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Effect of Fear in Leslie-Gower Predator-Prey Model
with Beddington-DeAngelis Functional Response

Incorporating Prey Refuge
Adin Lazuardy Firdiansyah

Abstract—In the present paper, we study the effect of an-
tipredator behavior due to fear of predation on a modified
Leslie- Gower predator-prey model incorporating prey refuge
which predation rate of predators follows Beddington-DeAngelis
functional response. The biological justification of the model is
demonstrated through non-negativity, boundedness, and perma-
nence. Next, we perform the analysis of equilibrium and local
stability. We obtain four equilibrium points where two points
are locally asymptotically stable and other points are unstable.
Besides, we show the effect of the fear in the model and obtain
a conclusion that the increased rate of fear can decrease the
density of both populations, and prey populations become extinct.
Meanwhile, for the case with a constant rate of fear, the prey
refuge helpful to the existence of both populations. However, for
the case with the fear effect is large, prey refuge cannot cause
the extinction of predators. Several numerical simulations are
performed to support our analytical results.

Index Terms—Leslie-Gower model, local stability.

I. INTRODUCTION

IN their habitat, each individual always interacts with an-
other individual of the same type or different types, either

individuals in a population or individual from another popu-
lation. Interaction between individuals that tends to increase
or decrease the population densities depend on whether the
interactions are beneficial or detrimental. Predation is one of
the interactions between individuals, like predators and prey.
In predation, predators eat prey as their source of food. Thus,
the number of the predator is large, while the number of the
prey is lower.

In the past few decades, the existence of interacting preda-
tors and prey is described in the predator-prey model. It is
used to understand the long-time behavior of individuals. Most
of the predator-prey model used by several researchers is the
classical Lotka-Volterra model where the prey consumption
rate of predator is the growth rate of predator with conversion
factors [1]. This paper concentrates on the Leslie- Gower
model where both populations are growing logistically with
the environmental carrying capacity of predator is proportional
to the number of prey, emphasizing the fact that there is an
upper limit to the rate of increase in both populations, which
is not recognized in the Lotka-Volterra model [2].

Many researchers study the Leslie-Gower model with its
various modifications. The model has been modified to confirm
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actual conditions, such as the Alle effect, harvesting, etc. Aziz
and Okiye [3] have modified the Leslie-Gower model and
showed global stability of the interior equilibrium point in the
modified Leslie-Gower model. Then, Gupta and Chandra [4]
modified Aziz and Okiye’s model by adding Michaelis-Menten
type prey harvesting. Meanwhile, Cai et al. [5] also modified
Aziz and Okiye’s model by incorporating the Allee effect on
prey and investigated the existence of positive equilibriums,
stability, and Hopf bifurcation in the model.

In the predator-prey model, predators who consume prey
are denoted as a functional response which means that the
predation rate of predators to prey per capita [6]. It is well that
the functional response plays an important component in all
predator-prey interactions. Holling [7] introduced three types
of functional responses that depend on the density of prey,
namely Holling type I, Holling type II, and Holling type III. It
has been studied by many researchers. Base on the explanation
of [8], the Holling type I means the predation of predator
increases linearly with the number of prey but then suddenly
until a constant value when predators are satiated, e.g. [9]. The
Holling type II means the predation of predator increases when
the number of prey decreases, e.g. [3]. Meanwhile, the Holling
type III means the predation of predator increases when the
number of prey is huge but the predation of predator decreases
when the number of prey is less. In this function, predators
focus to eat prey in a location where is more abundant, e.g.
[10].

It is well known that three Holling types of functional
response are modeled as a function of prey density only.
However, this function is unrealistic because it neglects the
interference among predators [8]. In some situations, predators
have to compete or share food. By experiment, predators do
interfere with each other’s activities causing the competition
effects and then the prey changes its behavior when the threat
of predators increases [11]. Therefore, the predator densities
are important to consider in the predatorprey model [6]. Bed-
dington [12] and DeAngelis et al. [13] suggested a function
that can describe the ecology system more reasonably. They
proposed a function form that depends on predator species and
the environment that protects the prey [6]. The function form
is Beddington-DeAngelis functional response. Currently, this
function has been studied by many researchers. As in [2], Yu
has modified Aziz and Okiye’s model by changing Holling
type II into Beddington- DeAngelis functional response and
investigated the stability of equilibrium points.

Predators can directly disrupt the ecological system by
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consuming prey and also can indirectly affect the behavior
and psychology of prey [14]. Predators affect prey populations
indirectly with the fear of predation [15]. Pangle et al. [16]
found that indirect effects on prey population growth rate are
larger than the direct effect of the predator. For example, the
mule deer spends less time foraging because of the predation
of mountain lions [17]. The bird populations respond to
predatory sound by escaping from their nets in times of danger
[15].

Currently, many studies explain that fear has a pretty strong
impact on the ecology system. As in [18], their experiment
showed that the female birds that experienced frequent nest
predation produced fewer eggs in subsequent nests. Therefore,
the presence of predators has a stronger impact on prey
demographics than direct predation. Zanette et al. [19] have
done an experiment on song sparrows which shows that 40
percent of the offspring produced by song sparrows (Melospiza
melodia) are reduced due to fear of the predator.

This phenomenon of fear has been adapted by several
mathematical studies. As in [20], Wang et al. proposed the
predator-prey model by incorporating the fear effect. They
obtain a conclusion that the fear effect can stabilize the
predator-prey model by negating the existence of periodic
solutions. In 2019, Pal et al. [1] observe the fear effect in
the modified Leslie-Gower model where predators collaborate
during hunting. They obtain a conclusion that fear becomes
the stabilization of the model by negating the existence of
periodic solutions and creates the more potent model. Pal et
al. [11] observe the fear effect in the predator-prey model
with Beddington-DeAngelis functional response. They find
that fear plays an important component in the stability of an
ecosystem. Then, Kundu et al. [21] investigate the fear effect
in the discrete-time predator-prey model and obtain that the
fear effect increases the stability of the model. Moreover, they
find that the fear effect decreases the birth rate of prey.

Recently, hiding behavior has become an interesting topic in
mathematical studies. Predation threats and limited resources
can affect the migration of the prey population so that hiding
behavior is an option for survival [22]. This hiding behavior
gives some degree of protection for prey populations which
can protect them from extinction. Therefore, prey refuge is a
more relevant component of predator-prey dynamics and can
prevent the extinction of prey populations [23].

The combination of prey refuge and fear effect has been
discussed by many researchers. Wang et al. [24] observe the
fear effect in the modified Leslie-Gower predator-prey model
by incorporating prey refuge. They find that the fear effect is
complex, namely (i) the fear effect can decrease the density
of both population and prey populations become extinction,
(ii) the effect of fear on the stability is rich and complex, (iii)
the existence of prey and predator depends on prey refuge
with a constant of fear. Meanwhile, Zhang et al. [25] also
investigate the fear effect in the predatorprey model by adding
prey refuge. They conclude that the fear effect does not just
reduce the density of predator but also can stabilize the model
by excluding the existence of periodic solutions. Moreover, the
fear effect has a strong impact on the extinction of predators.

Based on the motivation above, we respect a modified

Leslie-Gower predator-prey model with Beddington- DeAn-
gelis functional response as in [2] by including the effect of
fear and prey refuge. The primary discussion of our research
is to observe the effect of fear in the model where the rate
of fear has an effect on the stability of the model and makes
the model is more potent. Several numerical simulations are
performed to confirm our analytical results.

II. THE MATHEMATICAL MODEL

We respect the model as in [2] where x1(t) is the number
of prey at time t and x2(t) is the number of predator at time
t. The mathematical model is as follows:

dx1

dt
=

(
r1 − px1 −

αx2

a+ bx1 + cx2

)
x1,

dx2

dt
=

(
r2 −

βx2

x1 + γ

)
x2,

(1)

with x1(0) > 0 and x2(0) > 0. All parameters are positive
values and their definitions are given as follows: r1(r2) is the
birth rate of prey (or predators), p(β) is the competition rate
of prey (or predators), α is the reduction rate of prey into
predators, a(γ) is environmental protects prey (or predators),
and b, c are appropriate constants.

In this paper, we assume that prey populations can refuge
from predation. Prey populations that are completely protected
from predation are denoted by parameter η. Meanwhile, (1−
η)x is the number of prey outside protection where η ∈ [0, 1)
is a constant that measures the protection of prey. Thus, model
(1) can be rewritten as follows:

dx1

dt
=

(
r1 − px1 −

α(1− η)x2

a+ b(1− η)x1 + cx2

)
x1,

dx2

dt
=

(
r2 −

βx2

(1− η)x1 + γ

)
x2,

(2)

with x1(0) > 0 and x2(0) > 0. All parameters are positive
values and their definitions are similar to model (1).

According to [19], the fear effect can influence prey produc-
tion. Thus, we incorporate the fear effect by multiplying the
birth rate of prey with a factor f(k, x2) = 1

1+kx2
which means

the impact of anti-predator response due to fear. Meanwhile,
k is the rate of fear which expresses anti-predator behavior
in prey. We assume that the frightened prey forages less and
makes the young less protected so that decreases the birth rate
of prey [26]. Biologically speaking, the fear effect satisfies
several conditions as follows:

f(0, x2) = 1, f(k, 0) = 1, lim
k→∞

f(k, x2) = 0

lim
x2→∞

f(k, x2) = 0,
∂f(k, x2)

∂k
< 0,

∂f(k, x2)

∂x2
< 0

The meaning of conditions can be shown in [22]. Hence,
the model transforms into the following model.

dx1

dt
=

r1x1

1 + kx2
− px2

1 −
α(1− η)x1x2

a+ b(1− η)x1 + cx2
− dx1,

dx2

dt
=

(
r2 −

βx2

(1− η)x1 + γ

)
x2,

(3)
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with x1(0) > 0 and x2(0) > 0. All parameters are positive
values and their definitions are similar to model (1).

Before we begin to analyze the mathematical model, we set
model (3) by applying the following scaling:

x =
px1

r2
, y =

px2

br22
, t = r2t, µ =

r1
r2

, ρ =
kbr22
p

, δ =
d

r2

σ =
br2
ap

, ϕ =
αbr2
ap

, ξ =
cbr22
ap

, θ = bβ, ν =
γp

r2

Thus, model (3) becomes

dx

dt
≡ xg1(x, y),

dy

dt
≡ yg2(x, y),

(4)

where

g1(x, y) ≡
(

µ

1 + ρy
− x− (1− η)ϕy

1 + (1− η)σx+ ξy
− δ

)
g2(x, y) ≡

(
1− θy

(1− η)x+ ν

)
The initial conditions are x(0) > 0 and y(0) > 0. All
parameters are positive values.

III. PRELIMINARY MATHEMATICAL RESULTS

A. Non-negativity

It is known that the model (4) consists of two interacting
populations. Therefore, we have to show that the model solu-
tions have non-negativity values. The non-negative solution is
guaranteed by theorem as below.

Theorem 1: The model solutions with the initial conditions
x(0) > 0 and y(0) > 0 remain non-negative.

Proof: From the model (4), we obtain that

x(t) = x(0) exp

{∫ t

0

g1(x, y)dτ

}
,

y(t) = y(0) exp

{∫ t

0

g2(x, y)dτ

}
.

Because x(0), y(0) > 0 and the exponential function is non-
negative for any real number, then the model solutions remain
non-negative, i.e., x(t) ≥ 0 and y(t) ≥ 0.

B. Boundedness

It is known that the populations have limited resources in the
nature. So, the populations must be bounded. The boundedness
for populations is showed by using the following Lemma as
in [27].

Lemma 1: If u > 0, ν > 0, dx
dt ≥ (ν − ux)x, when t ≥ t0

and x(t0) > 0, then

lim inf
t→∞

x(t) ≥ ν

u
,

if u > 0, ν > 0, dx
dt ≤ (ν−ux)x, when t ≥ t0 and x(t0) > 0,

then

lim sup
t→∞

≤ ν

u
.

Theorem 2: Assume that η < 1 and µ > δ. Then all
solutions of the model (4) with the initial conditions x(0) > 0
and y(0) > 0 are upper bounded.

Proof: From the first equation of the model (4), we have

dx

dt
≤ x(µ− δ − x).

Assume that µ > δ. By using Lemma 1, we obtain

lim sup
t→∞

x(t) ≤ µ− δ ≡ L1.

For any sufficiently small ε1 > 0, there is a T1 ≥ 0 such that

x(t) ≤ µ− δ + ε1, t ≥ T1.

Based on the results above and the second equation, we get

dy

dt
=

y[(1− η)x+ ν − θy]

(1− η)x+ ν

Thus for t ≥ T1, we have

dy

dt
≤ y

ν
[(1− η)(µ− δ + ε1) + ν − θy]

Assume that η < 1 and µ > δ. Then from Lemma 1, we
obtain

lim sup
t→∞

y(t) ≤ (1− η)(µ− δ + ε1) + ν

θ
≡ L2

C. Permanence

In this part, we present the permanence of the model (4). In
the biological meaning, this guarantees that every population
can survive for a long time. Analytically, the model (4) is
permanent if there exist two positive constants l and L such
that each solution of the model with the initial conditions
satisfies

l ≤ min
{
lim inf
t→∞

x(t), lim inf
t→∞

y(t)
}
,

L ≥ max

{
lim sup
t→∞

x(t), lim sup
t→∞

y(t)

}
.

Theorem 3: The model (4) is permanent when ω > 0.
Proof: From Theorem 2, for any sufficiently small ε2 > 0,

there exists T2 ≥ 0 such that

y(t) ≤ (1− η)(µ− δ + ε1) + ν

θ
+ ε2 ≡ M, for t ≥ T2

By using Theorem 2 and the first equation of the model (4),
we get

dx

dt
≥ x(ω − x),

where

ω =

(
µ

1 + ρM
− (1− η)ϕM

1 + ξM
− δ

)
Assume that ω > 0. Based on Lemma 1, we get

lim inf
t→∞

x(t) ≥ ω.
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Then from the second equation of the model (4), we obtain

dy

dt
≥ y

(
1− θy

ν

)
By using Lemma 1 again, we have

lim inf
t→∞

y(t) ≥ ν

θ

By choosing l ≤ min
{
ω, ν

η

}
and L ≥ max {L1, L2}. Hence,

we can see that the model (4) is permanent.

IV. THE EQUILIBRIUM AND STABILITY ANALYSIS

In this subsection, we investigate the dynamics of model (4)
and recall several results as follows:

A. The equilibrium points

By setting dx
dt = dy

dt = 0, we get the equilibrium points of
the model (4) as follows:

• The trivial point of model (4) is E0(0, 0) which means
the extinction of both populations. This point has always
existed.

• Prey only equilibrium point of model (4) is E1(µ− δ, 0)
which means the extinction of predators. This point shall
exist when µ > δ.

• Predator only equilibrium point of model (4) is E2

(
0, ν

θ

)
which means the extinction of prey. This point always
exist.

• The interior point of model (4) is E∗(x∗, y∗) where y∗ =
1
θ [(1−η)x∗+ν] and x∗ are the positive roots of the cubic
equation as follows:

U1x
3
∗ + U2x

2
∗ + U3x∗ + U4 = 0, (5)

with

U1 = ρ(1− η)2(ξ + σθ),

U2 = (1− η)ρν(2ξ + σθ) + (1− η)

[(1− η)[δρσθ + δρξ + ϕρ(1− η)]

+ σθ2 + ρθ + ξθ],

U3 = ν2ρξ + ν[(1− η)[δρσθ

+ 2δρξ + 2ϕρ(1− η)] + θρ+ θξ]

+ θ[(1− η)[(ξ + σθ)(δ − µ) + δρ]

+ ϕ(1− η)2 + θ],

U4 = ν2ρ[δξ + ϕ(1− η)]

+ θν[ξ(δ − µ) + ϕ(1− η) + δρ]

+ θ2(δ − µ).

It is well known that U1 and U2 are always positive.
However, the signs of U3 and U4 are not obvious. Therefore,
by using Descartes’s rule of signs, we have several conditions
for U3 and U4 as follows:

• When U3 > 0 and U4 > 0, the equation (5) does not
contain positive root because there is no change of sign.

• When U3 > 0 and U4 < 0, the equation (5) contains one
positive root.

• When U3 < 0 and U4 < 0, the equation (5) contains one
positive root.

• When U3 < 0 and U4 > 0, the equation (5) contains two
positive roots.

Based on the results above, if U4 < 0, then the equation
(5) contains at least one positive root. Thus, the necessary
condition that has at least one positive root for the existence
of E∗ is U4 must be negative. Meanwhile, the explicit form of
the root of equation (5) can be obtained by using Cardano’s
approach as in [28].

B. The Stability Analysis

Now, we shall analyze the stability of model (4) by in-
vestigating eigenvalues from the Jacobian matrix at E0(0, 0),
E1(µ − δ, 0), and E2(0,

ν
θ ) which are respectively given as

follows:

JE0 =

[
µ− δ 0
0 1

]
JE1

=

[
δ − µ (δ − µ)µρ+ ϕ(1−η)(δ−µ)

1−σ(1−η)(δ−µ)

0 1

]

JE2
=

[
θµ

θ+ρν − δνξ+νϕ(1−η)+δθ
θ+ξν 0

(1−η)
θ −1

]
Based on the above analytical results, we obtain several

conditions for the stability of each equilibrium point. The
equilibrium point E0 and E1 are unstable. The equilibrium
point E2 is locally asymptotically stable when θµ

θ+ρν <
δνξ+νϕ(1−η)+δθ

θ+ξν . Meanwhile, the point E2 is unstable when
θµ

θ+ρν > δνξ+νϕ(1−η)+δθ
θ+ξν .

To investigate the stability of the interior point E∗(x∗, y∗),
we identify the Jacobian matrix at E∗ where φij is the entry
of matrix with row i and column j as follows:

JE∗ =

[
φ11 φ12

φ21 −1

]
where

φ11 = −x∗ +
(1− η)2σϕx∗y∗

[1 + σ(1− η)x∗ + ξy∗]2

φ12 = − µρx∗

(1 + ρy∗)2
− [1 + σ(1− η)x∗](1− η)ϕx∗

[1 + σ(1− η)x∗ + ξy∗]2

φ21 =
θ(1− η)y2∗

[(1− η)x∗ + ν]2

The trace and determinant values of the Jacobian matrix at
E∗ are given as follows:

tr(JE∗) = −x∗ +
(1− η)2σϕx∗y∗

[1 + σ(1− η)x∗ + ξy∗]2
− 1,

det(JE∗) =

(
x∗ −

(1− η)2σϕx∗y∗
[1 + σ(1− η)x∗ + ξy∗]2

)
+

(
θ(1− η)y2∗

[(1− η)x∗ + ν]2

)
+

(
µρx∗

(1 + ρy∗)2
+

[1 + σ(1− η)x∗](1− η)ϕx∗

[1 + σ(1− η)x∗ + ξy∗]2

)
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Fig. 1. The dynamics of the model (4) for (a) η = 0, (b) η = 0.25 with
ρ = 0 and other parameters as in (6)

By using the Routh-Hurwitz criteria, the point E∗ is locally
asymptotically stable if it satisfies condition tr(JE∗) < 0 and
det(JE∗) > 0. Therefore, the condition of stability for E∗ is
as below:

x∗ >
(1− η)2σϕx∗y∗

[1 + σ(1− η)x∗ + ξy∗]2

V. THE NUMERICAL SOLUTIONS

In this subsection, we present several numerical solutions
to investigate the effect of fear and prey refuge in the model
(4). Here, we choose parameter values for numerical solutions
as follows:

µ = 2, δ = 0.5, ϕ = 2, σ = 2, ξ = 3, θ = 0.7, ν = 0.1 (6)

First, the dynamics of the model (4) with ρ = 0, η = 0
is presented in Figure 1a which means that the model (4)
does not include the effect of fear and prey refuge. For this
case, model (4) has three unstable equilibrium points, namely
E0(0, 0), E1(1.5, 0) and E2(0, 0.14286). Meanwhile, the point
E∗(1.0894, 1.6991) is locally asymptotically stable where all
solutions are convergent to E∗.

In Figure 1b, we set ρ = 0, η = 0.25 which means
that model (4) does not include fear but only prey refuge.
In this case, the result is the same as in Figure 1a. The
difference of the previous figure is the point E∗ changes from
(1.0894, 1.6991) to (1.1976, 1.426) which is affected by prey
refuge.

In Figure 2a, we set ρ = 1, η = 0.25. In this case, model
(4) includes the fear effect and prey refuge. The result of this
case is similar to Figure 1b. However, the difference of the

Fig. 2. The dynamics of the model (4) for (a) ρ = 1, (b) ρ = 10 with
η = 0.25 and other parameters as in (6)

previous figure is the point E∗ changes from (1.1976, 1.426)
to (0.4587, 0.6344). If we set ρ = 10, η = 0.25 as in
Figure 2b, then the point E∗ changes from (0.4587, 0.6344) to
(0.037, 0.1825). It is noted that the density of both populations
decreases which is caused by the fear effect. Therefore, the rate
of fear affects the density of both populations.

In Figure 3a, we set ρ = 10, η = 0.85 which means that
model (4) includes the effect of fear and prey refuge where the
number of prey outside prey refuge is less than the previous
case. By comparing Figure 2b with Figure 3a, we obtain
that E∗ changes from (0.037, 0.1825) to (0.1778, 0.181). It
is noted that the value of x∗ of E∗ increases from 0.037 to
0.1778. Meanwhile, the value of y∗ of E∗ reduce from 0.1825
to 0.181. Therefore, the existence of prey and predator with
a constant rate of fear needs large enough prey refuge. Thus,
prey refuge helpful to the existence of both populations.

In Figure 3b, we set ρ = 100, η = 0.85 which means
that model (4) includes prey refuge and the fear effect that is
greater than the previous case. The result of this case shows
that the point E2(0, 0.14286) is locally asymptotically stable
and model (4) has no interior point E∗. It is noted that the
rate of the fear reduces the number of both populations where
x∗ = 0 and y∗ > 0 forever. Therefore, the fear factor cannot
cause the extinction of predators but only the extinction of the
prey.

In Figure 4, we set ρ = 0, η = 0.85 which means that model
(4) does not include fear but only prey refuge. The result of
this case is the point E∗ is locally asymptotically stable and
this is different from Figure 3b. It shows that the prey refuge
cannot cause the extinction of the predator.
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Fig. 3. The dynamics of the model (4) for (a) ρ = 10, (b) ρ = 100 with
η = 0.85 and other parameters as in (6)

Fig. 4. The dynamics of the model (4) with ρ = 0, η = 0.85 and other
parameters as in (6)

VI. CONCLUSIONS

In this paper, we have investigated the fear effect in the
modified Leslie-Gower predator-prey model with Beddington-
DeAngelis functional response including prey refuge. We
find four equilibrium points exist under certain conditions
where two equilibrium points are locally asymptotically stable,
namely E2 and E∗ and other points are unstable. Biologically,
we conclude that the effect of fear and prey refuge influences
the model (4). The fear effect decreases the number of both
populations. If the fear effect is getting large, then the number
of both populations is lower, and prey populations become
extinct. These results are similar to [24], [29]. For the case
with a constant of fear, the existence of prey and predator
needs large enough prey refuge. This result is similar to [24].
However, for the case with the fear effect is large, prey refuge
cannot cause the extinction of predators. For future work, we

can observe the global stability of the interior point on the
model (4).
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