c1 c1c2
ε 0 0 0

0 ε −c2 0 0 0
0 0 γ −c3 0 0
0 0 k α −µ 0
ρ ψ 0 0 0 −µ


Theorem 2: If R0 > 1, system (1) is locally asymptotically

stable at endemic equilibrium e∗. If R0 = 1 then e∗ is stable.
If R0 < 1 then e∗ is unstable.

Proof: The characteristic equation of the Jacobian matrix
is as follows

(−λ− µ)2(−λ− c3)(λ3 + ν1λ
2 + ν2λ+ ν3) = 0 (4)

where ν1 = R0(ρ + µ) + c1 + c2, ν2 = R0(ρ + µ)(c1 + c2),
ν3 = R0 − 1(ρ+ µ)c1c2.

From (4), we have three negative eigenvalues, i.e. λ1∗,2∗ =
−µ, λ3∗ = −c3. While, the other eigenvalues are obtained by
solving the following equation

λ3 + a1λ
2 + a2λ+ a3 = 0 (5)

From (5), it is clear that a1, a2 > 0. We have a3 > 0 if R0 > 1
and by calculating, it is clear that a1a2 − a3 = R0(R0(ρ +
µ) + c1)(c1 + c2) + (R0 + 1)c1c2 > 0.

TABLE I
PARAMETER VALUES OF THE MODEL

Parameter Value Source

δ 0.2 [6]
µ 0.019896 [6]
β 0.35 [6]
d1 0.01 [6]
d2 0.0575 [6]
ε 0.25 [6]
k 0.5 [6]
α 0.1106456 [6]
γ 0.470104 [6]
ρ 0− 0.5 [8]
ψ 0− 0.5 Assumed
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Fig. 2. Model simulation without vaccination interventions on susceptible
individual (ρ = 0) and high effect vaccination on exposed individual (ψ =
0.5) with R0 = 1.142457921.

Based on the Routh-Hurwitz Criterion, all the eigenvalues
have negative real parts. Hence, system (1) is locally asymp-
totically stable at endemic equilibrium.

We illustrate the analytical results of the model by carrying
out numerical simulations using a set of estimates for param-
eter values obtained from the literature. Model simulation of
the dynamic on MDR-TB spread by using Maple and Matlab
software. The parameters used in the epidemic model are
presented in Table I.

The average number of populations per year based on data
from RSUD Kefamenanu. For situations that do not allow the
data will be taken proportionally based on the existing data.
The following is a numerical simulation in the presence of
vaccination in susceptible and latent TB individuals, where
we divide into four cases and presented in four graphs. This
simulation uses preliminary data in Kefamenanu City District.

Figure 2 and 3 show that the infected
populations are constant over time for their
condition. We obtained these equilibrium points;
(8.79881, 0.0323, 0.00809, 0.02024, 0.31609, 0.81404)
for (ψ = 0.5, ρ = 0.5) and
(3.19881, 0.37288, 0.09322, 0.23305, 3.63874, 1.79518)
for (ψ = ρ = 0.01). Both of these conditions indicate that
the disease is endemic in the population. Initially, the curve
of the infected population has increased (peak). Especially,
vaccine administration rates were only given to latent TB
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Fig. 3. Model simulation with low vaccination interventions both susceptible
individual (ρ = ψ = 0.01) with R0 = 2.091357470.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

4

Time

Po
pu

la
tio

n 
si

ze

 

 
S(t)

E(t)

I(t)

R
md

(t)

R(t)

V(t)

Fig. 4. Model simulation without vaccination effect on exposed individual
(ψ = 0) and high interventions vaccination on susceptible individual (ρ =
0.5) with R0 = 0.1247168475.
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Fig. 5. Model simulation with high vaccination influence on susceptible and
exposed individual (ρ = ψ = 0.5) with R0 = 0.04372094188.

individuals, the peak of curve I is slightly higher than curve
Rmd (Figure 2). Whereas the rate of vaccine administration
in vulnerable individuals and individuals with latent TB is
low, the peak of curve Rmd is higher than curve I (Figure 3).
From the two treatments in Figures 2 and 3, we can see that
low vaccination interventions in both populations, the period
needed for a decrease is longer than administering a vaccine
to exposed individuals.

Figure 4 and 5 show that the number of infected populations
in Kefamenanu converge to zero while other populations are
going is to be constant for a long time, namely, the equilibrium

ψ

ρ
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Fig. 6. Interaction parameter of ψ and ρ.

points (3.08453, 0, 0, 0, 0, 72.51622) when (ρ = 0.5, ψ = 0)
and (8.79881, 0, 0, 0, 0, 78.33027) when (ρ = ψ = 0.5). This
means that the disease will disappear or no epidemic occurs in
the population. In Figures 4 and 5, we can see that the curve of
infected increases (peak) at an early time. Further, at a certain
time, all curves continue to decrease and converge to a constant
value. For the two conditions, we can describe that the higher
vaccination intervention is given to only vulnerable, the time
needed to eliminate the disease is slightly longer than high
intervention on both populations (Compare Fig. 4 and Fig. 5).

To describe the relationship between giving vaccines to
susceptible individuals (ρ) and latent TB sufferers (ψ), the
following is presented in the numerical simulation.

Figure 6 is showing that the infection will persist and lead
to an epidemic if no interventions or giving higher vaccination
on latent TB people. Conversely, if given a high vaccination
in both populations, or giving only to vulnerable individuals,
TB disease will disappear from the population.

III. SENSITIVITY ANALYSIS

In this section, we will conduct a sensitivity analysis to
find out which parameters are the most influential in the
disease epidemic. In this case, we focus on the sensitivity of
the parameters β, δ, µ, d1, ε, γ, ω, ρ, and k to the basic
reproduction number (3).

To this aim, p and V denote the generic parameters and
variables to be sought from (1), we evaluate the normalized
sensitivity index [10] which is defined as follows.

CVp =
∂V

∂p
× p

V
(6)

The sensitivity index of the parameters β, δ, µ, d1, ε, γ,
ψ, ρ, and k with R0 is obtained using (6) with considering
the parameter values in Table I. The results of the sensitivity
analysis are presented in Table II for the order of parameters
the most influential in the spread of MDR-TB disease.

The result of the sensitivity analysis shows that the contact
rate (β), the birth rate (δ), and the natural death rate (µ) were
the three parameters that most clearly influenced the change of
reproduction number (R0). Then it is followed by the recovery
rate (k) in individuals with TB disease and progression rate
form TB disease to MDR-TB (γ). The parameters β, δ, and
ε have a positive sensitivity index. It means that if these
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TABLE II
SENSITIVITY INDICES FOR TO SOME CHOSEN PARAMETER

Parameter Sensitivity Index Value

β 1 CR0
β = 1.000000000

δ 1 CR0
δ = 1.000000000

µ −µ( 1
ρ+µ

+ 1
c1

+ 1
c2

) CR0
µ = −0.7564866366

k − k
c2

CR0
k = −0.5000000002

γ − γ
c2

CR0
γ = −0.4701040002

ρ − ρ
ρ+µ

CR0
ρ = −0.3344929087

ε 1− ε
c1

CR0
ε = 0.1068111012

ψ − ψ
c1

CR0
ψ = −0.03572755594

d1 − d1
c2

CR0
d1

= −0.01

µ

β
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Fig. 7. The graph of the basic reproduction number versus three parameters
has the most effect on the spread of MDR-TB., i.e. R0 versus β and µ, R0

versus β and δ, R0 versus δ and µ.

parameters value increases, the value of R0 will also increase.
Conversely, if the value of these parameters decreases, then the
value of R0 will also decrease. while the parameters µ, k, γ,
ρ, ψ, and d1 have a negative sensitivity index. It means that if
these parameters value increases, the value of R0 will decrease
and vice versa it will increase. An increase or decrease of R0

is obtained based on the magnitude of the sensitivity index.
If the parameters β and δ are increased by 10%, then the

basic reproduction number R0 increased by approximately
10% starting at 2.091357470 to 2.300493216. Conversely, if
the parameters β and δ are decreased, then the basic repro-
duction number R0 decreased by 11.11111% or 1.882221723.
Moreover, if the parameters µ, k, and γ are increased, then the
basic reproduction number R0 decreased by 7.626922%, 5%,
and 4.70104%, respectively. Conversely, if these parameters
are decreased, then the basic reproduction number is increased.

Based on the sensitivity analysis conducted, we present nu-
merical simulation of the first three variables play an important
role in the spread of the epidemic, i.e. β, δ, and µ.

Figure 7 presents several conditions. The first and third
graph (low natural mortality) show that the effect of increasing
contact rate or birth rate cause the disease to persist in the
population. Similarly, we can see in the second graph that an
epidemic occurs if birth rates and transmission rates continue
to increase. Otherwise, contact rates and birth rates are low,
the disease will disappear. This provides the possibility for
health policymakers to reduce birth rates and contact rates in
areas with high rates of TB transmission.

Hereinafter, the following graph is given the interaction
between the parameters of contact rate, successful treatment
in patients with active TB, and patients who fail to take
medication and develop into MDR-TB, i.e. β, k, and γ,
respectively.

Figure 8 describes that there are three conditions. Based

γ
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Fig. 8. The graph of the basic reproduction number versus other parameters
has the most effect on the spread of MDR-TB., i.e. R0 versus β and γ, R0

versus β and k, R0 versus γ and k.
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Fig. 9. Evaluation of susceptible S(t), exposed E(t), infectious I(t), indi-
viduals with pulmonary MDR-TB Rmd(t), recovered R(t), and vaccinated
V (t) of the MDR-TB model (1) with varying of β.

on these simulations, high contact rates of TB disease cause
epidemics even though the rate of progression of active TB
to MDR-TB is small. In contrast, although more and more
active TB develops into MDR-TB, the disease will disappear
from the population if the contact rate is small (see the first
graph). The second case describes that a high contact rate
will contribute to the spread of the disease, even though the
treatment rate in patients with active TB is also high. However,
if the treatment rates is high and contact rates is small, then no
epidemic occurs (see the second graph). The third condition
indicates that even if the rate of progression from active TB to
MDR-TB is low, there will still be an epidemic as a treatment
in TB disease is getting smaller. Vice versa, there will be no
epidemic (see the third graph). This is cause most people with
active TB disease, it means the more vulnerable being infected.

IV. NUMERICAL SIMULATIONS

Numerical simulations will be discussed for the spreading
of MDR-TB disease by reviewing some of the parameter
conditions that are known to be most influential based on
the sensitivity index. The following simulation is focused
on endemic equilibrium points with ρ = ψ = 0.01 (other
parameters can be seen in Table I) and the initial condition is
chosen the same in the previous section.

To analyze the effect of parameter β transmission rates of
susceptible individuals infected with active TB disease, then
in this work we do variations of β that can be seen in the
following numerical results.

In Figure 9. when we vary β from 35% to 60%, we see that
the impact of the rate of contact is a bit larger, especially for
vulnerable individuals.

To see the effect of parameter k level of treatment on
patients with active TB on the spread of MDR-TB disease,
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Fig. 10. Evaluation of susceptible S(t), exposed E(t), infectious I(t), indi-
viduals with pulmonary MDR-TB Rmd(t), recovered R(t), and vaccinated
V (t) of the MDR-TB model (1) with varying of k.
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Fig. 11. Evaluation of susceptible S(t), exposed E(t), infectious I(t), indi-
viduals with pulmonary MDR-TB Rmd(t), recovered R(t), and vaccinated
V (t) of the MDR-TB model (1) with varying of γ.

then in this work we make variations of k that can be seen in
the following numerical results.

When we vary k from 25% to 60%, we see in Figure 10
that efficacy of treatment in active TB individuals is a bit
larger, especially for the vulnerable and vaccinated individuals.
Despite that the impact is a bit larger, in this case, the number
of infected individuals always remain high, especially for the
latent TB and patients with pulmonary MDR-TB.

The following is a numerical simulation of the effect of the
variation of parameter γ the level of progression of Mtb germ
resistance to MDR TB on each population.

When we vary γ from 25% to 60%, then in Figure 11. show
that the effect of the development of active TB into MDR-TB
is a bit larger, especially for the susceptible.

The following is a simulation of variations in the rate of
vaccine intervention (ρ) to individuals susceptible to the spread
of MDR-TB with high contact rate (β = 0.6).

When we vary ρ until 30%, we see now in Figure 12 that the
impact of vaccination is a bit larger. Despite that the impact is
a bit larger, the number of infected individuals always remains
high. This implies that vaccination in vulnerable individuals
alone is not sufficient to control the disease effectively.

In general, Figure 9-12. gives the trajectory plot of the
model (1) for different initial conditions with R0 > 1.
From this figure, we can observe that infected individuals
are always present in the population. This means that the
trajectories converge to the endemic equilibrium point. Thus,
whenever R0 > 1, the disease persists in the host population
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Fig. 12. Evaluation of susceptible S(t), exposed E(t), infectious I(t), indi-
viduals with pulmonary MDR-TB Rmd(t), recovered R(t), and vaccinated
V (t) of the MDR-TB model (1) with varying of ρ.

as established in Theorem 2. In Figure 9. We report the result
that the higher transmission rate, the higher the number of
infected individuals by Mtb. This returns with the number of
vulnerable, vaccinated, and cured individuals that are getting
lower. Figure 10. interprets that increasing the rate of treatment
in active TB patients has a positive effect on all populations,
especially the number of infected TB individuals is decreasing.
Further, in Figure 11, we can see that the stable progression of
patients with pulmonary MDR-TB clearly causes the number
of individuals to be infected and recovered to decrease. More-
over, Figure 12. informs that increasing the vaccination rate to
vulnerable individuals gives a better impact on the population.

V. CONCLUSIONS

The results of the work show that giving vaccines to
vulnerable individuals or knowing that latent individuals make
the disease clear from the population. These findings can be
used as information for researchers or organizations that pro-
duce vaccines for the prevention of TB disease in vulnerable
adolescents and also adults as previously stated [2]. While
waiting for the vaccine to be available, it is important to think
of a strategy to reduce or limit contact between susceptible
and individuals with TB disease. The other results show the
need for appropriate health interventions in both vulnerable
and active TB disease as a bridge causing the outbreak of TB
in population. One of the recommendations in the presence
of quarantine or isolation (severe) for individuals with TB
disease which carried out in hospitals to reduce the likelihood
of contact with family members especially those causing latent
TB. This is in line with research that has been previously
conducted [11]. Moreover, the need for health socialization to
the public about awareness of the importance of maintaining
a healthy lifestyle. Especially, TB sufferers must understand
that TB is not cough, so it is crucial to treatment with early
and regularly to prevent getting MDR-TB.

The future work in this model is required for a control
class to limit contact between active TB and vulnerable
as previously stated by distinguishing two class, i.e. infant
and adolescents class. This is done in conjunction with the
vaccine currently being developed. Also, further researchers
can consider the other biological facts such as the development
of active TB is also influenced by exogenous reinfection and
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a history of other illnesses suffered by patients [12]. One of
them is a person with latent TB infection, HIV infection is a
risk factor that plays a role in its development into an active
TB disease [13].
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