
INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 7, NO. 2, AUGUST 2021 33

An Application of Binary Cuckoo Search Algorithm
to Orienteering Problem

Giovano Alberto and Alfian Tan

Abstract—This research applies the cuckoo search meta-
heuristics model to find solutions to the Orienteering Problem
(OP). The OP formulation is useful to model a situation in which
someone wants to determine an optimal city route that is subject
to a specified time constraint. OP can be categorized into NP-
Hard Problem which takes a very long time to analytically find
the optimal solution as the number of entities involved increases.
Therefore, metaheuristics often become an option to deal with this
situation. A cuckoo search model based algorithm is developed in
this research. An adjustment for discrete combinatorial problem
is performed by adopting an idea of binary cuckoo search
method. In addition, three types of local search methods are
considered to improve the searching performance. This algorithm
can eventually find better solutions for some of the 18 cases than
two other benchmarked algorithms. Furthermore, experiment on
model parameters shows that the worse nest fraction (Pα) affects
the quality of solutions obtained.

Index Terms—Cuckoo search, orienteering problem, NP-Hard
problem, discrete optimization.

I. INTRODUCTION

THE world is currently in a pandemic of COVID 19 where
every activity is limited. Every country wants to prevent

the spread of the virus, especially the virus transmission
from the area outside their borders. Most countries in the
world make decisions to lockdown their countries from outside
parties. This decision has made many people give up their
intention to go abroad either for a business trip, visiting
family, or a vacation. This is detrimental to many business
areas, especially in the tourism sector. Many hotels are empty
because no tourist is coming. Many recreational areas are
closed due to lockdown and social distancing. Many restaurant
owners are forced to close down their business because there
are no customers. Tourism planners cannot do their work
because they are locked down. However, the demand for the
tourism sector will increase significantly when the pandemic
ends as many people will realize their plans which previously
had to be restrained due to the pandemic. Tourism planners can
benefit from this situation by making tour plans that can satisfy
their customers. Before the pandemic, the tourism business
has already dealt with the strategy to determine a satisfying
tour plan. It is sometimes quite difficult and takes a long time
because of the demand variations with only a limited resource
available.

Good planning before carrying out a tour is important so
that customer satisfaction can be maximized. The planning
can be performed by determining tour destinations that suit

The authors are with the Industrial Engineering Department, Parahyan-
gan Catholic University, Bandung 40141, Indonesia e-mail: giovanoal-
berto08@gmail.com, alfian.tan@unpar.ac.id.

Manuscript received February 24, 2021; accepted June 2, 2021.

Fig. 1. Illustration of the orienteering problem.

resource availability as well as customer satisfaction. However,
determining some locations to be visited is not easy because
there are restrictions that cannot be violated, such as travelling
time limits. This tourism problem can be modeled as an
orienteering problem [1].

Orienteering problem (OP) is originated from the name
of sports activity. Orienteering is an outdoor sport that is
usually played in heavily forested areas in which the start
and endpoints are specified along with other locations. Other
names used for the OP are Selective Traveling Salesperson
Problem (STSP) [2], Maximum Collection Problem (MCP)
[3], and Bank Robber Problem [4].

For example, there are n alternative nodes with a start and
end node at node 1 and node N , respectively. Each alternative
node has a score of Si for node i that is greater than zero,
except for the start and end node. An internode movement
(node i to node j) requires or has a specific travelling duration
and distance. Therefore, OP can be modeled so that there are
n nodes in the Euclidean plane (two-dimension), each with a
score Si ≥ 0 [note that S1 = Sn = 0] and our job is to find
a route with a maximum accumulative score across the nodes
beginning at 1 and ending at N in which the total length (or
duration) cannot be greater than Tmax [5].

Figure 1 illustrates the orienteering problem [6]. The blue
circle with number 1 is the starting node, while the one
with number N is the end point. The gray circles between
the start and end point are available alternative nodes that
can be visited. The size of a circle represents a proportional
score received by taking it as our destination. The black line
connecting the starting point, nodes in between, and the end
points is defined as a feasible route solution.

According to Vansteenwegen et al. [1], The Orienteering
Problem can be formulated as an integer programming prob-
lem, as follow:

max

N−1∑
i=2

N∑
j=2

Sixij (1)



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 7, NO. 2, AUGUST 2021 34

N∑
j=2

x1j =

N−1∑
i=1

xiN = 1 (2)

N−1∑
i=1

xik =

N∑
j=2

xkj ≤ 1, ∀k = 2, . . . , N − 1 (3)

N−1∑
i=1

N∑
j=2

tijxij ≤ Tmax (4)

2 ≤ ui ≤ N, ∀i = 2, . . . , N (5)
ui − uj + 1 ≤ (N − 1)(1− xij), ∀i, j = 2, . . . , N,

xij ∈ {0, 1}, ∀i, j = 1, . . . , N (6)

A set of control nodes are denoted by N where xij is a
binary decision variable that will be equal to one if someone
visits node j immediately after visiting node i; otherwise, it
will be equal zero. Si represents the score for node i. Time
required to visit node j immediately after visiting node i is
denoted by tij and maximum total time to complete the trip
is denoted by Tmax. The order of nodes i on the final route
is denoted by ui.

The objective of the OP is to maximize the cumulative score
of a route as shown in (1). Equation (2) is used to make sure
that a travelling path always begins from the starting point
1 and ends at the end point n. All chosen nodes have to be
connected and each node is visited at most once as shown in
(3). Equation (4) is required to ensure the resulting route does
not violate the time constraint of Tmax. Equations (5) and (6)
ensure that no sub-tour occurs.

The orienteering problem which is classified as an NP-
Hard problem [5] can be solved by a metaheuristic method.
Metaheuristic method is considered a reasonable choice for
finding solutions in terms of the time spent on the solution
searching activity as well as the quality of the solution itself
[7]. Cuckoo Search Algorithm (CSA) shows a good perfor-
mance in completing the knapsack problem [8] and produces
the best solutions for many variants of the traveling salesman
problem [9]. According to Vansteenwegen, et al. [1], OP can
be considered as a combination of the Knapsack Problem (KP)
and the Travelling Salesperson Problem (TSP). Therefore, we
expect that CSA may be able to produce good solutions to the
orienteering problem. The cuckoo search model will be used in
this research to find solutions for the orienteering problem. The
Cuckoo Search model has been argued to have an advantage of
using Lévy Flight so that it can explore the solution space more
efficiently. As Lévy flights has infinite mean and variance,
Cuckoo Search can explore the search space more efficiently
than ones with standard Gaussian process [10].

There are three main objectives of this research. First, we
would like to develop an algorithm based on Cuckoo Search
model to solve the Orienteering Problem. Second, we aim to
determine the effect of parameters changes which include the
worst nest fraction (Pα) and Lévy flight movement distance
parameter on the quality of solutions found for the orienteering
problem. Third, we would like to confirm the potency of the
developed algorithm by comparing the result with other works
on the application of Ant Colony Optimization algorithm [11]
and Firefly Algorithm [12] to the Orienteering Problem. In

this research, we also consider some possible modifications
needed for discrete combinatorial problem by adopting a
binary cuckoo search method. In addition, some improvements
on searching activities are also made by applying some local
search techniques.

The remainder of this paper is organized as follows. Section
2 presents an overview of CSA. Section 3 contains a CSA
framework that is used to solve the OP. Experimental results
related to model parameter effect are presented in Section 4,
and finally the conclusion is presented in Section 5.

II. CUCKOO SEARCH ALGORITHM (CSA)

CSA was developed by Yang and Deb [13] in 2009 which
was inspired by nature. CSA is based on the life of a cuckoo
bird. The three basic rule of CSA developed by Yang and Deb
are:

1) Each cuckoo lays one egg at a time and dumps it in a
randomly chosen nest.

2) The best nests with high quality of eggs (solutions) will
be carried over to the next generations.

3) The number of available host nests is fixed, and a host
can discover an alien egg with a probability Pα ∈ [0, 1].
In this case, the host bird can either throw the egg away
or abandon the nest to build a completely new nest in a
new location.

For simplicity, the last assumption can be approximated by
a fraction Pα of the N nests being replaced by new nests
(i.e. with new random solutions at new locations). In the
implementation point of view, we can use the following simple
representations that each egg in a nest represents a solution
and each cuckoo can lay only one egg (thus representing
one solution). The purpose is to use the new and potentially
better solutions (cuckoos) to replace a not-so-good solution
in the nests [10]. Based on these three rules, the basic steps
of the CS can be summarized on the pseudo-code below
[13].
Require: N , Pα
Ensure: best solution

Objective function f(x), x = (x1, . . . , xd)
T

Generate initial population of n host nests xi (i =
1, 2, . . . , n)
while t < MaxGeneration or stop criterion do

Get a cuckoo randomly by Lévy flights
Evaluate its quality / fitness Fi
Choose a nest among n (say, j) randomly
if Fi > Fj then

replace j by the new solution
end if
A fraction (Pα) of worse nests are abandoned and new
ones are built
Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while
Postprocess result and visualization
The number of the nests is denoted by N and the worse

nest fraction change is denoted by Pα. Equation (7) and (8)
are used to generate new solutions x(t + 1) for, say cuckoo



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 7, NO. 2, AUGUST 2021 35

i, a Lévy flight is performed where α > 0 is the step size
which relates to the scales of the problem of interest. In most
cases, we can use α = O(1). The product ⊕ means entry-wise
multiplications.

x
(t+1)
i = x

(t)
i + α⊕ Levy(λ) (7)

Levy(λ) ∼ u = tλ, (1 < λ ≤ 3) (8)

Lévy flights essentially provide a random walk while their
random steps are drawn from a Lévy distribution for large
steps which has an infinite variance with an infinite mean.
Here the consecutive jumps/steps of a cuckoo essentially form
a random walk process that obeys a power-law step-length
distribution with a heavy tail [14].

III. METHODS

This section will discuss the methods and algorithms used
to find solutions for the Orienteering Problem. There are 2
sections covering an adjustment made for discrete optimization
and additional local search strategies considered to improve the
searching performance.

A. Adjustment for Discrete Optimization

Optimization problems can be classified into two main
classes: continuous optimization problems and discrete opti-
mization problems. In continuous optimization problems, the
solution is represented by a set of real numbers. However, in
discrete optimization problems, the solution is represented by
a set of integer values. Discrete binary optimization problems
are a sub-class of the discrete optimization problems class in
which a solution is represented by a set of bits [15]. CSA
operates in continuous search space while on the contrary
OP works in a discrete space which specifically deals with
binary (0 or 1) integer optimization. A binary optimization
problem needs a binary solution. Solutions with real (non-
integer) values are not acceptable or considered as illegal
solution [15]. An adjustment that can be used is the Binary
Solution Representation (BSR) [15] which uses a sigmoid
function in (9).

S(xi) =
1

1 + e−xi
(9)

BSR is used when we are looking for solutions to OP
problems. It will convert each non-integer value in a series
of solution code into binary representation. The BSR solution
is obtained by generating random numbers between 0 to 1
for each node and comparing them with a sigmoid value
S(xi). If the random number obtained is smaller than the
value of S(xi), then the node will be worth 1, otherwise 0.
In the context of destination route, a value of 1 means the
node/place is visited. According to [15], a pseudo code of the
BSR algorithm is shown in Algorithm 2.

First of all, it is necessary to generate initial OP solution
codes that will represent nests in the cuckoo search. This
process creates a xi value for every node except the starting
and the end point because these 2 nodes are compulsorily vis-
ited. The original value of xi ranges from negative infinity to
infinity. The value of xi is an important factor in determining

TABLE I
EXAMPLE OF xi VALUE IN BSR

Nodes 1 (Start-
ing point)

2 (End
point)

3 4 5

xi 0.0 0.0 2.41 −0.34 −4.29

whether a node is visited or not. The higher the value of xi,
the higher the chances of a node being visited. To produce a
set of initial solutions xi, an inverse sigmoid function will be
used. A continuous sigmoid value between 0 and 1 will be
randomly generated as an input for producing each xi value.
For example, there is a problem with 5 alternative nodes that
must start at node 1 and finish at node 2. We will generate
a sigmoid value S(x3) of 0.918 as an input for the inverse
sigmoid function to get the value of x3 (10).

xi = ln

(
S(xi)

1− S(xi)

)
(10)

Require: Real solution representation xi
Ensure: x′i

for i = 1 to problem size do
S(xi) =

1
1+e−xi

if random number < S(xi) then
x′i = 1

else
x′i = 0

end if
end for
After doing the same step for the other xi values, the xi

value for the 5 nodes will be obtained as exampled in Table
I. Then xi will be translated into an OP solution.
Require: N , Pα
Ensure: best solution

Objective function f(x), x = (x1, . . . , xd)
T

Generate initial population of n host nests xi (i =
1, 2, . . . , n)
while t < MaxGeneration or stop criterion do

Get a cuckoo randomly by Lévy flights
Get its binary representation by BSR algorithm
Evaluate its quality / fitness Fi
Choose a nest among n (say, j) randomly
Get its binary representation by BSR algorithm
if Fi > Fj then

replace j by the new solution
end if
Get its binary representation by BSR algorithm
A fraction (Pα) of worse nests are abandoned and new
ones are built
Get its binary representation by BSR algorithm
Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while
Postprocess result and visualization
The OP solution is a sequence of visited nodes that do

not violate any constraints. To translate the solution code into
real problem solutions, we first randomly select an available



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 7, NO. 2, AUGUST 2021 36

Fig. 2. Insertion process.

Fig. 3. Swap process.

node then choose another node with the shortest travelling
time as a subsequent destination candidate to the previous
node. This procedure will be performed until all nodes are
included. At this point, we have a node sequence that consists
of all nodes. After this, the BSR is applied to decide which
nodes to be finally visited and add up each corresponding
internode traveling time to check whether the generated route
violates the time constraint. The BSR algorithm uses the
iterated OP solution code as inputs to probabilistically decide
whether a certain node in the node sequence would be visited
or not. Finally, we will have a traveling route containing a
subset of nodes derived from the initial node sequence. The
Binary Cuckoo Search Pseudocode that is used to solve the
Orienteering Problem can be shown in Algorithm 3.

The first step of BCS is to initialize the parameters for the
algorithm. The BCS algorithm has an advantage of having
fewer number of parameters to set than some other algorithms.
Parameters in the BCS algorithm include the population size
(N ) and the worst nest fraction (Pα).

B. Local search

Local search is a method that can be used to help solve
and improve the quality of a solution resulted in certain
optimization conditions. Local search works by moving from
one solution to another in the search space. The solutions
initially obtained from the CSA are improved by local search
methods. There are 3 local search methods considered in this
research as explained below.
• Insertion: this method will choose randomly and add an

unvisited node, if it exists, to a random position between
the starting node and the ending node of the current tour
(see Fig. 2).

• Swap: this method will swap a pair of random nodes
existing on a tour, except the starting and the ending
nodes (see Fig. 3).

• 2-opt: this method will change the order of nodes by
randomly selecting 2 nodes, then reverses the order of
the 2 selected nodes (see Fig. 4).

Fig. 4. 2-opt process.

In this research, local search is applied in every iteration. If
the total score is higher or the total distance of the new solution
is lower, then it will replace the initial solution generated by
CSA. The improvement strategy employed in this research
is divided into 2 parts which include insertion only and a
combined insertion-swap-2-opt technique. The first part is
conducted to find a higher score solution, while the second
step tries to decrease the total time or increase the total score
of a solution. An increase in score can occur if a previously
unvisited node becomes a visited one after going through the
insertion procedure. Then a reduction in the total time can
occur if the swap or the 2-opt process results in a shorter
path.

If the solution resulting from the local search is better than
the best solution or the best nest in a certain iteration, then
the best solution will be updated. If the best nest for a certain
iteration is better than the global best solution throughout all
iterations, the global-best nest will be updated.

IV. RESULTS AND DISCUSSIONS

The Binary CSA algorithm with 3 local search methods is
coded in Java with NetBeans IDE 8.2. All experiments are
run using Fujitsu Lifebook LH531 Intel-Core i5 1333 MHz
laptop with 4 GB RAM. All calculations use real floating-
point precision without rounding or cutting values. The total
time of the final route and CPU time (in second) are rounded to
three decimal digits. The results of computational experiments
are presented in Tables IV through VI.

Three already available hypothetical cases are used to im-
plement the algorithm. These include cases with 32, 21, and 33
nodes with 18, 11, and 20 time-limit variances, respectively.
Each case varies in terms of duration (Tmax). These 3 set
of cases can be obtained from www.mech.kuleuven.be [16].
There are similarities in time bound characteristics in each
problem set so that only some time limits are selected. In each
case, there are six time limits (Tmax) selected to represent the
variations in the time constraint. The selected cases consist of
two low-level time limits, two moderate time limits, and two
high-level time limits. Table II summarizes some chosen test
case set for our experiment.

In this research, we also examine the effect of some algo-
rithm parameters including the worse nest fraction (Pα) and
the parameters on Lévy flight which is the distance of levy
movement to find a solution (λ). There are three parameter
levels used for Pα (i.e. 0.1; 0.5; and 0.9) and λ (i.e. 1, 2, and
3). The values for the other parameters are set to 40 for the
number of nests and 1 for α. The stopping criteria used is the
completion of 10.000 iterations or a condition in which the
best results have not changed for 100 consecutive iterations.



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 7, NO. 2, AUGUST 2021 37

TABLE II
SUMMARIZES CHOSEN TEST CASE SET

Set 1 Set 2 Set 3

Tmax

5 15 15
10 20 20
40 27 55
46 30 60
80 40 105
85 45 110

TABLE III
ANOVA MULTIFACTOR RESULTS

Tmax Pα λ P ∗
αλ

Set 1

5 - - -
10 - - -
40 + - -
46 + - +
80 - - -
85 - - -

Set 2

15 - - -
20 + - -
27 - - -
30 + - -
40 + - -
45 + - -

Set 3

- - -
+ - -
+ - -
+ - +
+ - -
- - -

Stopping criteria can impact the result of the algorithm. The
determination of the value and condition of the stopping
criteria is based on some benchmarked algorithms which are
Ant Colony Optimization (ACO) [11] and Modified Firefly
Algorithm (MFA) [12]. In ACO [11], the stopping criterion is
when the best solution does not change during 100 consecutive
iterations while the application of MFA in [12] set their
stopping criterion to the max iterations of 10,000. In our
experiment, we will run the algorithm for 5 replications for
every parameter combination value.

In this study, the effect of 2 parameters (i.e. Pα and λ)
including their interaction is statistically tested using ANOVA
multifactor with a significance level of 5%. The performance
of the algorithm is measured by the objective function value
of a solution that can be found.

The result of the ANOVA multifactor test is shown in Table
III. The “+” sign indicates that the correspondent parameter
affects the quality of solutions of the algorithm while the “-”
sign indicates that a parameter does not affect the performance.
The results show that Pα affects the algorithm performance in
finding solutions for 10 instances, while parameter λ does not
give any effect. However, the interaction between parameter
Pα and λ affects the performance in finding solutions for 2
instances.

TABLE IV
COMPARISON OF RESULTS ON PROBLEM SET 1

Tmax
Heuristic methods

CSA
CSA vs Heuristic methods

MFA ACO MFA ACO

5 10 10 10
10 15 15 15
40 150 155 155 +
46 175 175 175
80 275 280 270 - -
85 285 285 275 - -

TABLE V
COMPARISON OF RESULTS ON PROBLEM SET 2

Tmax
Heuristic methods

CSA
CSA vs Heuristic methods

MFA ACO MFA ACO

15 120 120 120
20 200 200 200
27 230 230 230
30 265 265 265
40 395 395 395
45 450 450 450

Tables IV through VI show the best results from our
algorithm compared to ACO and MFA in solving Orienteering
problems. The “+” sign indicates that our algorithm finds a
better solution while the “-” sign indicates the opposite. The
blank cells indicate that our algorithm produces the same result
as the metaheuristics approach in comparison.

Based on the 3 sets of 18 instances of orienteering problem,
14 cases show that our algorithm is able to find the same
quality of solutions or even better than the best results pre-
viously obtained by the 2 benchmarked algorithms. However,
in 4 problem scenarios, the algorithm fails to find solutions
that are at least as good as the benchmarked algorithm. The
problems involve cases with high time constraints for set 1
and 3. According to these results, we can observe that the
Binary CSA based algorithm developed in this research has
a difficulty in producing solutions for problem with high
time constraints. This condition may be expected because
of a higher route combination complexity as there is more
flexibility in the time constraint. There are more number
of nodes that can be considered to be part of the routing
sequence which results in a higher number of feasible route
alternatives. This bigger solution space may associate with a
higher difficulty in finding the best solution.

Some possible solutions would be to increase the number
of nest, try to use a more suitable Pα parameter which has
been proved to significantly affect the quality of solutions,
or even look back at the encoding method that bridges the
continuous and discrete problem in order to make sure an
effective encoding which can further help an effective solution
space exploration. In the relatively larger time constraint cases
in set 2, Binary CSA algorithm can find a good solution, this
is estimated because the number of nodes in set 2 is less than
set 1 and 3, so that the solution space will be smaller or less
complex.



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 7, NO. 2, AUGUST 2021 38

TABLE VI
COMPARISON OF RESULTS ON PROBLEM SET 3

Tmax
Heuristic methods

CSA
CSA vs Heuristic methods

MFA ACO MFA ACO

15 170 170 170
20 190 200 200 +
55 520 550 550 +
60 580 580 580

105 800 800 770 - -
110 800 800 770 - -

Binary CSA based algorithm developed in this research
manages to produce the best solutions for 14 out of 18
cases. This algorithm can be considered quite reliable to
solve orienteering problem, but obviously it still needs some
improvements to solve cases with a higher time limit which
represent a more complex scenario.

V. CONCLUSIONS

The algorithm applied in this research shows equal perfor-
mance among ACO and MFA. Combination of CSA with local
search can improve the solution obtained. Based on the result,
it is known that changes in parameters Pα affect the solutions
produced by CSA for Orienteering Problem. CSA can achieve
the same quality of solutions as Ant Colony Optimization in
14 cases and has not yet reached the best performances in 4
cases. Meanwhile, when compared to MFA, CSA can provide
a better solution in 3 cases, giving the same value in 11 cases
and not yet achieving the best value in 4 cases. The four cases
that have not been reached their optimal values are those with
high time limits.

Binary CSA is a reliable algorithm to solve orienteering
problem and can still be improved to produce a better solution.
Some weaknesses that need to be considered are increase the
number of nest, use a more suitable Pα parameter which
has been proved to significantly affect the quality of solu-
tions, CSA which is a continuous algorithm is significantly
influenced by the encoding process so that future research
should be emphasized on trying other encoding techniques,
combining CSA with other algorithms in generating solutions,
and conducting tests in determining stopping criteria.

REFERENCES

[1] P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden, “The orien-
teering problem: A survey,” European Journal of Operational Research,
vol. 209, no. 1, pp. 1–10, 2011.

[2] G. Laporte, M. Desrochers, and Y. Nobert, “Two exact algorithms for
the distance-constrained vehicle routing problem,” Networks, vol. 14,
no. 1, pp. 161–172, 1984.

[3] S. Kataoka and S. Morito, “An algorithm for single constraint maximum
collection problem,” Journal of the Operations Research Society of
Japan, vol. 31, no. 4, pp. 515–531, 1988.

[4] E. Arkin, J. Mitchell, and G. Narasimhan, “Resource-constrained geo-
metric network optimization,” in Proceedings of the fourteenth annual
symposium on Computational geometry, 1998, pp. 307–316.

[5] B. Golden, L. Levy, and R. Vohra, “The orienteering problem,” Naval
Research Logistics (NRL), vol. 34, no. 3, pp. 307–318, 1987.

[6] D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou, “A sur-
vey on algorithmic approaches for solving tourist trip design problems,”
Journal of Heuristics, vol. 20, no. 3, pp. 291–328, 2014.

[7] S. Desale, A. Rasool, S. Andhale, and P. Rane, “Heuristic and meta-
heuristic algorithms and their relevance to the real world: a survey,” Int.
J. Comput. Eng. Res. Trends, vol. 351, no. 5, pp. 2349–7084, 2015.

[8] K. Bhattacharjee and S. Sarmah, “A binary cuckoo search algorithm
for knapsack problems,” in International Conference on Industrial
Engineering and Operations Management (IEOM), 2015, pp. 1–5.

[9] D. Gupta, “Solving tsp using various meta-heuristic algorithms,” Inter-
national Journal of Recent Contributions from Engineering, Science &
IT (iJES), vol. 1, no. 2, pp. 22–26, 2013.

[10] X.-S. Yang and S. Deb, “Cuckoo search: recent advances and applica-
tions,” Neural Computing and Applications, vol. 24, no. 1, pp. 169–174,
2014.

[11] Y.-C. Liang and A. Smith, “An ant colony approach to the orienteering
problem,” Journal of the Chinese Institute of Industrial Engineers,
vol. 23, no. 5, pp. 403–414, 2006.

[12] R. Pramudi, “Penerapan modified firefly algorithm pada orienteering
problem,” Skripsi Jurusan Teknik Industri Universitas Katolik Parahyan-
gan, 2018.

[13] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,” in World
congress on nature & biologically inspired computing (NaBIC), 2009,
pp. 210–214.

[14] ——, “Engineering optimisation by cuckoo search,” International Jour-
nal of Mathematical Modelling and Numerical Optimisation, vol. 1,
no. 4, pp. 330–343, 2010.

[15] A. Gherboudj, A. Layeb, and S. Chikhi, “Solving 0-1 knapsack problems
by a discrete binary version of cuckoo search algorithm,” International
Journal of Bio-Inspired Computation, vol. 4, no. 4, pp. 229–236, 2012.

[16] T. Tsiligirides, “Heuristic methods applied to orienteering,” Journal of
the Operational Research Society, vol. 35, no. 9, pp. 797–809, 1984.


