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On the Reciprocal Sums of Generalized
Fibonacci-Like Sequence

Musraini M., Rustam Efendi, Endang Lily, Noor El Goldameir and Verrel Rievaldo Wijaya

Abstract—The Fibonacci and Lucas sequences have been gen-
eralized in many ways, some by preserving the initial conditions,
and others by preserving the recurrence relation. One of them
is defined by the relation Bn = Bn−1 + Bn−2 n ≥ 2 with the
initial condition B0 = 2s, B1 = s + 1 where s ∈ Z. In this
paper, we consider the reciprocal sums of Bn and B2

n, with an
established result that also involve Bn.

Index Terms—Reciprocal sums, generalized Fibonacci-like se-
quence.

I. INTRODUCTION

MANY author have already generalize a well known
Fibonacci and Lucas sequence either by changing its

initial condition or the recurrence relation. One of that gen-
eralization is called the Generalized Fibonacci-Like sequence
[1]. The Generalized Fibonacci-Like sequence [1] associated
with Fibonacci and Lucas sequences {Bn} is defined by the
recurrence relation

Bn = Bn−1 +Bn−2 n ≥ 2

with the initial condition B0 = 2s, B1 = s+ 1 where s ∈ Z.
The few terms of this sequence are as following

2s, s+ 1, 3s+ 1, 4s+ 2, 7s+ 3, . . .

The initial condition B0 and B1 can be seen as the sum of
Fibonacci and Lucas sequence respectively

B0 = F0 + sL0 B1 = F1 + sL1

Thus, the relation between Fibonacci-Lucas sequence with
Generalized Fibonacci-Like sequence can be written as

Bn = Fn + sLn (n ≥ 0)

If s = 0, then Bn become a usual Fibonacci sequence. If
s = 1, then Bn become a usual Pell-Lucas sequence. In this
article, we discuss the results when s = 2. The few terms of
this sequence are

4, 3, 7, 10, 17, 27, 44, . . .

The reciprocal sum of Fibonacci numbers was first investi-
gated by Ohtsuka and Nakamura [2]. Some related result for
other sequences also have been founded by several authors [3],
[4], [5], [6], [7], [8], [9]. In this article, we discuss the infinite
reciprocal sums of generalized Fibonacci-Like sequence and
additionally the infinite reciprocal sums of square of general-
ized Fibonacci-Like sequence when s = 2.
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II. PRELIMINARIES

Various properties and identities of Fibonacci and Lucas
sequences have been studied by many authors [10], [11]. We
give some identities on Generalized Fibonacci-Like sequence
in order to help prove our main results.

Lemma 1: For n ≥ 1, we have
1) Bn−1Bn+3 = B2

n+1 + (−1)n+1(5s2 − 1)
2) BnBn+2 = B2

n+1 − (−1)n+1(5s2 − 1)
3) B2

n −Bn−1Bn+1 = (−1)n(5s2 − 1)

Proof: Observe that

B2
n+1 = (Fn+1 + sLn+1)

2

= F 2
n+1 + 2sFn+1Ln+1 + s2L2

n+1

= F 2
n+1 + 2sF2n+2 + s2

(
L2n+2 + 2(−1)n+1

)
1) We have

Bn−1Bn+3 = (Fn−1 + sLn−1) (Fn+3 + sLn+3)

= Fn−1Fn+3 + s(Fn−1Ln+3 + Ln−1Fn+3)

+ s2Ln−1Ln+3

= F 2
n+1 + (−1)n + s(2F2n+2) + s2(L2n+2

+ 7(−1)n+1)

= B2
n+1 + (−1)n+1(5s2 − 1)

Thus (1) is proved and (2) is proved in a similar way.
3) From (2), we get

B2
n −Bn−1Bn+1 = B2

n − (B2
n − (−1)n(5s2 − 1))

= (−1)n(5s2 − 1)

The proof is complete.

III. RESULTS AND DISCUSSION

There are two main results in our studies, the first one is as
following.

Theorem 1: If s = 2, then( ∞∑
k=n

1

Bk

)−1
 =

{
Bn−2, if n is odd and n ≥ 3

Bn−2 − 1, if n is even and n ≥ 4

To prove the first theorem, we use the following two
lemmas.

Lemma 2: For any s ∈ Z+,

(a)
∞∑

k=n

1

Bk
<

1

Bn−2
, if n is odd and n ≥ 3.

(b)
∞∑

k=n

1

Bk
>

1

Bn−2
, if n is even and n ≥ 2.
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Proof: For n ≥ 0, observe that

1

Bn
− 2

Bn+2
− 1

Bn+3
=

Bn−1

BnBn+2
− 1

Bn+3

=
Bn−1Bn+3 −BnBn+2

BnBn+2Bn+3

=
(−1)n(2− 10s2)

BnBn+2Bn+3

(a) If n is odd with n ≥ 1, then

1

Bn
− 2

Bn+2
− 1

Bn+3
=

(−1)n(2− 10s2)

BnBn+2Bn+3
> 0

Therefore,
1

Bn
>

1

Bn+2
+

1

Bn+2
+

1

Bn+3
(1)

By applying inequality (1) repeatedly for n ≥ 3, we
have

1

Bn−2
>

1

Bn
+

1

Bn
+

1

Bn+1

>
1

Bn
+

1

Bn+1
+

(
1

Bn+2
+

1

Bn+2
+

1

Bn+3

)
> . . .

>
1

Bn
+

1

Bn+1
+

1

Bn+2
+

1

Bn+3
+ . . .

Thus, we obtain
∞∑

k=n

1

Bk
<

1

Bn−2

(b) In a similar way, if n is even with n ≥ 2, then we will
get

∞∑
k=n

1

Bk
>

1

Bn−2

The proof is complete.

Lemma 3: For s = 2, we have

(a)
∞∑

k=n

1

Bk
>

1

Bn−2 + 1
, with n > 3.

(b)
∞∑

k=n

1

Bk
<

1

Bn−2 − 1
, with n ≥ 3.

Proof:
(a) Using identities on Generalized Fibonacci-Like se-

quence, we have

1

Bn + 1
− 1

Bn+2
− 1

Bn+3
− 1

Bn+2 + 1

=
Bn+2 −Bn

(Bn + 1)(Bn+2 + 1)
− Bn+2 +Bn+3

Bn+2Bn+3

=
Bn+1

(Bn + 1)(Bn+2 + 1)
− Bn+4

Bn+2Bn+3

=
−
(
B2

n+2 +B2
n+3 +Bn+4)

Bn+2Bn+3(Bn + 1)(Bn+2 + 1)
+

+
(38(−1)n+1(Bn+2 + 1)

)
Bn+2Bn+3(Bn + 1)(Bn+2 + 1)

(2)

If n is even, then the right-hand side of identity (2) will
be negative.
If n is odd , then the right-hand side of identity (2) will
also be negative, except for n = 1 because

−
(
B2

3 +B2
4 +B5 − 38(B3 + 1)

)
= 2 > 0

Thus, for n ∈ {0, 2, 3, 4, . . . } we get

1

Bn + 1
− 1

Bn+2
− 1

Bn+3
− 1

Bn+2 + 1
< 0 (3)

By applying inequality (3) repeatedly for n > 3, we
have

1

Bn−2 + 1
<

1

Bn
+

1

Bn+1
+

1

Bn + 1

<
1

Bn
+

1

Bn+1
+

(
1

Bn+2
+

1

Bn+3
+

+
1

Bn+2 + 1

)
< . . .

<
1

Bn
+

1

Bn+1
+

1

Bn+2
+

1

Bn+3
+ . . .

Thus, we obtain
∞∑

k=n

1

Bk
>

1

Bn−2 + 1

(b) In a similar way, we will get

1

Bn − 1
− 1

Bn+2
− 1

Bn+3
− 1

Bn+2 − 1

=
B2

n+2 +B2
n+3 −Bn+4

Bn+2Bn+3(Bn − 1)(Bn+2 − 1)
+

+
2(−1)n+119(Bn+2 − 1)

Bn+2Bn+3(Bn − 1)(Bn+2 − 1)
(4)

If n is odd, then the right-hand side of identity (4) will
be positive.
If n is even, then the right-hand side of identity (4) will
also be positive, except for n = 0 because

B2
2 +B2

3 −B4 + 38(B2 + 1) = −96 < 0

Thus, for n ≥ 1 we get

1

Bn − 1
− 1

Bn+2
− 1

Bn+3
− 1

Bn+2 − 1
> 0 (5)

By applying inequality (5) repeatedly for n ≥ 3, we
have

1

Bn−2 − 1
>

1

Bn
+

1

Bn+1
+

1

Bn − 1

>
1

Bn
+

1

Bn+1
+

(
1

Bn+2
+

1

Bn+3
+

+
1

Bn+2 − 1

)
> . . .

>
1

Bn
+

1

Bn+1
+

1

Bn+2
+

1

Bn+3
+ . . .
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Thus, we obtain
∞∑

k=n

1

Bk
<

1

Bn−2 − 1

The proof is complete.
The proof for Theorem 1 is as following.

Proof: By Lemma 2.(a) and 3.(a) if n is odd and n ≥ 3,
then

1

Bn−2 + 1
<

∞∑
k=n

1

Bk
<

1

Bn−2

Bn−2 <

( ∞∑
k=n

1

Bk

)−1

< Bn−2 + 1( ∞∑
k=n

1

Bk

)−1
 = Bn−2

By Lemma 2.(b) and 3.(b) if n is even and n ≥ 4, then

1

Bn−2
<

∞∑
k=n

1

Bk
<

1

Bn−2 − 1

Bn−2 − 1 <

( ∞∑
k=n

1

Bk

)−1

< Bn−2( ∞∑
k=n

1

Bk

)−1
 = Bn−2 − 1

The proof is complete.
The next result that we obtain is for the reciprocal sums of

square of generalized Fibonacci-Like sequence.
Theorem 2: If s = 2, then( ∞∑

k=n

1

B2
k

)−1
 =

{
Bn−1Bn − 7, n is odd and n ≥ 1

Bn−1Bn + 6, n is even and n ≥ 2

Proof: First, we observe the following identity.

1

Bn−1Bn − 6
− 1

B2
n

− 1

BnBn+1 − 6

=
BnBn+1 −Bn−1Bn

(Bn−1Bn − 6)(BnBn+1 − 6)
− 1

B2
n

=
B2

n

(Bn−1Bn − 6)(BnBn+1 − 6)
− 1

B2
n

=
B4

n − (Bn−1Bn − 6)(BnBn+1 − 6)

B2
n(Bn−1Bn − 6)(BnBn+1 − 6)

(6)

If n is odd, then the numerator in the right-hand side of identity
(6) become

B4
n − (Bn−1Bn − 6)(BnBn+1 − 6)

= B2
n(B

2
n −Bn−1Bn+1) + 6Bn(Bn−1 +Bn+1)− 36

= B2
n

(
(−1)n(5s2 − 1)

)
+ 6Bn(Bn−1 +Bn+1)− 36

= Bn

(
− (5s2 − 7)Bn + 6Bn−1 + 6Bn−1

)
− 36

= Bn

(
− (5s2 − 7)(Bn−1 +Bn−2) + 12Bn−1

)
− 36

= Bn

(
− (5s2 − 19)Bn−1 − (5s2 − 7)Bn−2

)
− 36

= −Bn

(
(5s2 − 19)Bn−1 + (5s2 − 7)Bn−2

)
− 36

If s ≥ 2, then 5s2 − 19 > 5s2 − 7 > 0. Therefore

B4
n − (Bn−1Bn − 6)(BnBn+1 − 6)

= −Bn

(
(5s2 − 19)Bn−1 + (5s2 − 7)Bn−2

)
− 36 < 0

Thus, we get
1

Bn−1Bn − 6
− 1

B2
n

− 1

BnBn+1 − 6
< 0 (7)

By applying inequality (7) repeatedly for n ≥ 1, we have
1

Bn−1Bn − 6
<

1

B2
n

+
1

BnBn+1 − 6

<
1

B2
n

+

(
1

B2
n+1

+
1

Bn+1Bn+2 − 6

)
< . . .

<
1

B2
n

+
1

B2
n+1

+
1

B2
n+2

+ . . .

Thus, we obtain
∞∑

k=n

1

B2
k

>
1

Bn−1Bn − 6
(8)

Next, we observe the following identity. If s = 2, then
1

Bn−1Bn − 7
− 1

B2
n

− 1

B2
n+1

− 1

Bn+1Bn+2 − 7

=
Bn(Bn −Bn−1) + 7

B2
n(Bn−1Bn − 7)

− Bn+1(Bn+1 +Bn+2)− 7

B2
n+1(Bn+1Bn+2 − 7)

=
BnBn−2 + 7

B2
n(Bn−1Bn − 7)

− Bn+1Bn+3 − 7

B2
n+1(Bn+1Bn+2 − 7)

=
B2

n−1 − (−1)n−1 · 19 + 7

B2
n(Bn−1Bn − 7)

−
B2

n+2 − (−1)n+2 · 19− 7

B2
n+1(Bn+1Bn+2 − 7)

The numerator on the right-hand side of last identity will
become(

B2
n−1 − (−1)n−1 · 19 + 7

)(
B2

n+1(Bn+1Bn+2 − 7)
)

−
(
B2

n+2 − (−1)n+2 · 19− 7
)(
B2

n(Bn−1Bn − 7)
)

With some calculation, it can be shown that this numerator
will be positive for all n ≥ 1. Thus, we get

1

Bn−1Bn − 7
− 1

B2
n

− 1

B2
n+1

− 1

Bn+1Bn+2 − 7
> 0 (9)

By applying inequality (9) repeatedly for n ≥ 1, we get
1

Bn−1Bn − 7
>

1

B2
n

+
1

B2
n+1

+
1

Bn+1Bn+2 − 7

>
1

B2
n

+
1

B2
n+1

+

(
1

B2
n+2

+
1

B2
n+3

+

+
1

Bn+3Bn+4 − 7

)
> . . .

>
1

B2
n

+
1

B2
n+1

+
1

B2
n+2

+
1

B2
n+3

+ . . .

Thus, we obtain
∞∑

k=n

1

B2
k

<
1

Bn−1Bn − 7
(10)
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So, from (8) and (10) we have if n ≥ 1 and odd, then

1

Bn−1Bn − 6
<

∞∑
k=n

1

B2
k

<
1

Bn−1Bn − 7

Bn−1Bn − 7 <

( ∞∑
k=n

1

B2
k

)−1

< Bn−1Bn − 6( ∞∑
k=n

1

B2
k

)−1
 = Bn−1Bn − 7

In a similar way, observe that

1

Bn−1Bn + 6
− 1

B2
n

− 1

BnBn+1 + 6

=
BnBn+1 −Bn−1Bn

(Bn−1Bn + 6)(BnBn+1 + 6)
− 1

B2
n

=
B2

n

(Bn−1Bn + 6)(BnBn+1 + 6)
− 1

B2
n

=
B4

n − (Bn−1Bn + 6)(BnBn+1 + 6)

B2
n(Bn−1Bn + 6)(BnBn+1 + 6)

(11)

If n is even, then the numerator in the right-hand side of
identity (11) become

B4
n − (Bn−1Bn + 6)(BnBn+1 + 6)

= B2
n(B

2
n −Bn−1Bn+1) + 6Bn(Bn−1 +Bn+1)− 36

= B2
n

(
(−1)n(5s2 − 1)

)
+ 6Bn(Bn−1 +Bn+1)− 36

= Bn

(
(5s2 + 5)Bn + 6Bn−1 + 6Bn−1

)
− 36

= Bn

(
(5s2 + 5)(Bn−1 +Bn−2) + 12Bn−1

)
− 36

= Bn

(
(5s2 + 17)Bn−1 + (5s2 + 5)Bn−2

)
− 36

= Bn

(
(5s2 + 17)Bn−1 + (5s2 + 5)Bn−2

)
− 36 > 0

Therefore, we have
1

Bn−1Bn + 6
− 1

B2
n

− 1

BnBn+1 + 6
> 0 (12)

By applying inequality (12) repeatedly for n ≥ 2, we have

1

Bn−1Bn + 6
>

1

B2
n

+
1

BnBn+1 + 6

>
1

B2
n

+

(
1

B2
n+1

+
1

Bn+1Bn+2 + 6

)
> . . .

>
1

B2
n

+
1

B2
n+1

+
1

B2
n+2

+ . . .

Thus, we obtain
∞∑

k=n

1

B2
k

<
1

Bn−1Bn + 6
(13)

Next, we have if s = 2, then
1

Bn−1Bn + 7
− 1

B2
n

− 1

B2
n+1

− 1

Bn+1Bn+2 + 7

=
Bn(Bn −Bn−1)− 7

B2
n(Bn−1Bn + 7)

− Bn+1(Bn+1 +Bn+2) + 7

B2
n+1(Bn+1Bn+2 + 7)

=
BnBn−2 − 7

B2
n(Bn−1Bn + 7)

− Bn+1Bn+3 + 7

B2
n+1(Bn+1Bn+2 + 7)

=
B2

n−1 − (−1)n−1 · 19− 7

B2
n(Bn−1Bn + 7)

−
B2

n+2 − (−1)n+2 · 19 + 7

B2
n+1(Bn+1Bn+2 + 7)

The numerator on the right-hand side of last identity will
become(

B2
n−1 − (−1)n−1 · 19− 7

)(
B2

n+1(Bn+1Bn+2 − 7)
)

−
(
B2

n+2 − (−1)n+2 · 19− 7
)(
B2

n(Bn−1Bn + 7)
)

With some calculation, it can be shown that this numerator
will be negative for all n ≥ 1. Thus, we get

1

Bn−1Bn + 7
− 1

B2
n

− 1

B2
n+1

− 1

Bn+1Bn+2 + 7
< 0 (14)

By applying inequality (14) repeatedly for n ≥ 1, we get

1

Bn−1Bn + 7
<

1

B2
n

+
1

B2
n+1

+
1

Bn+1Bn+2 + 7

<
1

B2
n

+
1

B2
n+1

+

(
1

B2
n+2

+
1

B2
n+3

+

+
1

Bn+3Bn+4 + 7

)
< . . .

<
1

B2
n

+
1

B2
n+1

+
1

B2
n+2

+
1

B2
n+3

+ . . .

Thus, we obtain
∞∑

k=n

1

B2
k

>
1

Bn−1Bn + 7
(15)

So, from (13) and (15) we have if n ≥ 1 and even, then

1

Bn−1Bn + 7
<

∞∑
k=n

1

B2
k

<
1

Bn−1Bn + 6

Bn−1Bn + 6 <

( ∞∑
k=n

1

B2
k

)−1

< Bn−1Bn + 7( ∞∑
k=n

1

B2
k

)−1
 = Bn−1Bn + 6

The proof is complete.
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