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Determine the Solution of Delay Differential
Equations using Runge-Kutta Methods with

Cubic-Spline Interpolation
Agus Dahlia and Rahma Qudsi

Abstract—This paper describes some iterations for term delay
in Delay Differential Equation (DDE), which is causing a huge
number of iteration calculations. Time-delay was approximated
using Cubic-Spline Interpolation, so DDE can rewrite as Differ-
ential Equations. Then, Runge-Kutta methods have been used to
determine the solution of Differential equations from DDE.

Index Terms—Delay Differential Equations, Cubic-Spline In-
terpolation, Runge-Kutta Methods, Lipschitz.

I. INTRODUCTION

DELAY Differential Equations (DDE) have many uses in
the fields of biology, health, chemistry, physics, engi-

neering, and economics. For instance, modeling the human
respiratory system in biology, determining nonlinear oscil-
lations in mining, and producing a semi-dynamic system.
Therefore, determining the solution of the delay differential
equation is the main thing. Several studies using DDE have
been researched by Batzel & Tran [1]conducted a study of
the stability characteristics of a feedback control system of
five differential equations with a time delay for modeling the
human respiratory system. Furthermore, Balachandran B [2]
examines nonlinear oscillations in mining whose mathemat-
ical model is non-linear, non-homogeneous, and is a delay-
differential system with a time-periodic coefficient.

Some research on DDE has led to finding a solution
to this equation. Among them, Karakog & Bereketoglu [3]
use the differential transformation method to determine the
DDE solution. Next Alomari, Noorani, & Nazar [4] use the
average homotopy method. Several other studies discuss DDE
solutions with various numerical methods such as the spectral
method [5], the multistep block method [6], and the Predictor-
Corrector method [7]. Overall these methods have weaknesses
related to the use of time-delay in the DDE equation. The
use of term delay causes many calculations per iteration and
less time efficiency at the time of calculation. So Ismail, Al-
Khasawneh, Lwin, & Suleiman [8] use Hermite interpolation
as an estimated DDE.

This research aims to find a new iteration method using
the Runge-Kutta method to determine the solution of DDE by
estimating the term-delay in the equation using Cubic-Splines
interpolation.
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II. PROBLEM DESCRIPTION

Consider the form of Delay Differential Equations (DDE)
with initial value problems{

y′(t) = f(t, y, y(t− α)), t ≥ 0, y(t) = y0,
y(t) = φ(t), t0 − α ≤ t ≤ t0

(1)

with y(t) n-vector valued function, α > 0 is a constant delay,
and φ(t) is an initial function, which is assumed piecewise
continuous in the interval t0−α ≤ t ≤ t0, for the case φ(t) ̸=
t0 is included.

A solution for (1) is a piecewise differentiable function y(t)
defined on the interval t0 − α ≤ t ≤ tf (tf > t0) which
continues for all t > t0 and satisfies differential equations. The
DDE only satisfies left and right limit points t0+α and point
ξ+α, where ξ is some jump point in φ. But, the smoothness of
f and φ causes its solutions do not smooth, however, φ(t0) =
y0 holds.

Lemma 1: [9] Let the function f(t, y, z) and φ(t) be analytic
with respect to all arguments, and let y(t) denote a solution
of defined on an interval Dy . Then the following properties
hold :

1) If φ(t0) ̸= y0 and ti = t0 + iα ∈ Dy(i ∈ N), then y(t)
has i − 1 continuous derivatives at ti, and, in general,
yi(x) has a jump discontinuity at ti.

2) If φ(t0) ̸= y0 and ti = t0 + iα ∈ Dy(i ∈ N), then
y(t) has i continuous derivatives at ti, and, in general,
yi+1(x) has a jump discontinuity at ti.

Lemma 2: [9]
1) If ξ is a jump discontinuity of φ(t), then y(t) is of class

Ci−1 at i = ξ + i ∗α, but, in general, y(t) is not of the
class Ci at i(i = 1, 2, . . . ).

2) If ξ is a jump discontinuity of f(t, y, z), i.e. for suffi-
ciently small ϵ > 0:

f(t, y, z) =

{
f1(t, y, z), ξ − ϵ < t < ξ
f2(t, y, z), ξ < t < ξ + ϵ

holds, where f1 and f2 are analytic on [ξ − ϵ, ξ]×R2n

and ξ, ξ ∈ R2n, respectively, then y(t) is of the class
Ci at i = ξ+ iα, but, in general, y(t) is not of the class
Ci+1 at ξi(i = 0, 1, 2, . . . ). The jump discontinuities
ti = t0 + iα caused by the initial point t0 are called
primary discontinuities. The jump discontinuities ξi =
ξ + iα caused by discontinuities of φ or f are called
secondary discontinuities.
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III. NUMERICAL METHOD

One way to solve the DDE initial value problem is to
develop a one-step method, which is by combining the one-
step method for Ordinary Differential Equations (ODE) and
approximating the delayed term formula. Let{

y′(t) = f(t, y(t), y(t− α(t, y(t)))), t0 ≤ t ≤ tf
y(t) = φ(t), t ≤ t0

(2)

with f : [t0, tf ] × Rn × Rn → Rn which is based on the
continuous ODE method and has steps that are jump over the
mesh △ = {t0, t1, ..., tn, ..., tN = tf}. After approximation
yn was obtained at time tn, next, step-(n− 1) was completed
by using equation (3.2.3) in [10], the equation{

w′
n−1(t) = f(t, wn+1(t), x(t− α(t, wn+1(t))))

w′
n+1(tn) = yn

(3)

with

x(s) =

 φ(s), s ≤ t0
η(s), t0 ≤ s ≤ tn
wn+1(s), tn ≤ s ≤ tn+1

(4)

and η(s) is Cubic Spline Interpolation. To solve the inter-
polation of the equation (4), the steps used must statisfies the
conditions of consistency from f , namely Lipschitz’s condition
[11]:

|f(t, y, z)− f(t, y′, z′)| ≤ L1 |y − y′|+ L2 |z − z′| ,

for all t ∈ [t0, tf ], y, y
′, z, z′ ∈ R. Let I = [t0, tf ] was

partition into N partition with equal range and denoted by

Ii = [ti−1, ti], i = 1, 2, ..., N

and α = mh, ti − α ∈ Ii−m = [ti−1−m, ti−m]. Then, for
every subinterval Ii, cubic spline function η(t) can be written
in the form

η(t) =


b
2
(2b+ 1)η

(0)
i−1 + b

2
bη

(1)
i−1+

b2(2b+ 1)η
(0)
i − b2bη

(1)
i , ∀t ∈ Ii

ρ(t), α ≤ t ≤ 0
(5)

with b = t−ti−1

h ∈ [0, 1], b = 1 − b, η0i = η(ti), η
(1)
i =

hS′(ti), i = 0, . . . , N . Subtitution ti−1+α and ti−1+β into (5),
respectively, obtained[

η(ti−1 + hγ)
η(ti−1 + hδ)

]
=

[
γ̄2(2γ + 1) γ̄2γ
δ̄2(2δ + 1) δ̄2δ

] [
η
(0)
i−1

η
(1)
i−1

]

+

[
γ̄2(2γ + 1) −γ̄2γ
δ̄2(2δ + 1) −δ̄2δ

] [
η
(0)
i

η
(1)
i

]

= C(γ, δ)

[
η
(0)
i−1

η
(1)
i−1

]
+D(γ, δ)

[
η
(0)
i

η
(1)
i

]
, ∀γ, δ ∈ [0, 1],

with γ = 1−γ, δ = 1−δ. Next, find derivative from equation
(5) in both sides, such that obtained hη′(t) = b(−6b)η

(0)
i−1 +

b(1− 3b)η
(1)
i−1 + b(6bη

(0)
i + b(1− 3b)η

(1)
i . Let

Mi = η′′(ti), i = 1, 2, . . . , n

because η(t) in every interval [ti, ti+1] −→ η”(t) is linear,
such that

η”(t) =
(ti+1−t)Mi + (t− ti)Mi+1

hi
, i = 0, 1, · · · , n

with hi = ti+1 − ti. Then, η”(t) was integrated twice, such
that

η(t) =
(ti+1−t)

3Mi + (t− ti)
3Mi+1

6hi
+

(ti+1−t)fi + (t− ti)fi+1

hi
−

hi

6
(ti+1−t)Mi + (t− ti)Mi+1. (6)

Equation (6) causes η(t) continue in [t0, tf ] and statisfy
interpolation condition η(t) = f .

In this paper, a one-step method to solve the solution of
DDE equation was described. The basic one-step method uses
the Runge-Kutta method of order 5 and approximates the term
delay by using cubic spline interpolation, obtained

Y i
n+1 = yn + hn+1

s∑
j=1

aijki, i = 1, · · · , s,

ki = f
(
tjn+1, Y

j
n+1, η

(
tjn+1 − α

(
tjn+1, Y

j
n+1

)))
.

IV. CONCLUSIONS

To get the solution from DDE, the following algorithms
from this method are:

1) Determine the initial value of the function.
2) Partition intervals [t0, tf ] into sub-intervals.
3) Determine y(t) using the first subinterval.
4) Determine ki using the Runge-Kutta method for DDE.

Then estimate the term-delay using cubic spline inter-
polation.
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