
INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 7, NO. 1, FEBRUARY 2021 25

Properties of Generalised Lattice Ordered Groups
Parimi Radha Krishna Kishore and Dawit Cherinet Kifetew

Abstract—A partially ordered group (po-group) is said to be
a generalised lattice ordered group (gl-group) if the underlying
poset is a generalised lattice. This paper is a study of some
properties of finite subsets of a generalised lattice ordered group
(gl-group). Finally obtained a lattice ordered group (l-group)
from the given interally closed gl-group and concluded that every
integrally closed gl-group is distributive.

Index Terms—Poset, lattice, po-group, l-group.

I. INTRODUCTION

MURTY and Swamy [1] introduced the concept of a
generalised lattice and Kishore [2], [3], developed the

theory of generalised lattices. The theory of lattice ordered
groups (l-groups) is well known from the books [4], [5], [6].
The concept of generalised lattice ordered groups (gl-group)
introduced and developed by Kishore [7], [8], [9]. This paper
is a study of some properties of finite subsets of a gl-group. In
this paper, Section II contains preliminaries which are taken
from the references [7], [8]. In Section III, we proved some
properties of a gl-group with respect to the elements of the gl-
group. Section IV discussed some properties of finite subsets
of gl-groups. In Section V, we obtained an l-group from a
given integrally closed gl-group and finally concluded that
every integrally closed gl-group is distributive.

II. PRELIMINARIES

The definitions of partially ordered group (po-group), to-
tally ordered group (o-group), lattice ordered group (l-group),
directed group are well known from the books [4], [5], [6].
The additive identity element of a po-group is denoted by
0. G+ = {x ∈ G | x ≥ 0} which is called positive cone of a
po-group G. A po-group G is said to be integrally closed if for
any a, b ∈ G; na ≤ b for all n ∈ N implies a ≤ 0. A po-group
G is said to be semiclosed if for any x ∈ G, n ∈ N; nx ≥ 0
implies x ≥ 0.

The concepts of generalised lattice, subgeneralised lattice,
distributive poset are known from [2], [3], [1]. For any finite
subset A of a poset P , define L(A) = {x ∈ P | x ≤ a for all
a ∈ A}, then the set L(P ) = {L(A) | A is a finite subset of
P} is a semi lattice under the set inclusion. If a poset P is a
generalised lattice then (L(P ),⊆) is a lattice. A generalised
lattice P is distributive if and only if L(P ) is distributive. The
dual concepts are also true for U(A) and U(P ).

Definition 1 ([7]): A system (G, + ≤) is called a gl-
group (generalised lattice ordered group) if (i) (G, ≤) is a
generalised lattice, (ii) (G, +) is a group and (iii) every group
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translation x→ a+ x+ b on G is isotone, i.e., x ≤ y implies
a+ x+ b ≤ a+ y + b for all a, b ∈ G.

Here onwards through out this paper G denotes a gl-group
unless specified otherwise. Let X , Y , A and B be subsets of
G. Define X ≤ Y if x ≤ y for all x ∈ X, y ∈ Y. Define
A +X = {a + x | a ∈ A, x ∈ X}. In particular if A = {a}
then A+X = a+X . Observe that the following conditions
are equivalent: (iii) of Definition 1, (iii) ′ : X ≤ Y implies
a+X + b ≤ a+ Y + b for all a, b ∈ G and (iii) ′′ : X ≤ Y
implies A+X +B ≤ A+ Y +B.

Theorem 1 ([7]): For any x, y, a, b ∈ G, we have the
following properties: (iv) a +mu{x, y} + b = mu{a + x +
b, a+y+b}, a+ML{x, y}+b =ML{a+x+b, a+y+b}. (v)
ML{a, b} = {0} and ML{a, c} = {0} =⇒ ML{a, b+c} =
{0}, mu{a, b} = {0} and mu{a, c} = {0} =⇒ mu{a, b +
c} = {0}. (vi) ML{x, y} = −mu{−x,−y}, mu{x, y} =
−ML{−x,−y}. (vii) a−mu{x, y}+b =ML{a−x+b, a−
y + b}, a − ML{x, y} + b = mu{a − x + b, a − y + b}.
(viii) x−mu{x, y}+ y =ML{x, y}, x−ML{x, y}+ y =
mu{x, y}.

Definition 2 ([8]): For any x ∈ G, define |x| =
mu{x,−x}, x+ = mu{x, 0} and x− = mu{−x, 0}.

Note that x− may also be defined as x− = ML{x, 0},
but both differ only in negative sign of a set, that is one is
negative set of the other. In this paper, we consider as given
in Definition 2.

Theorem 2 ([8]): For any x ∈ G, we have (ix) x+ = x +
x−, x− = −x + x+, (−x)+ = x−, (−x)− = x+. (x) If
G is semiclosed then |x| = | − x| ≥ 0, |x| = {0} ⇔ x =
0, L(|x|) = L(x+) ∨ L(x−). (xi) If G is distributive and
semiclosed then L(x+) ∩ L(x−) = L(0).

III. PROPERTIES OF A GL-GROUP W.R.T. ITS ELEMENTS

In this section, we prove some properties of a gl-group with
respect to elements of the gl-group.

Theorem 3: If G is distributive and semiclosed then for any
x, y ∈ G, we have ML((x−ML{x, y})∪(y−ML{x, y})) =
{0}.

Proof: Consider L((x−ML{x, y})∪(y−ML{x, y})) =
L(mu{0, x−y}∪mu{y−x, 0}) = (L(0)∨L(x−y))∩(L(y−
x) ∨ L(0)) = L(0) ∨ (L(x − y) ∩ L(y − x)) (since L(G) is
distributive) = L(0) (since G is semiclosed).

Theorem 4: For any x, y ∈ G, we have ML(|x|) ≤ y if and
only if −y ≤ x ≤ y.

Proof: Suppose ML(|x|) ≤ y. Then L(x) ∨
L(−x) = L(mu{x,−x}) = L(|x|) ⊆ L(y) and therefore
L(x), L(−x) ⊆ L(y); that is −y ≤ x ≤ y. Conversely, sup-
pose −y ≤ x ≤ y. Then y ∈ U(s) for some s ∈ mu{x,−x}
and therefore ML(|x|) ⊆ L(|x|) ⊆ L(s) ⊆ L(y); that is
ML(|x|) ≤ y.
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Theorem 5: If G is distributive and semiclosed, then for
any x, y ∈ G, the following statements are equivalent: (i)
ML{x, y} = {0} (ii) mu{x, y} = {x + y} (iii) (x − y)+ =
{x} and (x− y)− = {y}.

Proof: (i) if and only if (ii) is clear by the Theorem 1.
Now to prove (iii) if and only if (i): Suppose (iii). Then since
G is distributive and semiclosed, we have L({x, y}) = L((x−
y)+) ∩ L((x − y)−) = L(0); that is ML{x, y} = {0}. The
converse is clear by the Theorem 1.

Theorem 6: If G+ is a subgeneralised meet semilattice of
G, then for any x, y, z ∈ G+, we have (i) x ≤ y + z implies
x = y1 + z1 for some 0 ≤ z1 ≤ z and 0 ≤ y1 ≤ y. (ii)
ML{x, y + z} ≤ mu(ML{x, y}+ML{x, z}).

Proof: (i) Suppose x ≤ y + z. Then z ∈ U(z1) for some
z1 ∈ mu{0,−y+x} = −ML{x, y}+x. Therefore, 0 ≤ z1 ≤
z and x = y1 + z1 for some y1 ∈ ML{x, y}. Since G+ is a
subgeneralised meet semilattice of G, we have ML{x, y} ⊆
G+; this gives 0 ≤ y1 ≤ y. (ii) Let s ∈ML{x, y + z}. Then
by (i) s = y1+z1 for some 0 ≤ z1 ≤ z and 0 ≤ y1 ≤ y. Since
y1, z1 ≤ s ≤ x; we can get y1 ≤ y2 and z1 ≤ z2 for some
y2 ∈ ML{x, y}, z2 ∈ ML{x, z}. Therefore, U(ML{x, y} +
ML{x, z}) ⊆ U(y2 + z2) ⊆ U(s) for all s ∈ML{x, y + z},
this implies U(ML{x, y}+ML{x, z}) ⊆ U(ML{x, y+ z})
and hence the result.

Corollary 1: If G+ be a subgeneralised lattice of G, then
for any x, y, z ∈ G+ we have ML{x, y} =ML{x, z} = {0}
implies ML{x, y + z} = {0}.

IV. PROPERTIES OF A GL-GROUP W.R.T. ITS FINITE
SUBSETS

In this section, we prove some properties of a gl-group with
respect to finite subsets of the gl-group.

Theorem 7: For any finite subset X of G and a, b ∈ G, we
have the following: (i) a+mu(X) = mu(a+X), mu(X)+
b = mu(X + b), a+mu(X) + b = mu(a+X + b) and (ii)
a+ML(X) =ML(a+X), ML(X)+b =ML(X+b), a+
ML(X) + b =ML(a+X + b).

Proof: For any s ∈ mu(X), we have a+ x ≤ a+ s for
all x ∈ X . Therefore, a+ s ∈ U(a+X) for all s ∈ mu(X),
and this implies

⋃
s∈mu(X) U(a + s) ⊆ U(a + X). On the

other hand let t ∈ U(a + X), then there exists s ∈ mu(X)
such that −a+ t ∈ U(s) and so that t ∈

⋃
s∈mu(X) U(a+ s).

Therefore, U(a +X) ⊆
⋃

s∈mu(X) U(a + s). Hence, U(a +
X) =

⋃
s∈mu(X) U(a + s) and then we get mu(a + X) =

a+mu(X). Similarly, we can prove the remaining.
Theorem 8: For any finite subsets A,B,C of G, we have

the following: (i) ML(A ∪ B) = {0}, ML(A ∪ C) = {0}
implies ML(A ∪ (B + C)) = {0} and (ii) mu(A ∪ B) =
{0}, mu(A ∪ C) = {0} implies mu(A ∪ (B + C)) = {0}.

Proof: (i) Suppose ML(A ∪ B) = {0}, ML(A ∪ C) =
{0}. Then clearly 0 ∈ L(A ∪ (B + C)). Now let p ∈ L(A ∪
(B+C)), then p ∈ L((A+A)∪(B+A)∪(A+C)∪(B+C)) =
L((A∪B)+(A∪C)), later for any y ∈ A∪C we have p−y ∈
L(A ∪ B) = L(0), and this implies p ∈ L(A ∪ C) = L(0).
Therefore ML(A∪ (B+C)) = {0}. Similarly, we can prove
(ii).

Theorem 9: For any finite subset X of G and a, b ∈ G, we
have the following: (i) ML(X) = −mu(−X) (ii) mu(X) =

−ML(−X) (iii) a−mu(X) + b =ML(a−X + b) and (iv)
a−ML(X) + b = mu(a−X + b).

Theorem 10: Let G be a po-group. Then G is a gl-group if
and only if mu(X ∪ {0}) (or ML(X ∪ {0}) ) exists for any
finite subset X of G.

Proof: Suppose G is a gl-group. Then for any finite subset
X of G, since X ∪ {0} is also a finite subset of G, we have
mu(X ∪ {0}) and ML(X ∪ {0}) are finite subsets of G.
Conversely, suppose the condition. Let A be a finite subset of
G. Then for any x ∈ A, by Theorem 7, we have −ML(A) =
mu(−A) = mu({0} ∪ (−A + x)) + {−x} is a finite subset
of G. Therefore ML(A) is a finite subset of G and clearly
mu(A) is a finite subset of G.

Theorem 11: Let G be a po-group. Then G is a gl-group
if and only if G+ is subgeneralised join semilattice of G and
G+ generates G (i.e., G = G+ −G+).

Proof: Suppose G is a gl-group. Then for any finite subset
A of G+, since A ⊆ G and A ≥ 0, we have mu(A) ⊆ G
and mu(A) ≥ 0, that is mu(A) ⊆ G+. Therefore, G+ is a
subgeneralised join semilattice of G. Since every generalised
lattice is directed, by theorem 2.1.2(c) of [6] we have G+

generates G (i.e., G = G+ − G+). Conversely, suppose the
condition. Let x ∈ G, then x = a − b for some a, b ∈ G+.
Observe that an element g is a minimal upper bound of {a, b}
in G+ if and only if g is a minimal upper bound of {a, b} in
G. Since G+ is subgeneralised join semilattice of G and a, b ∈
G+, the set of minimal upper bounds of {a, b} in G+ is a finite
subset of G+. Then the set of minimal upper bounds of {a, b}
in G is a finite subset of G. Now, mu{x, 0} = mu{a−b, 0} =
mu{a, b}− b is a finite subset of G. Therefore, mu{x, 0} is a
finite subset of G for all x ∈ G. Hence, mu(X ∪ {0}) exists
for any finite subset X of G.

V. INTEGRALLY CLOSED GL-GROUPS

In this section, we obtain an l-group from a given integrally
closed gl-group and concluded that every integrally closed gl-
group is distributive.

Recall from [6] the following results. Let G be a directed
po-group and P(G) be the powerset of G. Then observe
that the map σ : P(G) → P(G) defined by σ(X) =
LU(X) is a closure operation on G. Moreover for each
X ∈ P(G), σ(X) =

⋂
A∈AA where A = {A | X ⊆ A ⊆

G and σ(A) = A}.
In the following result, we obtain an l-monoid (l-group)

from a given gl-group (integrally closed gl-group).
Theorem 12: Let G be a gl-group. Then (L(G),⊕,⊆) is an

l-monoid under the operation ⊕ defined by L(A) ⊕ L(B) =
L(mu(ML(A) + ML(B))) for any L(A), L(B) ∈ L(G).
Moreover, if G is integrally closed then L(G) is an l-group.

Proof: Closure: Since ML(A),ML(B) are finite subsets
of G, mu(ML(A) + ML(B)) is also a finite subset of
G. Identity: L(0) is the identity element. Associative: Let
L(A), L(B), L(C) ∈ L(G). Consider (L(A) ⊕ L(B)) ⊕
L(C) = L(D)⊕L(C) (where D = mu(ML(A)+ML(B)))
= LU(X) = X∗ (where X = ML(D) + ML(C)) =⋂

Q∈AQ where A = {Q | X ⊆ Q ⊆ G,Q∗ = Q}.
Consider L(A) ⊕ (L(B) ⊕ L(C)) = L(A) ⊕ L(E) (where
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E = mu(ML(B) + ML(C))) = LU(Y ) = Y ∗ (where
Y = ML(A) +ML(E)) =

⋂
P∈B P where B = {P | Y ⊆

P ⊆ G,P ∗ = P}. To show that A = B : Let Q ∈ A. Then for
any z ∈ML(C) we have ML(D)+z ⊆ X ⊆ Q, this implies
L(D) = LUL(D) = LU(ML(D)) ⊆ (Q − z)∗ = Q − z for
all z ∈ ML(C), later since ML(A) +ML(B) ⊆ L(D) we
get ML(A)+ (ML(B)+ML(C)) = (ML(A)+ML(B))+
ML(C) ⊆ L(D) +ML(C) ⊆ Q. Then for any z ∈ ML(A)
we have z + (ML(B) +ML(C)) ⊆ Q, this implies L(E) =
LU(ML(B) + ML(C)) ⊆ (−z + Q)∗ = −z + Q for all
z ∈ ML(A), later since Y ⊆ ML(A) + L(E) ⊆ Q we have
Q ∈ B. Therefore A ⊆ B, similarly we can prove B ⊆ A.
Hence (L(G),⊕) is a monoid. Translation order preserving:
Let L(A), L(B), L(C) ∈ L(G) and suppose L(A) ⊆ L(B).
Then since U(ML(B) +ML(C)) ⊆ U(ML(A) +ML(C))
we have L(A) ⊕ L(C) ⊆ L(B) ⊕ L(C) and similarly
L(C) ⊕ L(A) ⊆ L(C) ⊕ L(A). Therefore (L(G),⊕,⊆) is
an l-monoid. Now suppose G is integrally closed. Inverse:
Let L(A) ∈ L(G), X = ML(A) and Y = ML(mu(−A)).
Then clearly L(A) ⊕ L(mu(−A)) = LU(X + Y ) ⊆ L(0).
On the other hand let a ∈ U(X + Y ). To show that
na ∈ U(X + Y ) for all positive integers n: We prove this
by induction on n. Assume that it is true for n = k, that
is ka ∈ U(X + Y ). Then for any x ∈ X, y ∈ Y we have
ka ≥ x + y, this implies y − ka ≤ t for some t ∈ Y , later
since U(X + Y ) ⊆ U(x + t) ⊆ U(x + y − ka) we have
a ≥ x + y − ka, that is (k + 1)a ∈ U(X + Y ). Therefore
the result follows by induction. Now since G is integrally
closed we get 0 ≤ a for all a ∈ U(X + Y ), this implies
L(0) ⊆ LU(X + Y ) = L(A) ⊕ L(mu(−A)). Therefore
L(mu(−A)) is the inverse of L(A). Hence (L(G),⊕,⊆) is
an l-group.

Recall that every l-group is distributive w.r.t. the lattice
operations.

Corollary 2: Every integrally closed gl-group is distributive.
Corollary 3: Every integrally closed gl-group is semiclosed.
Theorem 13: Let G be an integrally closed gl-group.

Then for any x, y ∈ G, we have ML(|x − y|) =
ML(mu(ML(mu{x, y}) − mu(ML{x, y}))). In particular,
if y = 0 then ML(|x|) =ML(mu(ML(x+) +ML(x−))).

Proof: Since L(0) ⊆ L(|x− y|) = L(x− y) ∨ L(y − x)
and by Theorem 12 we have L(|x− y|) = L(0)∨L(x− y)∨
L(y − x) ∨ L(0) = (L(x) ⊕ L(−x)) ∨ (L(x) ⊕ L(−y)) ∨
(L(y) ⊕ L(−x)) ∨ (L(y) ⊕ L(−y)) = (L(x) ⊕ (L(−x) ∨
L(−y))) ∨ (L(y) ⊕ (L(−x) ∨ L(−y))) = (L(x) ∨ L(y)) ⊕
(L(−x) ∨ L(−y)) = L(mu{x, y}) ⊕ L(mu{−x,−y}) =
L(mu(ML(mu{x, y})−mu(ML{x, y}))).
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