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Abstract—An option is a financial contract between buyers
and sellers. The Black-Scholes equation is the most popular
mathematical equation used to analyze the option pricing. The
exact solution of the Black-Scholes equation can be approached
by several approximation methods, one of the method is a
Homotopy Perturbation Method (HPM). The simplest type of
option, digital options were analyzed using the HPM. The digital
option pricing approach using the HPM is in a power series
form, which in this paper is presented the solution in the fourth
power. This solution is compared with the exact solution of the
Black-Scholes equation for digital options. The results show that
the approach using HPM is very accurate.

Index Terms—Digital Option, Black-Scholes Equation, Homo-
topy Perturbation Method.

I. INTRODUCTION

ONE of the financial derivative products is options. An
option is a financial contract between buyers and sellers.

Generally, there are two options types: a call option (a right to
buy) and a put option (a right to sell). In the put/call option,
holders can buy/sell the underlying asset before the expiry
date at a strike price. Considering the exercise date of op-
tions, European and American options are usually concerned.
European options can be exercised only at the expiry date,
whereas American options can be exercised at any time until
the expiry date. The most popular mathematical equation used
to analyze the option pricing, the Black-Scholes equation, was
proposed by Black and Scholes in 1973 [1]. The Black Scholes
equation is derived with the following assumptions: the asset
price follows a geometric Brownian motion, no dividends, no
transaction costs, no taxes and a risk-free interest.

An exact solution of the Black Scholes equation has been
obtained [1]. There are various methods to obtain an exact
solution approach: Finite Difference Method [2], [3], Monte
Carlo Method [4], Quintic B-spline collocation approach [5],
Adomian Decomposition Method (ADM) [6], [7], Homotopy
Perturbation Method (HPM) [8], [9], [10], etc.

In the European put option, if the strike price (K) exceeds
the final asset price (S(T )), the put option holder can purchase
the asset for (S(T )) and immediately sell it to the put writer
for (K). The payoff is S(T )−K, accordingly. On the contrary,
if S(T ) > K, the put option holder is better off selling the
asset at the market price and simply walk away from the
contract, and the payoff becomes 0. Under these conditions,
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the payoff from the European put option at final time (T ) can
be represented as

P (S, T ) =

{
S −K, S ≤ K

0, S > K

which is a non-differentiable and non-smooth condition at S =
K. Various approaches are used to solve non-differentiable
and non-smooth problems, but a singularity point appears
in the derivative. In [7], Ziwie Ke et al. proposed a proper
way to apply the ADM to the Black Scholes model for
European options. It can solve the singularity problem without
requiring a differentiable approximation of the payoff function.
By a variable transformation, the singularity is shifted to
infinity. Simulation results show that ADM with the variable
transformation can solve the singularity problem in the payoff
function and provide accurate results.

This paper discusses the Black Scholes solution approach
using HPM, where HPM is one of the approach solution
methods in a power series, similar to the ADM. Digital options
are the simplest type of options. The digital options have a
payoff function as European options, which can not be derived
at S = K. Using the variable transformation introduced in
[7], we will apply it with HPM. The outline of this paper is
organized as follows. In Section 1, we present the background
of the topic. In Section 2 provides a literature review about the
basic idea of HPM and a mathematical model for the Digital
option. In Section 3 discusses a process to solve the Black
Scholes model for the digital options using variable transform
and HPM. Then, we simulate the digital option prices and
analyze the results. Finally, the conclusion is presented in
Section 4.

II. RESEARCH METHODS

A. Homotopy Perturbation Method

The Homotopy Perturbation Method is one of the poten-
tial methods for solving a partial differential equation. The
solution obtained from HPM converges rapidly to the exact
solution [11], [12]. To understand the basic concept of HPM,
consider the following general form

A(u)− f(r) = 0, r ∈ Ω, (1)

with boundary condition

B
(
u,

∂u(r)

∂n

)
= 0, r ∈ Γ. (2)

where A is a differential operator, B is a boundary operator,
f(r) is a known function, Γ is the boundary of a domain Ω
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and u(r) is a function to be determined and depends on r. The
operator A can be divided into two parts L and N where L
is a linear operator and N is a non-linear operator. Therefore,
Eq. (1) can be written as follows:

L(u) +N (u)− f(r) = 0. (3)

We construct a homotopy v(r, p) : Ω × [0, 1] → R which
satisfies:

H (v, p) =

L (v)− L (u0) + p [L (v) +N (v)− f (τ)] = 0, (4)

with p ∈ [0, 1]. p is a embedding parameter and u0 is an initial
guess of Eq. (1) which satisfies the boundary conditions. By
applying a perturbation technique, the solution of Eq. (4) can
be assumed in power series form

v = v0 + v1p+ v2p
2 + · · · . (5)

For p = 1, Eq. (5) can be rewritten as

u = lim
p→1

v = v0 + v1 + v2 + · · · (6)

which is the approximate solution to Eq. (1).

B. Digital Option

A digital option is a type of options contract that has a
fixed payout if the underlying asset moves past the strike price.
Option holders buy/sell shares by observing the movement of
share prices and strike price. If the share price at maturity on
the market is above or higher than the strike price, the holder
bought the call option. Instead, if the share price at maturity on
the market is below or lower than the strike price, the holder
bought the put option.

The digital call option price can be obtained by solving the
Black-Scholes equation with a payoff function

Ct = −1

2
σ2S2CSS − rSCS + rC, (7)

C(S, T ) =

{
1 S > K

0 S ≤ K
. (8)

Corresponding with Eq. (7), The digital put option price
satisfies the following mathematical model

Pt = −1

2
σ2S2PSS − rSPS + rP, (9)

P (S, T ) =

{
0 S > K

1 S ≤ K
. (10)

Both Eq. (7) and (9) with their respective initial conditions
can be resolved by similarly as European option exact solution
procedures as follows [13]:

1) Make a dimensionless equation with the following vari-
able transformations:

S = Kex; t = T − 2τ

σ2
; (11)

C(S, t) = v(x, τ) for Digital call option;
P (S, t) = v(x, τ) for Digital put option

2) Make a diffusion equation with the following transfor-
mation:

v(x, τ) = eαx+βτu(x, τ) (12)

3) Solve the diffusion equation by Green’s function
4) The solution of the third step is exact solution of the

Digital call/put option
The digital option exact solution based on the procedures

are as follows

C(S, t) = e−r(T−t)N(d) (13)

P (S, t) = e−r(T−t)N(−d) (14)

where

d =

ln

(
S

K

)
+

1

2

(
2r − σ2

)
(T − t)

σ
√
(T − t)

and N(.) is a cumulative distribution function of the normal
standard distribution.

The relationship between call options and put options at the
same strike price and maturity is called put call parity. The
put call parity formula for digital options is given by

C(S, 0) + P (S, 0) = e−rT . (15)

III. RESULTS AND DISCUSSIONS

In this section, the mathematical model for the digital option
in Eq. (7-10) will be solved by the Homotopy Perturbation
Method (HPM). Considering the digital call option, to simplify
and non-dimensionalize the model, Eq. (7) is transformed by
Eq. (11)

vxx − vτ + (k − 1)vx − kv = 0 (16)

and the payoff function

v(x, 0) =

{
1 x > 0

0 x ≤ 0
, (17)

where k = 2r/σ2. The payoff function in Eq. (8) becomes
an initial condition in Eq. (17). When x = 0, Eq. (17) has
a singularity and it is non-differentiable. In order to shift the
singularity point to infinity, the transformation is given below
[7]:

x = u
√
τ ; z =

√
τ ; v(x, τ) = w(u, z). (18)

Understandably, at τ = 0 it changed the u to infinity, as
limτ→0 u = ±∞. As a result, Eq. (16) transform to

(wz)z = 2wuu + uwu + w + 2(k − 1)zwu − 2kwz2. (19)

Also, the initial condition (Eq. (17)) becomes

lim
τ→0

w(u, z) =

{
1 u → +∞
0 u → −∞

. (20)

Now, applied HPM technique to solve the Eq. (19). The
parameter p is embedded in Eq. (19)

(wz)z = 2wuu+uwu+w+2(k−1)zpwu−2kwp2z2. (21)
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where p ∈ [0, 1] and Eq. (21) has a solution in the power
series as follows

w = w0 + pw1 + p2w2 + · · · (22)

Consider Eq. (22), we can rewrite Eq. (21) and arrange them
according to order of p

p0 : (zw0)z = 2(w0)uu + u(w0)u + w0

p1 : (zw1)z = 2(w1)uu + u(w1)u + 2(k − 1)zw0 + w1

p2 : (zw2)z = 2(w2)uu + u(w2)u + 2(k − 1)zw1 + w2

+ 2kz2w0 (23)
...

pn : (zwn)z = 2(wn)uu + u(wn)u + 2(k − 1)zwn−1

+ wn + 2kz2wn−2

To solve Eq. (23) for each wi and satisfy the initial condition
in Eq. (20), assumed that wi(u, z) = fn(u)z

n. Eq. (23) can
be written as

w0 = 2(f0)uu + u(f0)u + f0

w1 = (2(f1)uu + u(f1)u + 2(k − 1)f0 + f1) z

w2 = (2(f2)uu + u(f2)u + 2(k − 1)f1 + 2kf0 + f2) z
2

... (24)
wn = (2(fn)uu + u(fn)u + 2(k − 1)fn−1 + fn + 2kfn−2) z

n

and the initial condition becomes:

lim
τ→0

w(u, z) =

{
1 u → +∞
0 u → −∞

, for n = 0, (25)

lim
τ→0

w(u, z) =

{
0 u → +∞
0 u → −∞

, for n ≥ 1. (26)

Eq. (24) is a second-order linear ordinary differential equa-
tion. For the first term w0, let f0 = us(u) to get a general
solution as follows:

f0 = c2 + c1
√
πErf

(u
2

)
. (27)

where c1 and c2 are two arbitrary constants and Erf(.) is a
error function. Eq. (27) should satisfy Eq. (25). As a result, a
special solution of f0 is as follows

f0 =
1

2

(
1 + Erf

(u
2

))
. (28)

For n ≥ 1, each of term fi was solved by using the same
procedures as f0 and satisfy the Eq. (26).

w0 =
1

2

(
1 + Erf

(u
2

))
w1 =

 (k − 1)

2
√
π

e
−
u2

4

 z

w2 =

1

4

− (k − 1)2u

2
√
π

e
−
u2

4 − 2k
(
1 + Erf

(u
2

))
 z2

w3 =

 1

24

(k − 1)e
−
u2

4

2
√
π

(
−2 + u2 + k2(u2 − 2)

−2k(u2 + 10)
)]

z3

w4 =

 1

192

e
−
u2

4

(
6(k − 1)2(1 + k(k + 6)u)

2
√
π

− (k − 1)4u3

2
√
π

)
+ 48k2

(
1 + Erf

(u
2

)))]
z4

Recalled the Black Scholes model for the digital put option
price in Eq. (9) with the payoff function (Eq. (10)). To
complete the model, the same procedure is applied since the
difference only in the payoff function. Therefore, Eq. (9)
becomes Eq. (23) and the payoff function becomes an initial
condition as follows

lim
τ→0

w(u, z) =

{
1 u → −∞
0 u → +∞

, for n = 0, (29)

lim
τ→0

w(u, z) =

{
0 u → −∞
0 u → +∞

, for n ≥ 1. (30)

The solution of Eq. (23) satisfying the initial conditions (Eq.
(29-30)), is as follows

w0 =
1

2

(
1− Erf

(u
2

))
w1 =

− (k − 1)

2
√
π

e
−
u2

4

 z

w2 =

1

4

− (k − 1)2u

2
√
π

e
−
u2

4 − 2k
(
1− Erf

(u
2

))
 z2

w3 =

− 1

24

(k − 1)e
−
u2

4

2
√
π

(
−2 + u2 + k2(u2 − 2)

−2k(u2 + 10)
)]

z3

w4 =

 1

192

e
−
u2

4

(
−6(k − 1)2(1 + k(k + 6)u)

2
√
π

+
(k − 1)4u3

2
√
π

)
+ 48k2

(
1− Erf

(u
2

)))]
z4.

The solution of put and call option prices using the HPM
satisfies the put call parity formula in Eq. (11). This implies
that put option price can be obtained by call option price, and
vice versa.

The digital option price can be obtained by restoring the
variables to their original form. In this paper, we present
the Black-Scholes solution approach to the u4 form of the
power series (Eq. (22)) considering that following the same
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Fig. 1. The Digital call option price solved by HPM.

Fig. 2. The Digital put option price solved by HPM.

procedure will lead to the subsequent solution terms. The so-
lution approach using Homotopy Perturbation Method will be
simulated and compared with the exact solution of the Black-
Scholes digital option model. In performing simulation, some
parameters have been defined. The strike price (K) = 40, the
interest rate (r) = 0.05, the volatility (σ) = 0.324336.

The simulation of call and put options price is shown in
Figure 1 and Figure 2, respectively. The stock price (S) is
given in the interval [10, 80] for T = 3/4. The call option price
increases as the stock price increases. Instead, the put option
price decreases as the stock price increases. When the asset
price is greater than the strike price, the digital put option price
at maturity date is 0 but the digital call option price towards 1.
It corresponds to the payoff function. At some point in stock
prices before expiration, the digital call option price decreases
from the price at expiration time and smoothly shifting to
the left for S ≤ K. Similar simulation results also exist for
the digital put option. Therefore, based on the simulation, the
non-smooth condition of the payoff function of the put/call at
S(T ) = K can be solved.

The accuracy of HPM for solving Black Scholes models is
checked by comparing the results with exact solutions. It is
simulated by determining the stock price S = 30, 40, and 50
on the maturity date T = 3/4 and 6/12.

Table I shows the simulation results using HPM and exact
solutions for the Digital call option. By looking at Table I, we
can see that the results of HPM are very close to the exact
solution. The difference is not more than 10−5 and is shown in

TABLE I
COMPARISON HPM AND EXACT SOLUTION DIGITAL CALL OPTION

S T Homotopy Perturbation Method Exact solution

30
3/4 0.145673788050671 0.145671324096918
6/12 0.101262455162682 0.101261866297924

40
3/4 0.478938990813540 0.478932715368402
6/12 0.485454029537582 0.485452035255446

50
3/4 0.755639791967107 0.755631538232393
6/12 0.812735833721423 0.812733236242847

Fig. 3. Difference between HPM and exact solutions of Digital call option.

Fig. 4. Difference between HPM and exact solutions of Digital put option.

Figure 3 to display in more detail each point of stock price (S)
against time (t), where the most significant difference occurs
when C(80, 0).

TABLE II
COMPARISON HPM AND EXACT SOLUTION DIGITAL PUT OPTION

S T Homotopy Perturbation Method Exact solution

30
3/4 0.817529336949329 0.817523093623904
6/12 0.874050044837319 0.874048045730409

40
3/4 0.484264134186460 0.484261702352420
6/12 0.489858470462418 0.489857876772887

50
3/4 0.207563333032893 0.207562879488429
6/12 0.162576666278576 0.162576675785486

Comparison of digital put option prices using HPM with
exact solutions is shown in Table II. It shows very good results
i.e. the results using HPM are close to the exact solution.
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Detail the difference between HPM and the exact solution is
shown in Figure 4. Based on this comparison, it can be seen
that the difference obtained is also very small, which is not
more than 10−5.

IV. CONCLUSIONS

In this paper, we propose the approximate solution of the
Black Scholes model for digital options using HPM. The
option has a singularity point at S = K. The variable trans-
formation was applied to shift the singularity point to infinity
and applied the HPM to solve the Black-Scholes equation
after being transformed. The HPM solutions were simulated
and compared with the exact solutions. The simulation results
show that the variable transformation can solve the singularity
problem well and gives very accurate results.
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