Technical Analysis Ballast Water Treatment Using Economizer Utilizing Main Engines Exhaust Heat to Comply with International Ship Ballast Water Management at "MV. Leader Win"

Hari Prastowo¹, Djoko Paritono Widodo², Semin³, Wiwin Rohmawati⁴

Abstract—based on the International Ballast Water Management regulations (IBWM), waste water ballast itself has the attention of some researchers to reduce the amount of waste species present in the ballast water with a variety of methods, as of biological, physical, mechanical, and chemical. The decision-making tools such as ballast water heater, flow-through system and others where possible these tools can minimize waste species in ballast water at a certain temperature or pressure of the flow according to the calculations. This study was aimed to calculate and analysis the effectiveness of the system treatment between Option 1 (Economizer & Bundle) and Option 2 (Economizer & Heat Excharger) then it will compare. First option is using economizer and bundles to transfer a heat from a source heat of exhaust gas then medium by thermal oil circulated. The second option is using economizer and heat excharger where a same heat source, but sea water from ballast tank sirculated to heat excharger. And from economizer to heat excharger is using thermal oil as a heat medium. For all calculation and anaalysis is using softwere HTRI. First option having a duty 2.503 MegaWatts at economizer and 1.9567 MegaWatts at bundles. Over design 2.01% at Economizer and 7.1%5 at bundles. Pessure drop 63.287 kPa at thermal oil after economizer and 68.196 kPa after bundles. Treatment time to this option is 44.424 hors. Second option having a duty 3.38 MegaWatts at economizer and 3.1227 MegaWatts at heat excharger. Over design 5.85% at Economizer and 3.49%5 at heat excharger. Pessure drop 38.697 kPa at thermal oil after economizer and 28.476 kPa after heat excharger. Treatment time to second option is 42.03 hours. Option 2 (Economizer & Heat Excharger) is more optimum than option in analytical techniques. By analysis of treatment system, are expected this thesis can be applied to either the MV. Leader Win Vessel to comply with the operational needs according to standard employability.

Keywords-international ballast water management, software HTRI, economizer, heat excharger, bundle, thermal oil, temperature

I. INTRODUCTION

B allast water is currently an important concern in addition to the dirty water issue but also suspected to be the source of the global spread of microorganisms. Ballast water like this became one of the problems of marine pollution due to waste water discharge ballast vessel on the high seas. From the problems of course already set by IMO concerning the standardization of waste disposal of ballast water in certain zones. The issuance of regulations on ballast water management are intended to reduce the spread of marine organisms that are not controlled. The standard regulates the charging

and discharging ballast water, are not allowed to spend

more than 10 live organisms per cubic meter, equivalent to the size of more than 50 micrometers and may not put out more than 10 living organisms per milliliter of size less than 50 micrometers. Indicator discharge microorganisms should not exceed concentrations determined namely Toxicogenic Vibrio cholerae less than 1 cfu (colony forming units) per 100 milliliters or less than 1 cfu per gram zooplankton, Escherichia coli less than 250 cfu per 100 milliliters and intestinal entericocci less than 100 cfu per 100 milliliters.

Based on the International Ballast Water Management regulations (IBWM), waste water ballast itself has the attention of some researchers to reduce the amount of waste species present in the ballast water with a variety of methods, as of biological, physical, mechanical, and chemical. The decision-making tools such as ballast water heater, flow-through system and others where possible these tools can minimize waste species in ballast water at a certain temperature or pressure of the flow according to the calculations.

From the various methods of technical treatment of ballast water, in this final project chose to use methods of ballast water heater. Where the heat is use the heat from the main engine exhaust gas vessel which will be distributed in such a way by using economizer. Using the ballast system design of the vessel "MV. Leader Win " key plan will be modified therefore, the technical treatment methods ballast water heater can be applied economically for ship owners and technical treatment can be said to be environmentally sociable.

Hari Prastowo, Department of Marine Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia, Email : hariprastowo@gmail.com

Djoko Paritono Widodo, Waru Teknikatama Heat Transfer Technology, Email : <u>waru@waruteknikatama.com</u>

Semin, Department of Marine Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia, Email : semin@its.ac.id

Wiwin Rohmawati, Department of Marine Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia, Email : wiwin.rohma153@gmail.com

II. LITERATURE REVIEW

Ballast water is water used to ballast and balancer while the vessel voyage. Therefore addition and substraction to keep ship balance, ballast water exchange will be removal the microorganism or other pollutants while sailing and will contaminate destination port.

Inside of International Health Regulation, that mentioned din every harbor or air port shall available efective ways adn safety in terms of sewage and waste disposal along other things dangerous for health.

Ballast water exchange vessel get an attention from IMO (International Maritim Organization), with issue a regulation which requires ballast water in deballasting process shall be clean water condition. This regulation can fulliled with many kind ways, therefore deballasting water in clean conditio and safety at destination port.

Issued regulation about ballast water management means for decrease spread of sea microorganism uncontrolled. This following standard of ballast water management adjusted to vessel size and build year :

Standard of ballast water management based on regulation D-1 :

When ballasting or deballasting process, ship system shall capable to charging or emtying at least 95% from total of ballast thank capacity.

For ship use with pumping-through method, pumping ability shall can pumping continously during charging 3x ballast tank volume.

Standard of ballast water management based on regulation D-2 :

Ships conducting Ballast Water Management in accordance with this regulation shall discharge less than 10 viable organisms per cubic metre greater than or equal to 50 micrometres in minimum dimension and less than 10 viable organisms per millilitre less than 50 micrometres in minimum dimension and greater than or equal to 10 micrometres in minimum dimension; and discharge of the indicator microbes shall not exceed the specified concentrations described in paragraph 2.

Indicator microbes, as a human health standard, shall include:

Toxicogenic Vibrio cholerae (O1 and O139) with less than 1 colony forming unit (cfu) per 100 millilitres or less than 1 cfu per 1 gram (wet weight) zooplankton samples ;

Escherichia coli less than 250 cfu per 100 millilitres;

Intestinal Enterococci less than 100 cfu per 100 milliliters.

Balaji and Yaakob had analyzed heat availability on board an operational tanker, considering all available waste heat. The range of temperatures on shipboard diesel engines for propulsion and auxiliary purposes would be around 200-450° C, depending upon the loads.

Motor ships have greater waste heat potential in the engine exhaust gases. For harvesting this heat, a heat exchanger design was optimised using the Lagrangean methods. A combination treatment system was envisaged including the optimised heat exchanger. The envisaged system was developed based on the existing system on board an operational vessel. The working of the system was checked on two separate engine test rig arrangements. Two heat exchanger designs were developed to suit the engines and the identified heat duties. Heat exchangers suitable for the duties were commercially procured and fitted. The paper reports on the development of the heat exchanger designs for the tests and comparison with the fitted heat exchangers.

The designs of heat exchangers for experiments were developed on the basic characteristics of this optimised design. The optimised shipboard design was developed for harvesting exhaust heat from a 2-stroke engine. However, due to non-availability of marine 2stroke diesel engines at laboratory levels, 4-stroke engines were chosen. Moreover, the control and measurement systems (Dynamometer etc.) available in workshops were well suited for 4-stroke engines only. The data for design were based on the parameters of 4stroke engines employed for experiments. Since only temperatures and heat recovery percentages (of input energies) were significant for the experiments, the use of 4-stroke engines was justified.

The heat absorbed by the engine cooling water systems and the structure (engine parts), losses in radiation, lubricating oil and exhaust gases, as also the useful work realised on the shaft are accountable in this input energy. The heat energy absorbed by various systems will be the product of the mass flow rate and specific heat capacity and temperature rise. The heat balance and hence the heat availability for treatment was computed based on this.

Heat lost to exhaust gases were higher indicating a greater potential for waste heat recovery. The analyses based on test bed heat recovery experiments by Balaji and Yaakob had recorded a maximum recovery of 33 % from exhaust gases. Cooling water had accounted for 5.38 % and shaft power accounted for 43.86 % of the input energies.

Assuming steady state and neglecting heat losses due to radiation, the heat available in exhaust gases would be

$$Qexg = mg \cdot Cg \cdot \Delta Tg \tag{1}$$

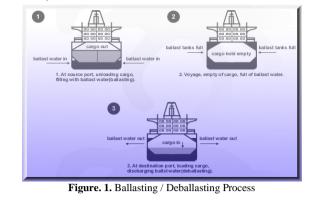


Figure. 2. Microorganism selection by IMO

Figure 2 shows the kinds of microorganisms which selected by IMO. Those microorganisms should be killed by treatment system. The method is using ballst water heating. It can be die at 60° C during 30 minutes.

III. RESEARCH METHODOLOGY

In this research is used methodology. Methodology is determine of porpuse and step to do this Final Project. The function of methodology is main sketch to determine this research. This Final Project is use mix method, as following : (1) Identification and Problem Formulation (2) Looking for Data and Study Literature (3) Analysing and Intrepresentation Data (4) Draw Design (key plan & isometry) and Report.

3.1. Study Literature

Study Literature is a first step to do this research to looking for many references and analysis material. Those are shall accordance by confidence literature then help to do this Final Project.. Study Literature can take from sourch of references such as Book, Catalog, Journals, Papers, etc.

3.2. Data Collection

After collect of study literature, the next step is collect data. There are Main data Vessel, performance main engine data (project guide), characteris microorganism, properties of sea water, exhaust gas, and thermal oil. Thats all shall needed to calculated and inputed on HTRI software.

3.3.Calculation of Data

From Data collection before, then can make calculations . the calculation as following :

- a) Calculation of Mass Flow Rate of Exhaust Gas
- b) Calculation of Mass Flow Rate Thermal Oil (Option 1 (Economizer & Bundle))

- c) Calculation of Mass Flow Rate Sea Water (Option 1 (Economizer & Bundle))
- d) Calculation of Mass Flow Rate Thermal Oil (Option 2 (Economizer & Heat Excharger))
- e) Calculation of Mass Flow Rate Sea Water (Option 2 (Economizer & Heat Excharger))
- f) Calculation of Pressure Drop Ballast Water Treatment Option 1 (Economizer & Bundle)
- g) Calculation of Pressure Drop Ballast Water Treatment Option 2 (Economizer & Heat Excharger)

3.4. Running HTRI Software

Running HTRI Software is needed to Find Optimum Dimention, duty, over design and temperatur of Economizer, Bundle and Heat Excharger Design. To running this software, so there are need data collection such as sea water properties, thermal oil properties, exhaust gas properties. The properties are mass flow rate, temperature, fouling resistance, pressure drop of exhaust gas, and etc.

Because in this step is to find optimum all of data above, so the scenario can be change or mass flowrate thermal oil or sea water to get effective system, that treatment time is not exceed than sailing time.

3.5. Analysis Running HRTI Software

Analyis flowrate and time treatment between Option 1 (Economizer & Bundle) & 2 from running that software shall be known the results to be analyzed as follows over design, pressure drop, duty, and temperature. Treatment time is also calculated and analyzed as a comparison between Option 1 (Economizer & Bundle) and Option 2 (Economizer & Heat Excharger). The results

Of analysis shall be write by table.

3.6. Design Key Plan and Isometry

IV. RESULTS AND DISCUSSION

54

Key plan and Isometry Ballast Treatment are included of analysis processing steps, one of which is to determine the number of fittings resistance and head losses which have been converts to pressure to determine the ability of pump to the pressure drop is calculated. Design of Ballast system had fullfil, will make as key plan and Isometry. So it will be look how the scenario at both system.

3.7. Compiling Material Requirment Plan (MRP)

In this step is compile the material of all in the ballast water treatment. Such a material, schedule of pipe, fitting (valve, SDNRV, filter), economizer, bundle, and heat excharger. 4.1 Prinsipal Dimention Principal Dimention of MV

Dimention of MV. I	Leader Win :
: 110	m
: 105.06 m	
: 102	m
: 18.8	m
: 12.7	m
: 7.964	m
: 0.682	
: 14	knot
: General Cargo	
	: 105.06 m : 102 : 18.8 : 12.7 : 7.964 : 0.682 : 14

4.2 Data of Performance Main Engine

3.8. conclution and Suggestion

Conclution and Suggestion made based all aspec of this Final Project discussion.

	32 31						32 - Project gui data and outpu			
_	Gonora	data	and our	toute						
•	General data and outputs The Wartsila 32 is a 4-stroke, non-reversible, turbocharged and intercooled diesel engine with direct fu									
	The Wärtsilä 32 injection.	is a 4-stroke, r	ion-reversible, tu	irbocharged ar	nd interco	oled diesel eng	ine with direct fu			
	Cylinder bore		320 mm							
	Stroke		400 mm							
	Piston displacem	ent	32.2 l/cylinder							
	Number of valves									
	Cylinder configura	ation	2 exhaust valves 6, 7, 8 and 9 in-lin 12, 16 and 18 in V							
	V-angle		55°							
	Direction of rotati	on	Clockwise, count	erclockwise on	request					
	Speed		720, 750 rpm							
	Mean piston spee	be	9.6, 10.0 m/s							
	Table 1.1 Rating tab Cylinder configuration	Main engine	-	200	Generati					
	comguration	750 rpm		720 rpm			rpm			
		[kW]	Engine [k			Engine [kW]	Generator [kV/			
	W 6L32	3000	2880	34		3000	3600			
	W 7L32 W 8L32	3500	3360	40		3500 4000	4200 4800			
	W 9L32	4000	4320	46		4000	4800			
			4320	51		4500	7200			
	W 16V32	W 12V32 6000		08						
			7680	02	20	8000	9600			
tsilä	W 18V32	8000 9000	7680 8640	92			9600 10800 Project guide Technical data			
tsilă	W 18V32	9000				9000 Wärtsilä 32 -	10800 Project guide			
	w 18V32 32 Wärtsilä 8L3	9000			\$70	9000 Wärtsilä 32 - 3. 1	10800 Project guide rechnical data			
[w 18V32 32 Wärtsilä 8L3 Wärtsis 8.32	9000		103	AE/DE	9000 Wärtsilä 32 - 3. T	10800 Project guide fechnical data			
	W 18V32 32 Wärtsilä 8L3 Wärtsilä 8L3 Engine speed	9000		103 RPM	AE/DE 720	9000 Wärtsilä 32 - 3. 1 AE/DE 750	10800 Project guide Fechnical data			
	W 18V32 32 Wärtsilä 8L3 Wärtsilä 8.32 Engine speed Cylinder output	9000		RPM kWicyl	AE/DE 720 480	9000 Wärtsilä 32 - 3. T AE/DE 759 500	10800 Project guide fechnical data			
	W 18V32 32 Wärtsilä 8L3 Wärtsilä 8L3 Engine speed	9000		103 RPM	AE/DE 720	9000 Wärtsilä 32 - 3. 1 AE/DE 750	10800 Project guide Fechnical data			
	W 18V32 32 Wärtsilä 8L3 Engine spend Cyfinder output Engine output Mean effective pressure	9000 32		RPM kWlgl kW	AE/DE 720 480 3840	9000 Wärtsilä 32 - 3. 1 AEIDE 750 500 4000	10800 Project guide fechnical data			
	W 18V32 32 Wärtsilä 8L3 Wärsilä 8L32 Engine speed Cyflinder output Engine output	9000 32		RPM KWicyl kW MPa	AE/DE 720 480 3840	9000 Wärtsilä 32 - 3. 1 AEIDE 750 500 4000	10800 Project guide fechnical data			
	W 18V32 32 Wärtsilä 8L3 Ergie speed Cylinder opput Ergie output Man efficiene pressure Conduction at system pteole	32 1)		RPM kWlgl kW	AE/DE 720 480 3840 2.49	9000 Wärtsilä 32 - 3. 1 <u>AE/DE</u> 750 4000 2.49	10800 Project guide rechnical data			
	W 18V32 32 Wärtsilä 8L3 Wärtsilä 8L3 Cylinde rotput Engine speed Cylinde rotput Engine speed Cylinde rotput Engine speed Cylinde rotput Engine speed Cylinde rotput	9000 32 1) Iske, max.		RPM Milloyi kW kg/s	AE/DE 720 480 3840 2.49 6.59	9000 Wärtsilä 32 - 3. 1 	10800 Project guide fechnical data			
	W 18V32 32 32 Wardtsilä 8.L3 Wärdtsilä 8.L3 Engin sodot Engin octout Mann efficiere presure Controllate a system piete a totok bad Emperatu si utokoharger in Hermeratura si utokoharger in Exhaust gas system piete 2;	9000 32 1) Iske, max.		RPM KWigyl KW MPa kg/s *C	AE/DE 720 480 3840 2.49 6.59 45	9000 Wartsila 32 - 3. 1 	10800 Project guide rechnical data CPP/FPP 750 500 4000 2.49 6.99 45 55			
	W 18V32 32 32 Wärtsilä 8L3 Ergin seed Cylinder output Gylinder output Gylinder output Combustion at system (Hole Temperature at functionary enter the Temperature at functionary enter at toolice Ark temperature at the acceler	9000 32 1) Iske, max.		RPM KWigyl KW MPa kg/s *C	AE/DE 720 480 3840 2.49 6.59 45	9000 Wartsila 32 - 3. 1 	10800 Project guide rechnical data CPPIFFP 790 500 4000 2.49 6.88 45			
	W 18V32 32 32 Wärtsilä 8L3 Egire sped Gylnör odput Egire sped Egire sped Gylnör odput Engene output Kan effective presure Conduction at system (Mole and Temperature at thread cooler Ethanst gas system (Mole Ad Temperature at thread cooler Ethanst gas system (Mole Ad Temperature at thread cooler Ethanst gas system (Mole Ad Temperature at thread cooler Ethanst gas system (Mole Ad Temperature at thread cooler)	9000 32 1) Iske, max.		RPM WWgrl WW MPa tojis Tojis Tojis	AE/DE 720 480 3840 2.49 6.59 45 55	9000 Wärtsilä 32 - 3. 1 	10800 Project guide rechnical data CPP/FPP 750 500 4000 2.49 6.99 45 55			
	W 18V32 32 32 Witslis 8.2 Engine speed Cylinder output Engine output Eng	9000 32 1) Iske, max.		8PM WWg/ WWg/ WW 49% *0° *0° *0° *0° *0° *0° *0° *0° *0° *0°	AE/DE 720 480 3840 2.49 6.59 45 55 6.8 6.8 6.8 6.8 5.8	9000 Wärtsilä 32 - 3. 1 	10800 Project guide rechnical data CPP/FPP 750 500 4000 2.49 - - - - - - - - - - - - -			
	W 18V32 32 32 Wintsilä &L3 Ergins speed Cynnek odyat Ergins speed Cynnek odyat Ergins speed Cynnek odyat Ergins otopat Ergins otopat Rain erflictive presure Combustion at system (Pole Flow at 100% bad Pile at 30% bad	9000 32 1) take, max. (TE 601)		89M Wileyi Wileyi Wileyi Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo	AE/DE 720 480 3840 2.49 6.59 45 55 55 6.8 6.45 5.5 8 4.1	9000 Wartsilä 32 - 3. 1 	10800 Project guide rechnical data CPP:FFP 750 500 4000 2.49 6.98 45 55 7.2 6.7 5.8 4.6			
	W 18V32 32 32 Wirslis 8.22 Engine speed Coloridor of the second s	9000 32 1) take, max. (TE 601) ; 100% load (TE 517)		89M 89M 103 103 103 103 103 103 103 103 103 103	AE/DE 720 480 3840 2.49 45 55 6.59 45 55 6.6 6.6 5.8 4.1 390	9000 Wärtsilä 32 - 3. 1 	10800 Project guide rechnical data CPP/FPP 750 500 4000 2.49 6.58 45 55 7.2 6.7 5.8 4.6 385			
	W 18V32 32 32 Wirstsilä &L3 Kirstilä &L3 Kir	9000 32 1) 1) 1) 10% load (TE 517) 85% load (TE 517)		89% 89% 30% 30% 40% 40% 40% 40% 40% 40% 40% 40% 40% 4	AE/DE 720 480 3840 2.49 45 55 55 6.8 6.45 6.45 6.45 6.45 6.45 336	9000 Wártsilä 32 - 3. 1 AEDE 750 4000 2.49 4000 2.49 4000 2.49 4000 2.49 400 6.69 45 55 6.1 4.3 385 330	10800 Project guide rechnical data CPP#FPP 750 550 4000 2.49 45 55 - 7.2 6.7 5.8 4.6 380 330			
	VV 18V32 32 Wartsilä 8.L2 Engine speed Gylinder odput Engine output Mann efficielus presure Contextista 8.L2 Prive at 100% load Temperatura at functionarger in the temperatura at the an occier Exhant gen system pilote 2 Prive at 100% load Prive at 55% load	9000 32 1) take, max. (TE 601) ; 100% load (TE 517) ; 65% load (TE 517) ; 5% load (TE 517)		RPM WWork WW MPa Ap/s 'C 'Q 'Q 'Q 'Q 'Q' 'C 'C	AE/DE 720 480 3840 2.49 6.59 45 55 55 6.8 6.45 5.8 4.1 1 390 336 337	9000 Wärtsilä 32 - 3. 1 2.49 4000 2.49 45 55 40 6.99 45 55 45 55 45 55 43 45 55 43 43 335 330	10800 Project guide rechnical data CPP/FPP 750 500 4000 2.49 6.88 45 5 7 7.2 6.7 5.8 4.6 385 330 350			
	W 18V32 32 32 Wirtsläß & L3 Engine speed Cyclinder odgut Engine output E	9000 32 1) take, max. (TE 601) ; 100% load (TE 517) ; 65% load (TE 517) ; 5% load (TE 517)		89% Wileyi Wileyi Wileyi Nyi Nyi Nyi Nyi Nyi Nyi Nyi Nyi Nyi N	AE/DE 720 480 3840 2.49 6.59 6.59 6.59 6.55 55 6.8 6.45 55 55 6.8 6.45 336 336 337 380	9000 Wärtsilä 32 - 3. 1 	10800 Project guide rechnical data CPP#FP 750 500 4000 2.49 - - - - - - - - - - - - -			
	W 18V32 32 32 Warstsillä 8L2 Ergine sped Cylindr odput Ergine output Brain efficiele opput Brain e	9000 32 1) take, max. (TE 601) : 60% load (TE 517) : 60% load (TE 517) : 50% load (TE 517) 50% load (TE 517)		103 103 103 103 103 103 104 107 1	AE/DE 720 480 2.49 6.59 45 55 55 55 55 55 55 55 55 55 55 55 55	9000 Wärtsilä 32 - 3, 1 - - - - - - - - - - - - - - - - - - -	10800 Project guide rechnical data CPP/FPP 730 500 4000 4000 400 6.58 45 55 72 6.7 5.8 46 385 380 380 30 0			
	W 18V32 32 32 Wirtsläß & L3 Engine speed Cyclinder odgut Engine output E	9000 9000 32 1) take, max. (TE 601) 100% load (TE 517) 100% load (TE 517) 100% load (TE 517) 10% load (TE 517)		89% Wileyi Wileyi Wileyi Nyi Nyi Nyi Nyi Nyi Nyi Nyi Nyi Nyi N	AE/DE 720 480 3840 2.49 6.59 6.59 6.59 6.55 55 6.8 6.45 55 55 6.8 6.45 336 336 337 380	9000 Wärtsilä 32 - 3. 1 	10800 Project guide rechnical data CPP#FP 750 500 4000 2.49 - - - - - - - - - - - - -			

Figure. 3. Data of Performance Main Engine

Figure 3 is show of data from engine project guide. There is available value of output engine degree celcius, diameter pipe of exhaust gas. And etc.

4.3 Properties Necessary for Running Software HTRI

4.3.1 Ballast Tank Dimention

This ballast tank dimention/volume is used to compliance data to do this Final Project. These tanks is used to known and calculate thermal oil and sea water mass flow rates. Detail calculation of that will explained at sub-chapter 4.4. Data of ship ballast tanks volume as follows on table 1. This Final project is use the biggest volume of tank (marked) to calculate the sea water flow rates shall be known. ¹/₄ Ballast tank volumre is used to calculate sea water flow rates at Ballast Treatment System Option 2 (Economizer & Heat Excharger)

4.3.2 Exhaust Gas Properties

In this Final Project Ballast Water Treatment is using heating method. The source is take from heat exhaust gas main engine vessel or called heat recovery.

Data volume ballast tank by tank :							
Total Ballast Tanks Volume	=	2114.10	m ³				
Ballast Tank Volume I	=	192.75	m ³				
Ballast Tank Volume II	=	192.75	m ³				
Ballast Tank Volume III	=	383.68	m ³				
Ballast Tank Volume IV	=	383.68	m ³				
Ballast Tank Volume V	=	304.80	m ³				
Ballast Tank Volume VI	=	304.80	m ³				
Forepeak Tank Volume I	=	175.83	m ³				
Forepeak Tank Volume II	=	175.83	m ³				
1/4 V. Tanki Ballast :							
Ballast Tank Volume I	=	48.19	m ³				
Ballast Tank Volume II	=	48.19	m ³				
Ballast Tank Volume III	=	95.92	m^3				
Ballast Tank Volume IV	=	95.92	m ³				
Ballast Tank Volume V	=	76.20	m ³				
Ballast Tank Volume VI	=	76.20	m ³				
Forepeak Tank Volume I	=	43.96	m ³				
Forepeak Tank Volume II	=	43.96	m^3				

TABLE 1. BALLAST TANK VOLUME

follows on table 2.

TABLE 2. Exhaust Gas Properties

Т	ρ	h	S	Cp	μ	k
260	1.34	260	6.727	1.006	0.165	0.0231
280	1.245	280.2	6.802	1.006	0.175	0.0247
300	1.161	300.3	6.871	1.007	0.185	0.0263
350	0.995	350.7	7.026	1.009	0.208	0.0301
400	0.871	401.2	7.161	1.014	0.23	0.0336
450	0.774	452.1	7.282	1.021	0.251	0.0371
500	0.696	503.4	7.389	1.03	0.27	0.0404
600	0.58	607.5	7.579	1.051	0.306	0.0466
800	0.435	822.5	7.888	1.099	0.37	0.0577
1000	0.348	1046.8	8.138	1.141	0.424	0.0681
1200	0.29	1278	8.349	1.175	0.473	0.0783
1400	0.249	1515	8.531	1.207	0.527	0.0927

As for exhaust gas properties needed and then input

those data like density, viskocity, specific heat, pressure

of exhaust gas, and etc to Software HTRI. Those

properties are needed to knowing a summary of running

that software. The properties table shal be known as

International Journal of Marine Engineering Innovation and Research, Vol. 1(2), Mar. 2017. 51-67 (pISSN: 2541-5972, eISSN: 2548-1479)

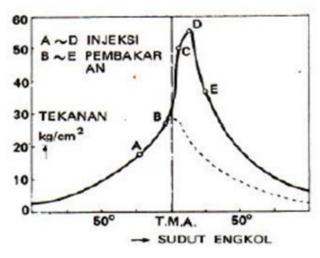


Chart. 1. Process Combustion Engine

From graphic on Chart 1 is known pressure of exhaust gas = 8.0047 kg/cm^2 or 785 kPa.

That property tabel was obtaind from internet, cause unavailable on main engine project guide.

4.3.3 Thermal Oil Properties

Thermal oil is used as heating medium ballast water, where thermal oil circulated in Economizer to Heat Excharger or Bundle. Thermal oil receives heat from main engine flue gas heat then circulated to units which have been mentioned. For thermal oil properties is already available in Software HTRI. In this Final Project is use Therminol LT for type of thermal oil. At menu data input on that software can be selected types of thermal oil as follows on Figure 4.

In addition to the software is already available properties like density, viscocity, spesific heat, and etc as folows on figure 5.

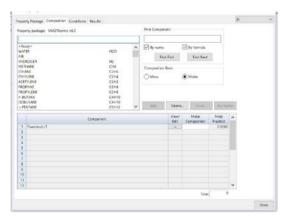


Figure. 4. Example types of Thermal Oil in Software HTRI

Figure. 5. Properties of Therminol LT in Software HTRI

4.3.4 Sea Water Properties

Sea water on ballast thank will be in treatment base on ballast water management standards. Sea water receiving heat from thermal oil inside of bundle or heat excharger. The software is not already available properties like density, viscocity, spesific heat, and etc. So, sea water properties are use reference from internet as follows on Figure 6.

At menu data input on that software can be inputted sea water properties as follows on Figure 7.

mathematical models are expressed below:

4.4 Data Calculation

4.4.1 Mass Flow Rate of Exhaust Gas

The recommended flow velocity in the pipe is 35...40 m/s at full engine output. If there are many resistance factors in the piping, or the pipe is very long, then the flow velocity needs to be lower. The exhaust gas mass flow given in chapter Technical data can be translated to velocity using the formula:

	v	=	$\frac{4 x m}{1.3 x \left(\frac{273}{273 + t}\right) x \pi x D^2}$
	40	=	$\frac{4 x m}{1.3 x \left(\frac{273}{273 + 330}\right) x 3.14 x 0.72}$
	40	=	4m / 1.54621
	m	=	<u>40 x 1.54621</u>
			4
	m	=	15.462 kg/s
Where :			
	v	=	Gas velocity, 40 [m/s]
	m	=	Exhaust gas mass flow [kg/s]
	t	=	Exhaust gas temperature, 330
			[°C] at85%

= Exhaust gas pipe diameter,

0.7 [m]

	Pro	perties				
		State 1			State 2	
Temperature	9 1	20	°C	92	30	°C
Salinity	xı	10	g/kg	x ₂	45	g/kg
Density	ρ	1006	kg/m ³	ρ	1029	kg/m³
Specific heat capacity	cp	4131	$J/(kg \cdot K)$	cp	3947	J/(kg·K)
Thermal conductivity	λ	0.603	₩/ (m•K)	λ	0.6135	₩/ (m•K)
Dynamic viscosity	79	1.021	mPa·s	79	0.8759	mPa·s
Kinematic viscosity	v	0.001015	mª/s	ΰ	0.000851	mª/s
Prandtl number	Pr	6.995	-	Pr	5.635	-
Thermal diffusivity	a	1.451E-7	m²/s	a	1.511E-7	m²/s
Coeff. of thermal expansion	β	0.000698	1/K	β	0006682	1/K

D

Validity: 0 °C ≤ 9 ≤ 180 °C 0 g/kg ≤ x ≤ 150 g/kg

Figure. 6. Properties of Sea Water

	5et 1																	
	Pressure		191		1	labor Proce	des :						Liquid Pr	coefies				
	Temperature (Q	Enthalpy (k)/kgi	Weight Fraction Vapor	Density (kg/m3)	Versity (nN-s/n2)	Heat Capacity (k)kp-C)	Conductivity (Wim-Q	Eritalpy (k)kg)	Density (kg/m3)	Vacceity (mN-s/m2)	Helt Capacity (killing-C)	Conductivity (W/m-Q)	Enthalpy (k)/kgl	Surface Tension (mN(m)	Lutent Heat (k)/kg)	Critical Pressure (kPa)	Critical Temperature (C)	Levis Numb
	Required No.	No	No	No	Ne	No	No	No	No	No	No	No	No	No	No	No	No	No
	30	-1893.7							994573	0.7972	4219	0.6151		71.1942		22055	373.98	
	36.36	-1866.5							992.489		4219	0.6239		10.1846		22055	373.96	
ŝ	42.72	-1543							195001	- 6421	4,22/5			69.153		22655	373.90	
	49.17	-1032							507.401		4,2254	86365		68.1			\$73.56	
i.	55.42	-1764							编辑	0.5007	42277	0.6463		67.006			閉盤	
ī.	8.26	-17555							频级	0.4543	4236			65.9331			373.98	
	16.29								878,251	0,4547	4,3428	0.6581		643201			373.95	
Ē	74.41								974.805	0.3807	13(9)	0.6631		E3.6901			373.96	
1	80.71	-1675.1							971.167		428	0.6675		(2542)			171.58	
0	17								967.541	0.3256	42719			613731			173.90	
ï																		
2																		
3																		
4																		

Figure. 7. Input Properties of Sea Water in Software HTRI

4.4.1 Mass Flow Rate Thermal Oil (Option 1 (Economizer & Bundle))

1) Massflowrate of thermal oil:

 $\dot{m} = Q \ge \rho / 3600 - \frac{178 \ge 830.05}{3600} = 41 \le \frac{178 \ge 830.05}{100}$

Q = get from spesification pump (this flow rate is most optimum number)

This number of mass flow rate will inputted into the softwere HTRI.

4.4.2 Mass Flow Rate Sea Water (Option 1 (Economizer & Bundle))

For Option 1 (Economizer & Bundle), sea water receiving heat from bundle.

v = Q/A
$$\longrightarrow$$

= $\frac{47.96}{0.7425}$ Q = V/t
= $\frac{383.68}{8}$
= 64.59 m/hr = $47.96 \text{ m}^3/\text{hr}$
= 0.01 8 m/s
Massflowrate of sea water : V = Volume (m3
m = Q x \rho / 3600 t = Time (certained)
= $47.96 \text{ x } 1121 / 3600$ (hr)
= 13.66 kg/s
A = p x 1
= $1.5 \text{ x } 0.495$
= 0.7425 m^2
where :
p = long of bundle
(m)
l = wide of bundle
(m)

This number of mass flow rate will inputted into the softwere HTRI.

Particle of sea water on ballast tank are quiet, but while thermal oil circulate on tube of bundle and it will make convection heat transfer. This make sea water particle moving on each other. Velocity of sea water on the biggest tank is 0.018 m/s with time heating 8 hours. Detail time calculate for all tank will be explained at sub-chapter 4.6.

4.4.3 Mass Flow Rate Thermal Oil (Option 2 (Economizer & Heat Excharger))

2) Massflowrate of thermal oil :

$$\dot{m} = Q \times \rho / 3600 \longrightarrow Q = get \text{ from} = 240 \times 830.05 / 3600 \qquad \text{spesification} = 55.34 \text{ kg/s} \qquad \text{pump (this flow} rate is most}$$

optimum number) This number of mass flow rate will inputted into the softwere HTRI.

4.4.4 Mass Flow Rate Sea Water (Option 2 (Economizer & Heat Excharger))

For Option 2 (Economizer & Heat Excharger), sea water is circulated from ballast tank then pass into heat excharger then entered into other ballast tank (modification tank) and then it shall circulated back into the first tank.

1) Massflowrate of sea water :

$$\begin{array}{ll} \dot{m} &= Q \ x \ \rho \ / \ 3600 & \longrightarrow \ Q= \ get \ from \ spesification \\ & pump \ (\ this \ flow \ rate \ is \\ & most \ optimum \ number) \\ &= 21.80 \ kg/s \end{array}$$

This number of mass flow rate will inputted into the softwere HTRI.

Sea water on ballast thank will be circulated to Heat Excharger. After passing on Heat exharger, where heat from thermal oil transferred to sea water on tubes of heat excharger. Detail time calculate for all tank will be explained at sub-chapter 4.6.

- 4.4.5 Calculation Pressure Drop Ballast Water Treatment Option 1 (Economizer & Bundle)
 - A. Calculation Pressure Drop Thermal Oil

Total head losses (HI) = hs + hv + hp + hf1 + hl1 + hf2+ hl2= 0 + 0 + 0 + 0.68 + 1.208 + 5.628 + 1.264 + 0.530 + 0.531= 9.84 m

= 96.51	kPa
= 34.014	kPa
= 34.181	kPa
= 63.287	kPa
	= 34.014 = 34.181

Total pressure = pressure drop pump + prssure drop Bundle A + prssure drop Bundle B + prssure drop economizer

= 96.51 + 34.014 + 34.181 + 63.287= 227.99 kPa

TABLE 3.
SPESIFICATION OF BALAST TREATMENT (THERMAL OILO PUMP OPTION 1 (ECONOMIZER & BUNDLE)

Merk	=	Sili Pump RY 125 - 100 - 200					
Capacity	=	178	m³/hr				
Head	=	40	m				
Temperature	=	350	°C				
Speeds	=	3500	rpm				
Frequent	=	60	Hz				

- 4.4.6 Calculation Pressure Drop Ballast Water Treatment Option 2 (Economizer & Heat Excharger)
 - B. Calculation Pressure Drop Thermal Oil

Total head losses (H1) = hs + hv + hp + hf1 + hl1 + hf2 + hl2 = 0 + 0 + 0 + 0.90 + 0.873 + 0.45+ 0.146 + 0.27 + 10140= 3.74 m

Pressure drop suc. and disc. Pump= 36.65kPaPessure drop at H.E= 28.476kPaPessure drop at Economizer= 38.697kPa

Total pressure = pressure pump + prssure H.E + pressure eco. = 103.82 kPa Spesification of pump will be show at Table 4. = 36.65 + 28.476 + 38.697

4.4.7 Calculation Pressure Drop Thermal Oil

Total head losses (HI) = hs + hv + hp + hf1 + hl1 + hf2+ hl2= 7.25 + 0 + 0 + 12.76 + 0.495+ 6.531 + 0.307 + 0.408 + 0.317= 28.07 m

Pressure from suc. and disc. Pump = 275.19 kPa Pessure drop at H.E = 4.747 kPa

Total pressure = pressure pump + prssure H.E = 275.19 + 4.747= 279.94 kPa

Spesification of sea water pump will be show at Table 5.

TABLE 4.
SPESIFICATION OF BALAST TREATMENT (THERMAL OIL) PUMP OPTION 2 (ECONOMIZER & HEAT EXCHARGER)

=	Sili Pump RY 125 - 100 - 200				
_	240	m ³ /hr			
-	240	111 / 111			
=	70	m			
=	350	°C			
=	3500	rpm			
=	60	Hz			
	=	= 240 = 70 = 350 = 3500	$= 240 m^{3}/hr$ $= 70 m$ $= 350 °C$ $= 3500 rpm$		

TABLE 5.

SPESIFICATION OF BALAST TREATMENT (SEA WATER) PUMP OPTION 2 (ECONOMIZER & HEAT EXCHARGER)

=	Sili Pump 1	00CLH -8.5	
=	70	m³/hr	
=	45	m	
=	80	°C	
=	2900	rpm	
=	50	Hz	
	=	= 70 $= 45$ $= 80$ $= 2900$	$= 70 mtext{m}^{3/hr}$ $= 45 mtext{m}$ $= 80 ext{°C}$ $= 2900 mtext{rpm}$

4.5 Analysis of Running Software HTRI Summary

4.5.1 Analysis Ballast Treatment Option 1 (Economizer & Bundle)

From running that software shall be known the results to be analyzed as follows over design, pressure drop, duty, and temperature. Treatment time is also calculated and analyzed as a comparison between Option 1 (Economizer & Bundle) and Option 2 (Economizer & Heat Excharger).

Result of Running Software HTRI For Economizer will be show on Table 6, and from that can be obtained as follows on Table 7.

With that results, so Economizer needs ballast water treatment systems already optimum for option.

Result of Running Software HTRI For Bundle will be show on Table 8, and from that can be obtained as follows on Table 9.

Treatment time shall be calculate as following :

Total treatment time all ballast water tanks will be show on Table 10.

60

TABLE 6.
RESULT OF RUNNING SOFTWARE HTRI FOR ECONOMIZER 1

	PT HEAT THANKING BELLITICING DESCRIPTION	Output	Summary					Р
	SCORAD-SCOR INCOMENTA				per Company:			
			ransfer Soluti	ons Indones	a			
		Joko Pari						
	Xace 7.3 Beta 12/6/2016 16:57	SN: 08983-	36984811					SIL
	Rating-Horizontal economizer of	ountercurren	t to crossflow					
1	See Data Check Messages Re	port for Warr	ning Message	s.				
2	See Runtime Message Report		Messages.					
3	Process Con	ditions		Outs	ide		Tubeside	
	Fluid name		Gas Buan	9		Thermal (Dil	
5	Fluid condition Total flow rate				Sens. Gas 15.462			Sens. Liq
7	Veight fraction vapor. In/Out	(kg/s)		1 0000	15.462	0.00		0.00
8		(Deg C)		330.00	169.63	70 (100
9	Skin temperature, Min/Max	(Deg C)		115.47	206.59	P 96.4	12	159
	Pressure, Inlet/Outlet	(L 0 9 0) (kPa)		785.00	781.66	499.0		435
11	Pressure drop, Total/Allow		(kPa)	3.337	10.000	63.21	37	70.0
12	Midpoint velocity	(m/s)	•		15.36		•	2
13	- In/Out	(m/s)				2.0	37	2
14	Heat transfer safety factor	()			1.0000		- 1	1.00
15 16	Fouling	(m2-K/W)		Frankson	0.001761 Performance			0.000
	Outside film coef	(W/m2-K)		57.88	Actual U		W/m2-K)	31.(
	Tubeside film coef	(W/m2-K) (W/m2-K)		3084.7	Required U		W/m2-K)	30.4
	Clean coef	(W/m2-K)		38,716	Area	((m2)	528
20	Hotregime	(5	Sens. Gas	Overdesign		(%)	2
16				Exchanger	Performance			
17	Outside film coef	(W/m2-K)		57.88	Actual U		W/m2-K)	31.(
	Tubeside film coef	(W/m2-K)		3084.7	Required U	0	W/m2-K)	30.4
19		(W/m2-K)		38.716	Area		(m2)	528
20 21				Sens. Gas ns. Liquid	Overdesign	Taka	(%) Geometry	2
	EMTD	(Deg C)	Se	155.5	Tube type	Tube	Geometry	High-finr
	Duty	(MegaWatts)		2.503	Tube OD		(mm)	25.4
24		Unit Geo	metry		Tube ID		(mm)	22.5
25	Bays in parallel per unit			1	Length		(m)	1.2
	Bundles parallel per bay			1	Area ratio(o	ut/in)	()	26.1
27		(m2)		528.53	Layout			Stagge
	Bare area	(m2)		27.386	Trans pitch		(mm)	60.f
29 30	Bundle width	(m)		1.377 Outlet	Long pitch		(mm)	52.1
30 31	Nozzle Number		Inlet	Outlet 1	Number of p Number of r		()	
31 32		() (mm)	1 193.68	103.68	Number of r Tubecount	uwś	() ()	:
33	Velocity	(mm) (m/s)	1.65	193.00	Tubecount	Odd/Even	()	22/
34	R-V-SQ	(kg/m-s2)	2291.2	2333.4	Material	Ferr	()	Cop
35	Pressure drop	(kPa)	1.260	0.817		Fin	Geometry	
36		Fan Geo			Туре		_	Circu
37		()		0	Fins/length	(fi:	n/meter)	43
38	Fan ring type				Fin root		(mm)	25.4
	Diameter Ratio, Fan/bundle face area	(m)	- ÷	0.000	Height Base thickn		(mm)	15.8
	Ratio, Fan/bundle face area Driver power	() (kW)		0.0000	Dier fin	ess	(mm) (mm)	57.1
	Tip clearance	(mm)		0.00	Efficiency		(96)	57.
43	Efficiency	(%)		0.0000	Area ratio (fi	n/bare)	()	23.5
44				Standard	Material			Cop
	Face	(m/s)	8.15			Therma	Resistan	
	Maximum	(m/s)	21.04		Air		- 1	53
	Flow (10 Velocity pressure	0 m3/min) (Pa)	8.756		Tube Fouling		- ÷	26 19
	Bundle pressure drop	(Pa) (Pa)	3337.2		Metal			19
50		()	1.000		Bond			0
51		100.00		irside Press		Louvers		0
	Ground clearance	0.00	Fan guard		0.00	Hail screen	- 1	0
53	Fan ring	0.00	Fan area blo	ckage	0.00	Steam coil		0

 TABLE 7.

 POINT OF ECONOMIZER 1 CALCULATION

No.	Properties	Calculation	Max. Value
1.	Over Design	2.01 (%)	10 (%)
2.	Pressure drop exhaust gas	3.337 (kPa)	10 (kPa)
3.	Pressure drop thermal oil	63.287 (kPa)	70 (kPa)
4.	Duty	2.503 (MegaWatts)	
5.	Temperature exhaust gas	169.63 (°C)	330 (°C)
6.	Temperature thermal oil	70 (°C)	100 (°C)

 TABLE 8.

 Result of Running Software HTRI For Bundle

IT HEAT TRANSPORTED AND ADDRESS REAGENERS AND ADDRESS	P. O. BORDAN PROFE	Output S					Pa
CAN'T STREAM COLD	with the risk stations will be			ng HTRI Membe tions Indonesia	er Company:		
		PT Heat Tra Joko Parito		wons indonesia			
Xist 7.3 Beta 12	2/6/2016 16:58 SN:	08983-369	34811				SI Un
: Summary Unit							
	With No Baffles						
No Data Check							
No Runtime Me							
Process	Conditions	(Cold Shells	side	Hot Tu	beside	e
Fluid name				sea water			hot
Flow rate	(kg/s)			13.66			41.0
Inlet/Outlet Y	(Wt. frac vap.)		0.0000	0.0000	0.0000	1	0.00
Inlet/Outlet T	(Deg C)		30.00	70.00	100.00		76.
Inlet P/Avg	(kPa)		202.65		435.00	١.	400.
dP/Allow.	(kPa)		0.028		68 196	- F	70.0
Fouling	(m2-K/W)		0.020	0.000352	00.100	- ¥-	0.0001
during	(112 1011)	Dual	De la composition de la compos				0.0001
		EXC		rformance			
Shell h	(W/m2-K)	- 2	1682.1	Actual U	(W/m 2-K)	12	607.
Tube h	(W/m2-K)		2637.0	Required U	(W/m 2-K)		567
Hot regime	()		s. Liquid	Duty	(MegaWatts)		1.95
Cold regime	()	Sen	s. Liquid	Eff. area	(m2)	12	92.4
EMTD	(Deg C)		37.3	Overdesign	(%)	· ·	7.
	Shell Geometry	/			Baffle Geometr	у	
TEMA type	()		BXU	Baffle type			Supp
Shell ID	(mm)		475.95	Baffle cut	(Pct Dia.)		
Series	()		2	Battle orientat	ion ()		
Parallel	()		2	Central spacin			735.
Orientation	(dea)		90.00	Crosspasses			
Onemation	Shell Geometry	,	30.00	01033030303	Baffle Geometr	v	
TEMA type	()		BXU	Baffle type			Supp
Shell ID	(mm)		475.95	Baffle cut	(Pct Dia.)		
Series Parallel	()	- ÷	2	Baffle orientat Central spacir			735.
Orientation	() (deg)		00.08	Crosspasses	ig (mm) ()		735.
	Tube Geometry	/			Nozzles		
Tube type	()	_	Plain	Shell inlet	(mm)	1	254.
Tube OD Length	(mm) (m)	- 1	19.050	Shell outlet	(mm) (mm)	÷.	254. 34.8
Pitch ratio	(m) ()		1.500	Inlet height Outlet height	(mm) (mm)		34.8
Layout	(deg)		30	Tube inlet	(mm)	12	97.1
Tubecount Tube Pass	()		240	Tube outlet	(mm)		97.1
	()	-	4 /elocities.	mle		w Frac	
Thermal R Shell	esistance, %	· ·	elocities, Mi		Flo	w Frac	tions
Tube	27.89	Tubeside	2.0		B		0.0
Fouling	34.35	Crossflow	3.39e-	3.67e-2	ĉ	12.1	0.2
Metal	1.62	Window			E		0.0

	TABLE 9. POINT OF BUNDLE CALCULATION					
No.	Properties	Calculation	Max. Value			
1.	Over Design	7.15 (%)	10 (%)			
2.	Pressure drop sea water	0.028 (kPa)	(kPa)			
3.	Pressure drop thermal oil	68.196 (kPa)	70 (kPa)			
4.	Duty	1.9567 (MegaWatts)				
5.	Temperature sea water	30 (°C)	70 (°C)			
6.	Temperature thermal oil	76.61 (°C)	100 (°C)			

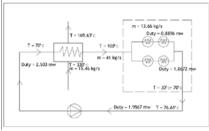


Figure. 8. Flow Diagram Duty of Ballast Treatment Option 1 (Economizer & Bundle)

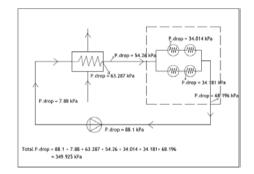


Figure. 9. Flow Diagram Pressure Drop of Ballast Treatment Option 1 (Economizer & Bundle)

TABLE 10. Total Treatment time for Ballast water Option 1 (Economizer & Bundle)

Volume ballast tank (m ³)	Mass of sea water (kg)	ṁ sea water (kg/s)	Time circulate of sea water (sc.)	Time circulate of sea water (hr)
192.749	197568	13.66	14468.232	4.02
192.749	197568	13.66	14468.232	4.02
383.675	393267	13.66	28799.625	8.00
383.675	393267	13.66	28799.625	8.00
304.795	312415	13.66	22878.691	6.36
304.795	312415	13.66	22878.691	6.36
175.832	180228	13.66	13198.399	3.67
175.832	197108	13.66	14434.541	4.01
		1	Fotal time circulate sea water =	44.424

4.5.2 Analysis Ballast Treatment Option 2 (Economizer & Heat Excharger)

From running that software shall be known the results to be analyzed as follows over design, pressure drop, duty, and temperature. Treatment time is also calculated and analyzed as a comparison between Option 1 (Economizer & Bundle) and Option 2 (Economizer & Heat Excharger). Result of Running Software HTRI For Economizer will be show on Table 11, and from that can be obtained as follows on Table 12.

With that results, so Economizer needs ballast water treatment systems already optimum for option.

Result of Running Software HTRI For Heat Excharger will be show on Table 13, and from that can be obtained as follows on Table 14.

water tanks will be show on Table 15.

Treatment time shall be calculate as following :

Q	$= \dot{m} x cp x \Delta T \longrightarrow$	$\dot{m} = \Delta m / \Delta t$
ṁ	$=\Delta m/\Delta t$	$m = \rho x V$
t	$= m/\dot{m}$	m = 1025 x 251.871
	= 258167.37/21.80	m = 258167.37 kg
t	= 3.29 hr	-

Because the system uses he empty tank as an addition (modivication tank), the calculated time is a time of ballast water flow to the heat excharger and time back to the initial tank. Total treatment time all ballast

T		nnna		BLE 11	•	0.0	Fanyo		1
r	RESULT OF RU	Coutput Released PT Heat 1	Summary to the followin Transfer Solu		ber Company:	OR	ECONO	M	IZER Z Page 1
	Xace 7 3 Beta 12/6/2016 1	Joko Pari							SI Units
	Xace 7.3 Beta 12/6/2016 1	5:48 SN: 08983-	36984811						SI Units
	Rating-Horizontal economiz	er countercurren	t to crossflow	,					
1	See Data Check Messages See Runtime Message Rep	ort for Warning	ning Messag Messages.						
3	Process 0	onditions		Outs	ide		Tubesid	le	
4	Fluid name Fluid condition		Gas Buar	ng		Th	ermal Oil		
	Fluid condition Total flow rate	(kg/s)			Sens. Gas 15.462				Sens. Liquid 55.340
				1 0000	1 0000		0.0000		0.0000
8	Temperature, In/Out	(Deg C)		330.00	113.53		70.00		100.00
۰ <u>و</u>	Skin temperature, Min/Max	(Deg C)		87.30	198.02		81.25		161.03
10	Pressure, Inlet/Outlet	(kPa)		785.00	783.13		499.00		460.30
11	Pressure drop, Total/Allow	(kPa)	(kPa)	1.874	10.000		38.697	r .	50.000
12	Midpoint velocity	(m/s)			7.36				1.90
13	- In/Out	(m/s)			_		1.89	5	1.93
14	Heat transfer safety factor	()			1.0000			2	1.0000
	Fouling	(m2-K/W)			0.001761				0.000176
16 17	Outside film coef	(W/m2-K)		39.17	Actual U		(W/m2-K)		23 102
17	Outside film coef	(W/m2-K) (W/m2-K)		2309.4	Required L		(W/m2-K) (W/m2-K)		23.102
19	Clean coef	(W/m2-K) (W/m2-K)		27.082	Area	,	(w/m2-K) (m2)		1388.0
	Hot regime	(wm2-K)		Sens, Gas	Overdesign		(112)		5.85
21	Cold regime			ens. Liquid	Overdealigh		Tube Geomet	try	5.05
22	EMTD	(Deg C)		111.6	Tube type			.,	High-finned
	Duty	(MegaWatts)		3.38	Tube OD		(mm)	•	25.400
24		Unit Geo	ometry		Tube ID		(mm)	۳.	22.910
:5	Bays in parallel per unit			1	Length		(m)		1.700
:6	Bundles parallel per bay			1	Area ratio(d	out/in)	()		26.117
7	Extended area	(m2)		1388.0	Layout				Staggered
	Bare area	(m2)		68.370	Trans pitch		(mm)		60.500
	Bundle width	(m)		1.740	Long pitch		(mm)		52.393
	Nozzle		Inlet	Outlet	Number of				6
1	Number	()	1	1	Number of		()		18
23		(mm)	193.68	193.68	Tubecount		()		504
3 4	Velocity R-V-SQ	(m/s) (kg/m-s2)	2.22	2.26 4251.0	Tubecount Material	Odd/E	/en ()		28 / 28 Copper
4	Pressure drop	(kg/m·s2) (kPa)	2.296	4251.0	Material		Fin Geomet		Copper
6	r reasone urdp	Fan Geo		1.400	Type		Seomen	.,	Circular
	No/bay	()		0	Fins/length		(fin/meter)		433.0
	Fan ring type	()		0	Fin root		(mm)		25,400
9	Diameter	(m)		0.000	Height		(mm)		15.875
10	Ratio, Fan/bundle face area	()		0.0000	Base thick	ness	(mm)		0.400
	Driver power	(kW)		0.00	Over fin		(mm)		57.150
	Tip clearance	(mm)		0.000	Efficiency		(%)		90.4
	Efficiency	(%)		0.0000	Area ratio (fin/bare	2) ()		23.557
	Airside Velocities		Actual	Standard	Material				Copper
45	Face	(m/s)	4.93			1	Thermal Resista	inc	
	Maximum	(m/s)	12.02		Air				58.99
	Flow Velocity pressure	(100 m3/min) (Pa)	8.756		Tube Fouling				26.13 14.69
48 49		(Pa) (Pa)	1873.7		Fouling				14.69
	Bundle flow fraction	((-a)	1.000		Bond				0.00
51		100.00		Airside Pres:		Louv	ers		0.00
52		0.00	Fan guard		0.00		screen		0.00
53	Fan ring	0.00	Fan area bl	ockage	0.00	Stea	m coil		0.00

TABLE 12.

No.	Properties	Calculation	Max. Value
1.	Over Design	5.85 (%)	10 (%)
2.	Pressure drop exhaust gas	1.874 (kPa)	10 (kPa)
3.	Pressure drop thermal oil	38.697 (kPa)	50 (kPa)
4.	Duty	3.38 (MegaWatts)	
5.	Temperature exhaust gas	113.53 (°C)	330 (°C)
6.	Temperature thermal oil	70 (°C)	100 (°C)

_	_	-	ABLE			_	
SULT OF I	RUNNING	SOFTV	VARE	HTRII	For Heat	Ex	CHARG
PT HEAT TRAMPER SOU ORDER BARDON RED BRACK		Output Si					Page
EDGARUG-BIDM, INCOMERAL EMALA, ITHINKA AND A	Statute of the second			ng HTRI Memb			
				tions Indonesi	a		
V 7 0 0	/6/2016 15:50 SN	Joko Paritor					SI Units
AIST 7.3 Beta 12	/6/2016 15:50 SN	08983-3698	54811				Si Units
Rating - Horizon	tal Multipass Flow	TEMA BEM S	hell With S	Sinale-Seamer	ntal Baffles		
	Messages Repor						
	essage Report for						
3 Process	Conditions	-	Hot Shells	ide	Cold	lubesi	de
4 Fluid name				hot oil			sea water
5 Flow rate	(kg/s)			55.340	I _		21.800
6 Inlet/Outlet Y	(Wt. frac vap.)		0.0000	0.0000	0.0000	- T	0.0000
7 Inlet/Outlet T	(Deg C)		100.00	72.37	30.00		70
8 Inlet P/Avg	(kPa)		429.65	415.41	490.00	- E	487.63
9 dP/Allow.	(kPa)		28.476	40.000	4.747	- Ľ	49.000
0 Fouling	(m2-K/W)			0.000176			0.000352
1		Exch	nanger Pe	rformance			
2 Shell h	(W/m2-K)	•	1767.0	Actual U	(W/m2-K)		611.45
3 Tube h	(W/m2-K)	•	2741.2	Required U	(W/m2-K)		590.85
4 Hot regime	()	Sens	s. Liquid	Duty	(MegaWatts)		3.1227
5 Cold regime	()	Sens	s. Liquid	Eff. area	(m2)		174.74
6 EMTD	(Deg C)		30.2	Overdesign	(%)		3.49
7	Shell Geometr	v			Baffle Geomet	ry	
8 TEMA type	()		BEM	Baffle type			Single-Seg.
9 Shell ID	(mm)		863.60	Baffle cut	(Pct Dia.)		16.93
0 Series	()		1	Baffle orienta			Perpend.
1 Parallel	()	•	1	Central space			224.31
2 Orientation	(dea)		0.00	Crosspasse			11
3	Tube Geometr	v	0.00		Nozzles		
4 Tube type	()	-	Plain	Shell inlet	(mm)		193.68
5 Tube OD	(mm)		19.050	Shell outlet	(mm)		193.68
6 Length	(IIIII) (m)		3.048	Inlet height	(mm)		74.857
7 Pitch ratio	()		1 2500	Outlet height			74.857
8 Lavout	() (dea)		30	Tube inlet	(mm)	- F	146.33
9 Tubecount	(ueg) ()		992	Tube mier	(mm)		146.33
9 Tubecount 0 Tube Pass	()		392	TUDE OUTIET	(mm)		140.33
	esistance. %	v	elocities.	m/s	в	ow Fra	ctions
2 Shell	34 60		Mir		Α		0 498
3 Tube	26.98	Tubeside	0.40		B		0.450
4 Fouling	36.80	Crossflow	0.5		c		0.022
5 Metal	1 62	Window	0.49	0.77	E		0.163

TABLE 13.

TABLE 14. POINT <u>OF HEAT EXCHARGER CALCULATION</u>

No.	Properties	Calculation	Max. Value		
1.	Over Design	3.49 (%)	10 (%)		
2.	Pressure drop sea water	4.747 (kPa)	49 (kPa)		
3.	Pressure drop thermal oil	28.476 (kPa)	40 (kPa)		
4.	Duty	3.1227 (MegaWatts)			
5.	Temperature sea water	30 (°C)	70 (°C)		
6.	Temperature thermal oil	72.37 (°C)	100 (°C)		

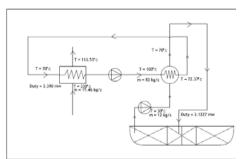


Figure. 10. Flow Diagram Duty of Ballast Treatment Option 2 (Economizer & Heat Excharger)

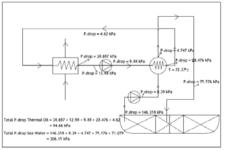


Figure. 11. Flow Diagram Pressure Drop of Ballast Treatment Option 2 (Economizer & Heat Excharger)

 TABLE 15.

 TOTAL TREATMENT TIME FOR BALLAST WATER OPTION 2 (ECONOMIZER & HEAT EXCHARGER)

Volume ballast tank	massa sea water	ṁ sea water (kg/s)	time to circulate (hr.)	time to circulate (hr)	total time to circulate (hr)
111.629	114419.73	21.80	1.46	2.92	1.46
111.629	114419.73	21.80	1.46	2.92	
251.871	258167.37	21.80	3.29	6.58	3.29
251.871	258167.37	21.80	3.29	6.58	
190.655	195421.38	21.80	2.49	4.98	2.49
190.655	195421.38	21.80	2.49	4.98	
89.330	91563.25	21.80	1.17	2.33	1.17
89.330	91563.25	21.80	1.17	2.33	
	Total circulating	time of sea w	ater (hr) =		42.03

4.6 Design Key Plan and Isometry Ballast Treatment Key plan and Isometry Ballast Treatment are included of analysis processing steps, one of which is to determine the number of fittings resistance and head losses which have been converts to pressure to determine the ability of pump to the pressure drop is calculated. Design of Ballast system had fullfil, will make as key plan and Isometry. So it will be look how the scenario at both system. For those drawings shall be attach on Figure 12 to 15.

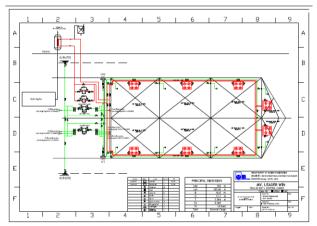


Figure. 12. Key Plan Ballast Water Treatment Option 1 (Economizer & Bundle)

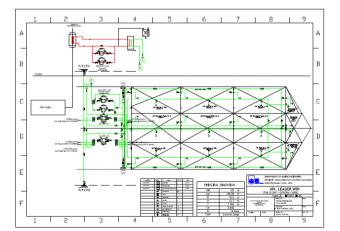


Figure. 13. Key Plan Ballast Water Treatment Option 2 (Economizer & Heat Excharger)

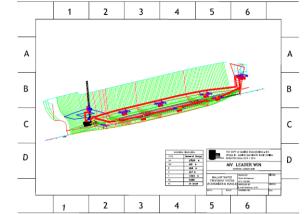


Figure. 14. Isometry Ballast Water Treatment Option 1 (Economizer & Bundle)

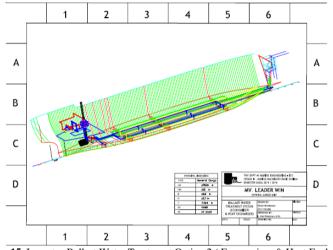


Figure. 15. Isometry Ballast Water Treatment Option 2 (Economizer & Heat Excharger)

4.7 Compiling Material Requirment Plan (MRP)

 TABLE 16.

 MRP of Ballast Water Treatment Option 1 (Economizer & Bundle)

ю.	WORK BREAK DOWN SPECIFICATION		VOLUME		2.			NERY PART					
0.	w	OKK	BREAK DOWN	SPECIFICATION	vu	LUME		м	100	ECONMIZER (THERM	AL OIL PLANT) & ACCESS	ORIES	
							_	м	101	Tube material	Copper/nickel 90/10 Sch 80		
٩.	MAT	FER	IAL AND EQU	JIPMENT				M	102	Fin material	Copper/nickel 90/10 Sch 80		
1.	PIPIN	IG, V	ALVE, PUMP & F	ITTINGS.			_		102	Nozzle	Copper/nickel 90/10 Sch 80		
	R	100	BALLAST PIPING (INCI	. MACH. PIPING)			_			NOLLIO	ooppermater for to buildo		
	R	101	Ballast pipe	Carbon steel galvanized, JIS G 3452, Sch 40	1	fullset	_	OTU			OUTFIT IN ENGINE	DOOM	
	R	102	Thermal oil pipe	Copper/nickel 90/10 Sch 80	1	fullset						RUUIVI	
	R		Exhaust pipe	700 mm, stainless steel, JIS		fullset		M		PUMPS :			
	R	104	Elbow pipe (ballast)	Carbon steel galvanized, JIS, Sch 40	1	fullset		М		Ballast pump	180 m3/h x 28m head, 22 kW x 2	2	units
	R	105	Elbow pipe (thermal oil)	Copper nickel elbow 90/10, Sch 8	1	fullset			202		Motor driven, vertical, centrifugal		
	R		Bell mounted pipe end	5/8" - chrome		fullset		M	203	Thermal oil pump	178 m3/h x 9.84 m head, 26.6	2	units
	R	107	Insulation	0.3 mm, Under Roof, aluminium or galvanized	1	fullset					kW x 2900 rpm, Motor driven, horizontal, centrifugal		
	R	108	Flesxible Coupling					М	204	Foundation for pumps	Hotrolled carbon steel plate, thck	2	units
	R		Bulkhead Fitling Watertight Flange					М	205	Fitting for pump		4	units
			riange				-						
								М	300	bundles (excharger) :			
	R	200	SCHEDULE OF VALVE	<u>s</u>				M	302	Tube	Copper/nickel 90/10 Sch 80	1	set
				gale valve (2 sets), globe				M	303	Nozzle	Copper/nickel 90/10 Sch 80	1	set
	R	201	Ballast	(SNDRV) (6 sets) and safety valve (2 sets), cast iron, bronze	1	fullset		М	304	Fitting for bundle		1	fullset
	R		Ballast treatment (thermal oil valve)	gate valve (2 sets), globe (SNDRV) (6 sets) and safety	1	fullset	_	м	400				
				valve (2 sets), cast iron, bronze			_	M		TANK TABLES		400 740	1
		203	Ballast and thermal oil system	Strainer (14 sets)	1	fullset				Ballast Water Tank I	carbon steel plate, JIS	192.749	
								М		Ballast Water Tank II	carbon steel plate, JIS	192.749	
	R	300	PUMP				_	M		Ballast Water Tank III	carbon steel plate, JIS	383.675	
	R	301	Ballast pump	Electric motor driven, centrifugal type, 180 m ³ /h	2	sets		М	404	Ballast Water Tank IV	carbon steel plate, JIS	383.675	m ³
	R	302	Thermal oil pump (ballast	type, 180 m/n Electric motor driven, centrifugal	2	sets	-	М	405	Ballast Water Tank V	carbon steel plate, JIS	304.795	m ³
			treatment)	type, 178 m³/h	-			М	406	Ballast Water Tank VI	carbon steel plate, JIS	304.795	m ³
	R		ballast operation (valve	Valve remote control system:	1	shipset		М	407	Forepeak Ballast Tank I	carbon steel plate, JIS	175.832	m ³
			remote control syst.)	hydraulic type, total 8 set of control				М	408	Forepeak Ballast Tank II	carbon steel plate, JIS	175.832	m ³
				 Manual buterfly valve (Total 11 sets) 				М	409	Thermal oil expantion tank	carbon steel plate, JIS, with sight		m ³
	R		thermal oil operation (valve	Valve remote control system:	1	shipset			410	C Marco	glass	1	fulset
			remote control syst.)	hydraulic type, total 16 set of control			_		410	Fittings		1	Inizer
				 Manual butterfly valve (Total 7 sets) 				<u> </u>					
											HER MACHINERY AN		FILIN
			SUB TOTAL PIPI	NG, VALVE AND FIT	TING					ENGINE ROOM			

TABLE 17.	
MRP OF BALLAST WATER TREATMENT OPTION 2 (ECONOMIZER & HEAT EXCHARGER)	

NO.	WORK BREAK DOWN SPECIFICATION			VOLUME		. MACHINERY PART						
10.		wor	R BREAR DOWN	SPECIFICATION	VOLUME	ĺ	М	100	ECONMIZER (THERMA	LOIL PLANT) & ACCESSORI	ES	
						1	М	101	Tube material	Copper/nickel 90/10 Sch 80		
l. I	MAT	ERI	AL AND EQUIP	MENT			М	102	Fin material	Copper/nickel 90/10 Sch 80		
1.	PIPIN	IG, V	ALVE, PUMP & FITT	INGS.					Nozzle	Copper/nickel 90/10 Sch 80		
	R	100	BALLAST PIPING (INCL. M	ACH. PIPING)		1						
	R	101	Ballast pipe	Carbon steel galvanized, JIS G 3452, Sch 40	1 fullset		оты	D M		UTFIT IN ENGINE RO	OM	
	R		Thermal oil pipe	Copper/nickel 90/10 Sch 80	1 fullset		-					
	R		Exhaust pipe	700 mm, stainless steel, JIS	1 fullset	i	M		PUMPS :			
	R	104	Elbow pipe (ballast)	Carbon sleel galvanized, JIS, Sch 40	1 fullset		М		Ballast pump	180 m3/h x 28m head, 22 kW x 2	2	units
_	R	105	Elbow pipe (thermal oil)	Copper nickel elbow 90/10, Sch 8	1 fullset			202		Motor driven, vertical, centrifugal		
	R		Bell mounted pipe end	5/8" - chrome	1 fullset	ť	М	203	Thermal oil pump	240 m3/h x 9.84 m head, 26.6	2	units
	R		Insulation	0.3 mm, Under Roof, aluminium or galvanized	1 fullset	1				kW x 2900 rpm, Motor driven, horizontal, centrifugal		
	R	108	Flesxible Coupling	· · · · · · ·			М	204	Foundation for pumps	Hot rolled carbon steel plate, thck	2	units
	R	100	Bulkhead Filling Waterlight Flange				М	205	Fitting for pump		4	units
							м	200	Heat aughorger			
						Į	M		Heat excharger			
	R	200	SCHEDULE OF VALVES			1			Shell	Copper/nickel 90/10 Sch 80		set
				gale valve (2 sels), globe		1	M		Tube	Copper/nickel 90/10 Sch 80		set
	R	201	Ballast	(SNDRV) (6 sets) and safety valve (2 sets), cast iron, bronze	1 fullset	[M		Nozzle	Copper/nickel 90/10 Sch 80		set
				gale valve (2 sels), cashi on, bronze gale valve (2 sels), globe			М	304	Fitting for bundle		1	fullset
	R	202	Ballast treatment (thermal oil valve)	(SNDRV) (6 sets) and safety	1 fullset							
				valve (2 sets), cast iron, bronze		1	M	400	TANK TABLES			
		203	Ballast and thermal oil system	Strainer (14 sets)	1 fullset	4	М	401	Ballast Water Tank I	carbon steel plate, JIS	192.749	m ³
		200	DUMD			ł	М	402	Ballast Water Tank II	carbon steel plate, JIS	192.749	m ³
	R		PUMP	Electric molor driven, centrilugal			М	403	Ballast Water Tank III	carbon steel plate, JIS	383.675	m ³
	R	301	Ballast pump	type, 180 m ³ /h	2 sets		М	404	Ballast Water Tank IV	carbon steel plate, JIS	383.675	m ³
	R	302	Thermal oil pump (ballast treatment)		2 sets	1	М	405	Ballast Water Tank V	carbon steel plate, JIS	304.795	m ³
	R	202	ballast operation (valve remole	type, 178 m ³ /h • Valve remote control system :	1 shipset		М	406	Ballast Water Tank VI	carbon steel plate, JIS	304.795	m ³
	R	303	control syst.)	 valve remole control system : hydraulic type, total 8 set of 	i snipset	I	М	407	Forepeak Ballast Tank I	carbon steel plate, JIS	175.832	m ³
				• Manual buterfly valve (Total			М	408	Forepeak Ballast Tank II	carbon sleel plate, JIS	175.832	m ³
	R	304	thermal oil operation (valve remote	 Valve remote control system : 	1 shipset		М	409	Thermal oil expansion tank	carbon steel plate, JIS, with sight plass	1	m ³
			control syst)	hydraulic type, total 12 set of control		Į		410	Fittings		1	fullset
				Manual butterfly valve (Total 4								
				sels)						ER MACHINERY AND	OUTE	TIN
			SUB TOTAL PIPING			4			ENGINE ROOM		OUTFI	

м	100	ECONMIZER (THERMAL OIL PLANT) & ACCESSORIES						
м	101	Tube material	Copper/nickel 90/10 Sch 80					
М	102	Fin material	Copper/nickel 90/10 Sch 80					
		Nozzle	Copper/nickel 90/10 Sch 80					
отне	ERM	ACHINERY AND O	UTFIT IN ENGINE RO	ом				
М	200	PUMPS :						
М	201	Ballast pump	180 m3/h x 28m head, 22 kW x 2	2	units			
	202		Motor driven, vertical, centrifugal					
М	203	Thermal oil pump	240 m3/h x 9.84 m head, 26.6 kW x 2900 rpm, Motor driven, horizontal, centrifugal	2	units			
м	204	Foundation for pumps	Hot rolled carbon steel plate, thck	2	units			
М	205	Fitting for pump		4	units			
М	300	Heat excharger						
		Shell	Copper/nickel 90/10 Sch 80	1	set			
м	302	Tube	Copper/nickel 90/10 Sch 80	1	set			
М	303	Nozzle	Copper/nickel 90/10 Sch 80	1	set			
м	304	Fitting for bundle		1	fullse			
м	400	TANK TABLES						
M		Ballast Water Tank I	carbon steel plate, JIS	192.749	m ³			
М	402	Ballast Water Tank II	carbon steel plate, JIS	192.749	m ³			
М	403	Ballast Water Tank III	carbon steel plate, JIS	383.675	m ³			
м	404	Ballast Water Tank IV	carbon steel plate, JIS	383.675	m ³			
м	405	Ballast Water Tank V	carbon steel plate, JIS	304.795	m ³			
М	406	Ballast Water Tank VI	carbon steel plate, JIS	304.795	m ³			
М	407	Forepeak Ballast Tank I	carbon steel plate, JIS	175.832	m ³			
М	408	Forepeak Ballast Tank II	carbon steel plate, JIS	175.832	m³			
м		Thermal oil expantion tank	carbon steel plate, JIS, with sight		m ³			
	410	Fittings		1	fullse			
	410							

4.8 Conclution

From analysis, design and calculation of system had been done, so, it can take some of conclutions in this thesis as following :

1. The heat recovey by main engine of MV. Leader Win vessel is acceptable to being one of method

Ballast Water treatment accordance by International Ballast water Management. This proven with calculation and analysis how the heat of exhaust gas transfered to ballast tank bay software HTRI. In this thesis, author was compare ballast tratment using option 1 system and option 2 system. There system will be explained at point 2.

- For calculate heat necessary, this thesis is using 2 softwere HTRI. The temperature for kill the microorganism had determined 70°C. The scenario of option 1 system is using economizer and bundle. Those heat from economizer to bundle is curry by thermal oil as medium heat transfer. And then a scenario of option 2 system is using economizer and heat excharger. In option 2, thermal oil is circulated from economizer to heat excharger. And sea water is circulated from ballast tank to heat excharger too. The results are First option having a duty 2.503 MegaWatts at economizer and 1.9567 MegaWatts at bundles. Over design 2.01% at Economizer and 7.1%5 at bundles. Pessure drop 63.287 kPa at thermal oil after economizer and 68.196 kPa after bundles. Treatment time to this option is 44.424 hors. Second option having a duty 3.38 MegaWatts at economizer and 3.1227 MegaWatts at heat excharger. Over design 5.85% at Economizer and 3.49%5 at heat excharger. Pessure drop 38.697 kPa at thermal oil after economizer and 28.476 kPa after heat excharger. Treatment time to second option is 42.03 hours. Option 2 is more optimum than option in analytical techniques. By analysis of treatment system, are expected this thesis can be applied to either the MV. Leader Win Vessel to comply with the operational needs according to standard employability.
- 3. Modification for key plan of both traetment system (option 1 & 2) have done.
- 4. The preparation of Material Requirment Plan (MRP) have done. This to do to know what a material and how many all of material needed and selcted.

AKNOWLEDGEMENTS

Author Wiwin Rohmawati would like to say thanks to Supervisor 1 Mr. Ir. Hari P., M.Sc. and Supervisor 2 Mr. Djoko Paritono Widodo, and Head of Department of Marine Engineering – ITS Surabaya who had given all facilities.

REFERENCES

- Balaji, R. And Yaakob, O. 2012. An Analysis of Shipboard Waste Heat Availability for Ballast Water Treatment. Journal of Marine Engineering and Technology. 11. (2): 15-29.
- [2] Balaji, R. and Yaakob, O. 2015. Optimisation of a Waste Heat Exchanger for Ballast Water Treatment. *Scientia Iranica*. 22(3): 871-882.
- [3] Ganapathy, V. 1993. "Steam Plant Calculations Manual". Marel Deklur Inc. New York.

- [4] IMO, 2004." INTERNATIONAL CONFERENCE ON BALLAST WATER MANAGEMENT FOR SHIPS." Section D. Adpted on 16 Februari 2004.
- [5] List Equipment, http://www.alibaba.com/.html
- [6] Mesbahi, E., Noman, R. A., Vourdachas, A., and Quilez-Badia, G. 2007. Design of A High – Temperature Thermal Ballast Water Treatment System, Proceedings of the ImechE, Part M : Journal of Engineering for Maritime Environment. 221 : 31 – 42.
- [7] M. S. Söylemez. 2003. On the Thermo Economical Optimisation of Shell and Tube Heat Exchargers HPHE for Waste Heat Recovery. Energy Conversion and Management. 44 : 2509 – 2517.
- [8] R. K. Shah, D. P. Sekulic. 2003. Fundamentals of Heat Excharger Design. Chapter 2 New York : John Wiley & Sons, 78-96.
- [9] TEMA Standards. 2009. Tubular Exchargers Manufactures Association, 9th Edu. New York.
- [10] Thornton, G. 2000. Ballast Water Decontamination Using Heat As A Biocide. Proceedings of Sea Australia Conference. Feb 1-2, 2000, Sydney, Australia.
- [11] Yhuda, Y. P. 2014. ECOGREENSHIP Konsep Water Ballast Treatment Memanfaatkan Gas Inert Temperatur Tinggi Dari Gas Buang Mesin Induk Untuk Mengurangi Mikroorganisme Air Ballast Pada Kapal. Teknik Sistem Perkapalan ITS. Surabaya.