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• De-radicalization modeled with an epidemic model.
• Five compartments are considered: Susceptible, Recruiters, Extremists and Treatment.
• The dynamics is determined by the basic reproduction number R0.
• If R0 > 1 the equilibrium with no terrorists is globally stable, and extremists and recruiters head for extinction.
• Model is used to assess strategies to counter violent extremism.
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a b s t r a c t

Radicalization is the process by which people come to adopt increasingly extreme polit-
ical, social or religious ideologies. When radicalization leads to violence, radical thinking
becomes a threat to national security. De-radicalization programs are part of an effort to
combat violent extremism and terrorism. This type of initiatives attempt to alter violent
extremists radical beliefs and violent behavior with the aim to reintegrate them into
society. In this paper we introduce a simple compartmental model suitable to describe de-
radicalization programs. The population is divided into four compartments: (S) susceptible,
(E) extremists, (R) recruiters, and (T ) treatment. We calculate the basic reproduction num-
berR0. ForR0 < 1 the systemhas one globally asymptotically stable equilibriumwhere no
extremist or recruiters are present. For R0 > 1 the system has an additional equilibrium
where extremists and recruiters are endemic to the population. A Lyapunov function is
used to show that, for R0 > 1, the endemic equilibrium is globally asymptotically stable.
We use numerical simulations to support our analytical results. Based on our model we
assess strategies to counter violent extremism.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

According to Horgan [1] radicalization is the social and psychological process of incrementally experienced commitment
to extremist political or religious ideology. Radicalization can lead to violent extremism and therefore it has become amajor
concern for national security. Typical counterterrorism strategies fall into two categories:

1. Law enforcement approach: violent extremist are investigated prosecuted and imprisoned.
2. Military approach: violent extremists are killed or captured on the battlefield.
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Practitioners of counterterrorism agree that these approaches alone cannot break the cycle of violence [2]. The realization of
the inadequacy of the counterterrorism approach has lead to different strategies, collectively known as countering violent
extremism (CVE). CVE is a collection of noncoercive activitieswhose aim is to intervene in an individual’s path toward violent
extremism, to interdict criminal activity and to reintegrate those convicted of criminal activity into society. CVE programs
can be divided into three broad classes [2–5]

1. Prevention programs, which seek to prevent the radicalization process from occurring and taking hold in the first place;
2. Disengagement programs, which attempt to stop or control radicalization as it is occurring;
3. De-radicalization programs, which attempt to alter an individual extremist beliefs and violent behavior with the aim to

reintegrate him into society. This type of programs often target convicted terrorists.

According to Horgan [6] there are at least 15 publicly known de-radicalization programs from Saudi Arabia to Singapore, but
there are likely twice as many. In this paper we use a compartmental model to model de-radicalization programs.

The attempt to use quantitativemethods in describing social dynamics is not new, and compartmental models have been
used to study various aspect of social dynamics. For instance Hayward introduced a model of church growth [7], Jeffs et al.
studied a model of political party growth [8], Romero et al. analyzed a model for the spread of political third parties [9] and
Crisosto et al. studied the growth of cooperative learning in large communities [10]. The dynamics of the spread of crime
was studied byMcMillon, Simon andMorenoff [11] and byMohammad and Roslan [12]. Amathematical model of the spread
of gangs was studied by Sooknanan, Bhatt, and Comissiong [13]. The same authors studied the model for the interaction of
police and gangs in [14]. Castillo-Chavez and Song analyzed the transmission dynamics of fanatic behaviors [15], Camacho
studied a model of the interaction between terrorist and fanatic groups [16], Nizamani, Memon and Galam modeled public
outrage and the spread of violence [17]. Compartmental models of radicalization were studied by Galam and Javarone [18]
and by McCluskey and Santoprete [19].

In this paper we build on the compartmental model introduced in [19] by adding a treatment compartment. This allows
us to consider de-radicalization in our analysis. We divide the population into four compartments, (S) susceptible, (E)
extremists, (R) recruiters, and (T ) treatment (see Fig. 1). Using this simple model, we attempt to test the effectiveness of
de-radicalization programs in countering violent extremism. This is an important issue since, at least on the surface, these
de-radicalization programs are promising. In fact, these programs appear to be cost effective, since they are far cheaper
than indefinite detention [6]. However, the degree of government support for these programs hinges on their efficacy and,
unfortunately, indicators of success and measures of effectiveness remain elusive [3].

As in [19]we use the basic reproduction numberR0 to evaluate strategies for countering violent extremism.Wewill show
that for R0 < 1 the system has a globally asymptotically stable equilibrium with no individuals in the extremist, recruiter
and treatment classes, and that for R0 > 1 the system has an additional equilibrium in which extremists and recruiters
are endemic to the population. The latter equilibrium is globally asymptotically stable for R0 > 1. Therefore, if R0 < 1
the ideology will be eradicated, that is, eventually the number of recruiters and extremists will go to zero. When R0 > 1
the ideology will become endemic, that is, the recruiters and extremists will establish themselves in the population. In our
model the basic reproduction number is

R0 =
Λ

µ

β(cEqE + bEqR −
(1−k)δpE

bT
qR)

bEbR − cEcR −
(1−k)δ

bT
(cEpR + bRpE)

, (1.1)

where µ is the mortality rate of the susceptible population, k is the fraction of successfully de-radicalized individuals, and
δ is the rate at which individuals leave the treatment compartment, so that 1/δ is the average time spent in the treatment
compartment. The rates at which extremists and recruiters enter the treatment compartment are pE and pR, respectively.
Moreover, bE = µ + dE + cE + pE and bR = µ + dR + cR + pR, where dE and dR are the additional mortality rates of the
extremists and recruiters, respectively.1 Other parameters are described in Section 2. Note that, if pE, pR → 0, then the basic
reproduction number limits to the one of the bare-bones model studied in [19].

One approach to dealing with extremism, which follows under the umbrella of counterterrorism, is to prosecute and
imprison violent extremists. This approach was studied in [19] where it was shown that increasing the parameters dE and
dR resulted in a decrease in R0. A similar results holds for the model studied in this paper. A different strategy consists in
improving the de-radicalization programs by either increasing the success rate k or by increasing the rates pE and pR at
which extremists and recruiters enter the T compartment. SinceR0 is a decreasing function of k, pE , and pR, increasing these
parameters decreasesR0. Hence, according to our model, this is a successful strategy to counter violent extremism. Another
option is to decrease δ, which in turn decreases R0. This approach is also viable because R0 is an increasing function of
δ. A good way of thinking about this is to consider prison-based de-radicalization programs, in which case, decreasing δ

corresponds to increasing 1
δ
, the average prison sentence.

Note that, in general, it may not be easy to determine the values of parameters because available data are scarce. It has
been claimed, however, that the de-radicalization program in Saudi Arabia, has a rate of recidivism of about 10–20% [6],
which gives an estimate for the value of k.

1 In the context of the present model these can be viewed as the rates at which extremists and recruiters are imprisoned with life sentences.
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Fig. 1. Transfer diagram for the de-radicalization model.

The paper is organized as follows. In Section 2 we introduce the mathematical model. In Section 3 we find an equilibrium
with no individuals in the extremists, recruiters and treatment compartments. We also compute the basic reproduction
number using the next generation method. In Section 4 we use Lyapunov functions to prove this critical point is globally
asymptotically stable for R0 < 1. In Section 5 we find another equilibrium point, the endemic equilibrium, and we prove it
is globally asymptotically stable for R0 > 1. In Section 6 we present some numerical simulations supporting our analytical
results. The final section concludes the paper with a short summary and discussion of the results, limitations of our model
and ideas for future research.

2. Equations

We model the spread of extreme ideology as a contact process. We assume that within the full population there is a
subpopulation potentially at risk of adopting the ideology. We partition this subpopulation into four compartments:

1. (S) Susceptible
2. (E) Extremists
3. (R) Recruiters
4. (T ) Treatment.

Our model is based on the bare-bones mathematical model of radicalization introduced in [19]. Here, however, we also
include a treatment compartment (T ), to describe de-radicalized individuals. The transfer diagram for this system is given
below.

We assume that susceptibles and recruiters interact according to amass action law, and that the rate atwhich susceptibles
are recruited to adopt the extremist ideology is proportional to the number of interactions that are occurring. Thus,
susceptibles are recruited at rate βSR, with a fraction qE entering the extremist class and a fraction qR = 1− qE entering the
recruiter class. Extremists switch to the recruiter class with rate constant cE , while recruiters enter the extremist class with
rate constant cR. The natural death rate is proportional to the population size, with rate constantµ. Extremists and recruiters
have additional death rates dE and dR, respectively. These rates account for individuals that are imprisoned for life or killed.
To consider individuals that undergo de-radicalization program, extremists and recruiters are made to enter the treatment
compartment at rate constants pE and pR respectively. The rate at which a treated individual leaves the compartment T is δ. A
fraction k ∈ [0, 1] of treated individuals is removed, since we assume that successfully treated individuals are permanently
de-radicalized. This seems to be a reasonable assumption since, according to Horgan [6], individuals who leave terrorism
behind have a low chance of re-engagement. The fraction of individuals for which the de-radicalization program fails is
1−k. These individuals enter the extremist class E after being treated. Thus, the radicalizationmodel consists of the following
differential equations together with non-negative initial conditions:

S ′
= Λ − µS − βSR

E ′
= qEβSR − (µ + dE + cE + pE)E + cRR + (1 − k) δT

R′
= qRβSR + cEE − (µ + dR + cR + pR)R

T ′
= pEE + pRR − (µ + δ)T

(2.1)
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where qE + qR = 1, qE, qR ∈ [0, 1]. For simplicity denote bE = µ + dE + cE + pE , bR = µ + dR + cR + pR and bT = µ + δ, then
system (2.1) takes the following form:

S ′
= Λ − µS − βSR

E ′
= qEβSR − bEE + cRR + (1 − k) δT

R′
= qRβSR + cEE − bRR

T ′
= pEE + pRR − bTT

(2.2)

Proposition 2.1. The region∆ =

{
(S, E, R, T ) ∈ R4

≥0 : S + E + R + T ≤
Λ
µ

}
is a compact positively invariant set for the flow of

(2.1) (i.e. all solutions starting in ∆ remain in ∆ for all t > 0). Moreover, ∆ is attracting withinR4
≥0 (i.e. solutions starting outside

∆ either enter or approach ∆ in the limit).

Proof. It is trivial to check that ∆ is compact. We first show that R4
≥0 is positively invariant by checking the direction of the

vector field along the boundary of R4
≥0. Along S = 0 we have S ′

= Λ > 0 so the vector field points inwards. Along E = 0 we
have E ′

= qEβSR + cRR + (1 − k)δT ≥ 0, provided R, S, T ≥ 0. Moreover, along R = 0, we have that R′
= cEE ≥ 0 provided

E ≥ 0. Moreover, along T = 0 we have pEE + pRR ≥ 0, provided E, R ≥ 0. This shows that R4
≥0 is positively invariant by

Proposition 2.1 in [20]. Now let N = S + E + R + T , then

S ′
+ E ′

+ R′
+ T ′

= Λ − µN − dEE − dRR − kδT ≤ Λ − µN.

Using a standard comparison theorem, it follows that

N(t) ≤

(
N(0) −

Λ

µ

)
e−µt

+
Λ

µ
, (2.3)

for t ≥ 0. Thus, if N(0) ≤
Λ
µ
, then N(t) ≤

Λ
µ

for all t ≥ 0. Hence, the set ∆ is positively invariant. Furthermore, it follows
from (2.3) that lim supt→∞ N ≤

Λ
µ
, demonstrating that ∆ is attracting within R4

≥0. □

3. Radicalization-free equilibrium and basic reproduction number R0

If E = R = T = 0, then an equilibrium is given by x0 = (S0, E0, R0, T0) =

(
Λ
µ
, 0, 0, 0

)
.

The basic reproduction number R0 is the spectral radius of the next generation matrix G calculated at x0. R0 can be
calculated as follows (see [21] for more details). In our case the infected compartments are E, R, T . The next generation
matrix is given by G = FV−1 with

F =

⎡⎢⎢⎢⎢⎢⎣
∂FE

∂E
∂FE

∂R
∂FE
∂T

∂FR

∂E
∂FR

∂R
∂FR
∂T

∂FT

∂E
∂FT

∂R
∂FT
∂T

⎤⎥⎥⎥⎥⎥⎦ (x0) and V =

⎡⎢⎢⎢⎢⎢⎣
∂VE

∂E
∂VE
∂R

∂VE

∂T
∂VR

∂E
∂VR
∂R

∂VR

∂T
∂VT

∂E
∂VT
∂R

∂VT

∂T

⎤⎥⎥⎥⎥⎥⎦ (x0).

Here, FE , FR and FT are the rates of appearance of newly radicalized individuals in the classes E, R, and T , respectively. Let
Vj = V−

j − V+

j , with V+

j is the rate of transfers of individuals into class j by all other means, and V−

j is the rate of transfers of
individuals out of class j, where j ∈ {E, R, T }. In our case

F =

[
FE
FR
FT

]
= βS

[qER
qRR
0

]
and

V =

[
VE
VR
VT

]
=

[bEE − cRR − (1 − k)δT
bRR − cEE

bTT − (pEE + pRR)

]
.

Hence

F = βS0

[0 qE 0
0 qR 0
0 0 0

]
and V =

[ bE −cR −αE
−cE bR 0
−pE −pR bT

]
.
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Therefore, the next generation matrix is

G = −
S0β
bTD

[0 qE 0
0 qR 0
0 0 0

][
−bRbT −(αEpR + cRbT ) αEbR
−cEbT αEpE − bEbT −αEcE

−bRpE − cEpR −bEpR − cRpE −bEbR + cRcE

]

= −
βS0
bTD

[
−qEcEbT qE(αEpE − bEbT ) −qEαEcE
−qRcEbT qR(αEpE − bEbT ) −qRαEcE

0 0 0

]
,

where D = bEbR − cEcR −
αE
bT
(pEbR + cEpR) and αE = (1 − k)δ. Note that F has rank 1 and so the same is true for G. Since

two eigenvalues of G are zero the spectral radius is equal to the absolute value of the remaining eigenvalue. Since the trace
is equal to the sum of the eigenvalues and there is only one non-zero eigenvalue, we see that the spectral radius of G is equal
to the absolute value of the trace (which happens to be positive). Thus,

R0 =

βS0(cEqE + bEqR −
αEpE
bT

qR)

bEbR − cEcR −
αE
bT
(cEpR + bRpE)

. (3.1)

4. Global asymptotic stability of x0 for R0 < 1

In this section, we investigate the stability of the critical point x0. The next generation method provides us with
information on the local stability: x0 is locally asymptotically stable for R0 < 1 and unstable if R0 > 1. The global
asymptotical stability of x0, instead, is given by the following theorem.

Theorem 4.1. If R0 ≤ 1 then x0 is globally asymptotically stable on R4
≥0.

Proof. Consider the C1 Lyapunov function U : ∆ → R

U = bT cEE + (bTbE − αEpE)R + αEcET ,

where (bTbE − αEpE) = (µ + δ)(µ + dE + cE) + µpE + kδpE > 0. Evaluating the time derivative of U along the trajectories
of (2.2) yields

U ′
=bT cEE ′

+ (bTbE − αEpE)R′
+ αEcET ′

=bT cE(qEβSR − bEE + cRR + αET ) + (bTbE − αEpE)(qRβSR + cEE − bRR)
+ αEcE(pEE + pRR − bTT )

=bT

[
β(qEcE + qRbE − qR

αE

bT
pE)S −

(
bEbR − cEcR −

αE

bT
(pEbR + cEpR)

)]
R

=bTD
[
β(qEcE + qRbE − qR

αE

bT
pE)

S
D

− 1
]
R

=bTD
[
R0

S
S0

− 1
]
R.

It follows from S ≤ S0 =
Λ
µ
that

U ′
≤ bTD [R0 − 1] R

which implies that U ′
≤ 0 if R0 ≤ 1. Furthermore, U ′

= 0 if and only if R0 = 1 or R = 0. Let

Z = {(S, E, R, T ) ∈ ∆|U ′
= 0}.

We claim that the largest invariant set contained in Z is x0. In fact, any entire solution (S(t), E(t), R(t), T (t)) contained in Z
must have R(t) ≡ 0 as a consequence of the expression for U ′ given above. Moreover, from the second and third line in (2.2)
it follows that E(t) ≡ 0 and T (t) ≡ 0. Substituting R = T = 0 in the first line of (2.2) gives a differential equation with
solution S =

(
S(0) −

Λ
µ

)
e−µt

+
Λ
µ
. Clearly, if S(0) ≤

Λ
µ
, then S → −∞ as t → −∞ and the corresponding entire solution

is not contained in Z . It follows that S(0) =
Λ
µ
, which proves the claim.

Since ∆ is positively invariant with respect to (2.2) LaSalle’s invariance principle ([22] Theorem 4.4 or [23] Theorem 6.4)
implies that all trajectories that start in ∆ approach x0 when t → ∞. This, together with the fact that x0 is Lyapunov stable
(in fact is locally asymptotically stable by the next generation method), proves that x0 is globally asymptotically stable in ∆.
Since ∆ is an attracting set within R4

≥0 the stability is also global in R4
≥0. □
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5. Global asymptotic stability of the endemic equilibrium

In this section, we show that ifR0 > 1, then (2.2) has a unique endemic equilibrium.We then study the global asymptotic
stability of such equilibrium using Lyapunov functions.

An endemic equilibrium x∗
= (S∗, E∗, R∗, T ∗) ∈ R4

>0 of (2.2) is an equilibrium in which at least one of E∗, R∗ and T ∗ is
nonzero.

To find the endemic equilibria of (2.2) we need to solve the following system of equations:

0 = Λ − µS∗
− βS∗R∗

0 = qEβS∗R∗
− bEE∗

+ cRR∗
+ (1 − k) δT ∗

0 = qRβS∗R∗
+ cEE∗

− bRR∗

0 = pEE∗
+ pRR∗

− bTT ∗

(5.1)

From the last equationwe obtain T ∗
=

pE
bT
E∗

+
pR
bT
R∗. Using the expression above for T ∗, the first two lines of (5.1) and treating

S∗ as a parameter yields the linear system[
−bE +

pE
bT

(1 − k)δ qEβS∗
+ cR +

pR
bT

(1 − k)δ

cE qRβS∗
− bR

][
E∗

R∗

]
=

[
0
0

]
(5.2)

In order to have non-zero solutions for E∗ and R∗, the coefficient matrix must have determinant zero. This gives

S∗
=

bEbR − cEcR −
αE
bT
(cEpR + bRpE)

β(cEqE + bEqR −
αEpE
bT

qR)
=

Λ

µ

1
R0

, (5.3)

where αE = (1 − k)δ. Solving the third line of Eq. (5.1) for E∗ yields

E∗
= ωR∗, with ω =

bR − qRβS∗

cE
.

Note that

ω =
bRbTqE + bT cRqR + pRqRαE

qR(bEbT − αEpE) + cEqEbT
=

bRbTqE + bT cRqR + pRqRαE

qR((µ + δ)(µ + dE + cE) + µpE + kδpE) + cEqEbT
> 0.

Next, solving the last line in (5.1) for T ∗ gives

T ∗
=

pEω + pR
bT

R∗.

Substituting this last expression in the first line of (5.1) we obtain

R∗
=

Λ − µS∗

βS∗
=

µ

β
(R0 − 1).

Since ω > 0, it follows that a meaningful endemic equilibrium with positive S∗, E∗, R∗, and T ∗ exists if and only if R0 > 1.
When the endemic equilibrium exists, there is only one, denoted by x∗

= (S∗, E∗, R∗, T ∗), where

S∗
=

Λ

µ

1
R0

,

E∗
= ωR∗

R∗
=

µ

β
(R0 − 1)

T ∗
=

pEω + pR
bT

R∗.

(5.4)

Theorem 5.1. If R0 > 1, then the endemic equilibrium x∗ of (2.2) is globally asymptotically stable in R4
>0.

Proof. We study the global stability of x∗ by considering the Lyapunov function

V = S∗g
(

S
S∗

)
+ a1 E∗g

(
E
E∗

)
+ a2 R∗g

(
R
R∗

)
+ a3 T ∗g

(
T
T ∗

)
where g(x) = x − 1 − ln x. Clearly V is C1, V (x∗) = 0, and V (p) > 0 for any p ∈ R4

>0 such that p ̸= x∗.
Differentiating V along solutions of (2.2) yields

V ′
=

(
1 −

S∗

S

)
S ′

+ a1

(
1 −

E∗

E

)
E ′

+ a2

(
1 −

R∗

R

)
R′

+ a3

(
1 −

T ∗

T

)
T ′
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=

(
1 −

S∗

S

)
[Λ − µS − βSR] + a1

(
1 −

E∗

E

)
[qEβSR − bEE + cRR + αET ]

+ a2

(
1 −

R∗

R

)
[qRβSR + cEE − bRR] + a3

(
1 −

T ∗

T

)
[pEE + pRR − bTT ]

=C − (µ + a2βqRR∗)S + (a1qE + a2qR − 1)βSR + (−a1bE + a2cE + a3pE)E

+ (S∗β + a1cR − a2bR + a3pR)R + (a1αE − a3bT )T − Λ
S∗

S
− a3pE

T ∗

T
E − a2cE

R∗

R
E

− a3pR
T ∗

T
R − a1αEE∗

T
E

− a1cRE∗
R
E

− a1βqEE∗
SR
E

where C = Λ + µS∗
+ a1bEE∗

+ a2bRR∗
+ a3bTT ∗. For simplicity, denote w =

S
S∗ , x =

E
E∗ , y =

R
R∗ , and z =

T
T∗ . Then,

V ′
=C − (µ + a2βqRR∗)S∗w + (a1qE + a2qR − 1)βS∗R∗wy + (−a1bE + a2cE + a3pE)E∗x

+ (S∗β + a1cR − a2bR + a3pR)R∗y + (a1αE − a3bT )T ∗z − Λ
1
w

− a3pEE∗
x
z

− a2cEE∗
x
y

− a3pRR∗
y
z

− a1αET ∗
z
x

− a1cRR∗
y
x

− a1βqES∗R∗
wy
x

:= G(w, x, y, z).

As in [24], we define a set D of the above terms as follows

D =

{
w, x, y, z, wy,

1
w

,
x
z
,
x
y
,
y
z
,
z
x
,
y
x
,
wy
x

}
.

There are at most five subsets associated withD such that the product of all functions within each subset is equal to one,
given by{

w,
1
w

}
,

{
x
y
,
y
x

}{ x
z
,
z
x

}
,

{
z
x
,
y
z
,
x
y

}{
1
w

,
wy
x

,
x
y

}
.

We associate to these subsets of variables the following terms(
2 − w −

1
w

)
,

(
2 −

x
y

−
y
x

)
,

(
2 −

x
z

−
z
x

)
,

(
3 −

z
x

−
y
z

−
x
y

)
,

(
3 −

1
w

−
x
y

−
wy
x

)
.

Following the method used in [24,25] we construct a Lyapunov function as a linear combination of the terms above:

H(w, x, y, z) =b1

(
2 − w −

1
w

)
+ b2

(
2 −

x
y

−
y
x

)
+ b3

(
2 −

x
z

−
z
x

)
+ b4

(
3 −

z
x

−
y
z

−
x
y

)
+ b5

(
3 −

1
w

−
x
y

−
wy
x

)
,

(5.5)

where the coefficients b1, . . . , b5 are left unspecified. We want to determine suitable parameters ai > 0 (i = 1, 2, 3 ) and
bk ≥ 0 (i = 1, . . . , 5 ) such that G(w, x, y, z) = H(w, x, y, z). Equating the coefficient of like terms in G and H gives the
following equations:

w0
: 2(b1 + b2 + b3) + 3(b4 + b5) = C

w : b1 = (µ + a2βqRR∗)S∗

wy : a1qE + a2qR − 1 = 0
x : − a1bE + a2cE + a3pE = 0
y : S∗β + a1cR − a2bR + a3pR = 0
z : a1αE − a3bT = 0

w−1
: b1 + b5 = Λ

xz−1
: b3 = a3pEE∗

xy−1
: b2 + b4 + b5 = a2cEE∗

yz−1
: b4 = a3pRR∗

zx−1
: b3 + b4 = a1αET ∗

yx−1
: b2 = a1cRR∗

wyx−1
: b5 = βa1qES∗R∗.
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If we take (S∗, E∗, R∗, T ∗) at the endemic equilibrium then the linear system above is consistent and has a unique solution
with

a1 =
cE

cEqE + bEqR −
pE
bT

αEqR

a2 =
1
qR

−

qE
qR
cE

cEqE + bEqR −
pE
bT

αEqR

a3 =

cEαE
bT

cEqE + bEqR −
pE
bT

αEqR
,

and with b1, . . . , b5 > 0. By the arithmetic mean-geometric mean inequality each of the terms in (5.5) is less than or equal
to zero. Furthermore,

M =

{
(S, E, R, T ) ∈ R4

>0|
dV
dt

= 0
}

=

{
(S, E, R, T ) ∈ R4

>0| S = S∗,
E
E∗

=
R
R∗

=
T
T ∗

}
.

Weclaim that the largest invariant set inM is the set consisting of the endemic equilibrium x∗. In fact, let (S(t), E(t), R(t), T (t))
be a complete orbit in M, then

0 = S ′
= (S∗)′ = Λ − µS∗

− βS∗R,

which implies that

R =
Λ − µS∗

βS∗
= R∗.

Therefore, x∗
= (S(t), E(t), R(t), T (t)). By LaSalle’s invariance principle [22,23], we deduce that all solutions of (2.2) that start

in R4
>0 limit to x∗. This, together with the fact that x∗ is Lyapunov stable, prove that x∗ is globally asymptotically stable. □

6. Numerical simulations

In this section, we present some numerical simulations of system (2.1) to support our analytical results.
In our simulation, we use the death rate µ = 0.000034247 (days)−1 [26], i.e., the life expectancy is 80 years. We consider

the de-radicalization in a region with population size of about 17.5 million, and thus Λ = 600 (days)−1. The other system
parameters are chosen, in a somewhat arbitrary manner, to be β = 0.00000000056 (days)−1, dE = 0.00083 (days)−1,
dR = 0.00083 (days)−1, pE = 0.00175 (days)−1, pR = 0.0019 (days)−1, cE = 0.0006 (days)−1, cR = 0.0008 (days)−1, and
δ = 0.0016 (days)−1. Here, qE = 0.86, qR = 0.14 and k = 0.66 are dimensionless, and the time unit is day. In this casewe find
thatR0 = 1.02, and thus, by Theorem 5.1, the endemic equilibrium x∗ is globally asymptotically stable inR4

>0. Figs. 2(a)–(d)
depict S, E, R, and T as a function of the time t (days), and show that after a few oscillations these populations approach
a constant value. Figs. 2(e) and (f), instead, are phase portraits obtained for different initial conditions. These two figures
confirm that the solutions approach a globally asymptotically stable equilibrium point. This case illustrates the unwanted
scenario where terrorists and recruiters become endemic to the population.

Second, we increase the rates pE and pR at which extremist and recruiters enter the T compartment to pE =

0.005 (days)−1, and pR = 0.006 (days)−1 and leave the rest of the parameters unchanged. This can be viewed as an
improvement of the recruitment into the de-radicalization programs. Figs. 3(a)–(d) show that E, R, T → 0, as the time
t grows large, confirming that x0 is globally asymptotically stable. This is the preferred situation, where the number of
extremists and recruiters decreases to zero.

7. Discussion

In this paper, we presented an abstract compartmental model of radicalization obtained by modifying the one proposed
byMcCluskey and Santoprete in [19] to include the deradicalization process. Although our abstract model does not generate
empirical findings, it does point to some interesting relations between the system parameters and it suggests policies and
interventions that reduce the likelihood of radicalization. One advantage of this type of simple models is that it is possible
to obtain analytical results that do not rely on the numerical value of parameters, which at the present time is not easy to
estimate due to the lack of data.

By means of the next generation method we obtained the basic reproduction numberR0, which plays an important role
in controlling the spread of the extremist ideology. By constructing two Lyapunov functions we studied the global stability
of the equilibria. We showed that this new model displays a threshold dynamics. When R0 ≤ 1 all solutions converge to
the radicalization-free equilibrium, and the populations of recruiters and extremists decreases to zero. When R0 > 1 the
radicalization-free equilibrium is unstable and there is also an additional endemic equilibrium that is globally asymptotically
stable. In this case extremists and recruiters will persist in the population.



M. Santoprete, F. Xu / Physica A 509 (2018) 151–161 159

Fig. 2. Time history and phase portraits of system (2.1) for β = 0.00000000056 (days)−1 , qE = 0.86, dE = 0.00083 (days)−1 , dR = 0.00083 (days)−1 ,
pE = 0.00175 (days)−1 , pR = 0.0019 (days)−1 , cE = 0.0006 (days)−1 , cR = 0.0008 (days)−1 , k = 0.66, δ = 0.0016 (days)−1 , µ = 0.000034247 (days)−1 ,
Λ = 600 (days)−1 and qR = 0.14.
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Fig. 3. Time history of system (2.1) for β = 0.00000000056 (days)−1 , qE = 0.86, dE = 0.00083 (days)−1 , dR = 0.00083 (days)−1 , pE = 0.005 (days)−1 ,
pR = 0.006 (days)−1 , cE = 0.0006 (days)−1 , cR = 0.0008 (days)−1 , k = 0.66, δ = 0.0016 (days)−1 , µ = 0.000034247 (days)−1 , Λ = 600 (days)−1 and
qR = 0.14.

Based on our model, we can evaluate strategies for countering violent extremism using the basic reproduction number.
In particular, our model shows that treatment in the form of de-radicalization programs can be successful in eliminating
extremism if used in conjunction with counterterrorism strategies. In fact, it is easy to see that an increase in the success
rate k or an increase in the rates pE and pR at which extremists and recruiters enter the T compartment causes the basic
reproduction numberR0 to decrease. This confirms that, according to ourmodel, de-radicalization programs can be effective.
If it is not possible to change k, pE or pR it is often possible to decrease δ, which in turn decreases R0. Note that a decrease
in δ corresponds to an increase in 1

δ
, the average prison sentence, which suggests that increasing the length of the prison

sentence can, at least in part, compensate for low success rates or low transfer rates pE and pR. Hence, the length of the prison
sentence should be chosen so that a perfect balance can be struck between various requirements, including financial ones.

One serious issue of de-radicalization programs is that it is very difficult to evaluate their effectiveness and so estimates
of the success rate k are very imprecise. O’Halloran [3] identifies various causes including the lack of empirical evidence and
the lack of valid and reliable indicators of de-radicalization. This means that there are issues in evaluating de-radicalization
programs that are beyond what can be explored with simple mathematical models. In particular, from the practical point
of view, it is unclear how one can improve the success rate k. Furthermore, when modeling social dynamics one has to
make many simplifying assumptions. The model studied in this paper is not completely free from this defect. One issue, for
instance, is that extremists and recruiters entering the treatment compartment will stay in the compartment for a period of
time, given by the length of the prison sentence or of the de-radicalization treatment. Hence, it seems possible to consider
more realistic models by using delay differential equations, and include the time of the de-radicalization treatment as a time
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delay. A further concern is that the population in the various compartments may not be homogeneous. For example, the
parameter β may depend on the age of the susceptible, suggesting that an age-structured model may be better suited to
describe this problem. We plan to address these and other issues in future studies.
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