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Abstract - Tidal flooding poses a significant threat to coastal areas, exacerbated by rising sea levels. In West Pandeglang 

Waters, Banten, frequent tidal floods impact communities, necessitating accurate prediction models for effective disaster 

mitigation. This study aims to develop a deep learning-based tidal flood prediction model using Keras and TensorFlow. The 

model incorporates oceanic and atmospheric variables, including sea surface height, wave characteristics, wind components, 

and precipitation data from 2003 to 2023. To address data imbalance, Synthetic Minority Over-sampling Technique 

(SMOTE) and MinMax scaling were applied, ensuring balanced class distribution. The model was trained and evaluated 

using a dataset comprising 11,808 samples, achieving an accuracy of 86% and an area under the curve (AUC) of 0.93. These 

results indicate a strong capability to differentiate between flood and non-flood conditions. The study demonstrates the 

effectiveness of deep learning in predicting tidal floods, providing valuable insights for early warning systems and coastal 

management in flood-prone regions. 
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I. INTRODUCTION1 

Sea level rise significantly impacts the frequency 

and severity of tidal flooding in coastal areas. Studies 

show that changes in tidal range are correlated with sea 

level variations, potentially increasing the risk of tidal 

flooding in some areas[1]. The impacts are widespread 

globally, with studies in Indonesia showing varying 

vulnerability to tidal flooding in coastal areas[2]. These 

studies emphasize the need for comprehensive flood risk 

assessments considering sea level rise and tidal changes. 

Coastal regions worldwide are also increasingly 

threatened by tidal flooding, driven by rising sea levels 

and land subsidence, which exacerbate the frequency and 

severity of inundation events [3]. In Indonesia, the coastal 

area of West Pandeglang Waters in Banten Province is 

particularly vulnerable, with tidal flooding affecting 1,232 

hectares across four sub-districts. This vulnerability is 

compounded by land subsidence rates of 1-14 cm/year and 

the region's exposure to extreme weather events [4]. The 

2018 Sunda Strait tsunami, which generated waves up to 

6 meters high and inundated areas 200 meters inland, 

further underscored the urgent need for improved disaster 

preparedness and accurate flood prediction systems in the 

region [5]. Traditional flood prediction methods often fail 

to capture the complex interactions between 

environmental variables, such as tidal fluctuations, 

rainfall, and wind patterns, resulting in unreliable 

forecasts and inadequate mitigation strategies [6]. 

Recent advancements in deep learning have 

demonstrated significant potential for addressing these 
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challenges. Deep learning models, mainly those built 

using KERAS TensorFlow, have achieved remarkable 

success in handling complex, nonlinear datasets across 

various domains, including hydrology and environmental 

science [7]. For example, deep learning has been 

effectively applied to predict river flooding and storm 

surges, outperforming traditional methods by capturing 

intricate patterns in environmental data[8]. These 

successes highlight the potential of deep learning for tidal 

flood prediction, particularly in data-scarce regions like 

West Pandeglang. However, the application of deep 

learning in this context remains underexplored, with 

existing studies primarily relying on traditional modeling 

approaches that fail to account for the dynamic nature of 

coastal flooding [9]. A critical challenge in developing 

accurate flood prediction models is the issue of 

imbalanced datasets, where rare but high-impact flooding 

events are underrepresented. This imbalance often leads 

to biased predictions that favor non-flood scenarios, 

reducing the model's effectiveness in real-world 

applications [10]. To address this, resampling techniques 

such as random oversampling and synthetic minority 

oversampling (SMOTE) have been proposed to balance 

datasets and improve model performance [10]. By 

integrating these techniques with deep learning, more 

robust and reliable flood prediction models for West 

Pandeglang Waters can be developed. 

This study proposes using deep learning, explicitly 

leveraging KERAS TensorFlow, to develop a tidal flood 

prediction model for West Pandeglang. By incorporating 

tidal data, wind, and other environmental variables, this 

approach aims to provide accurate and timely flood 

forecasts, enabling better disaster preparedness and 
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coastal management strategies. The study also addresses 

the challenge of imbalanced datasets through resampling 

techniques, ensuring that rare but critical flooding events 

are adequately represented in the model. 

II. METHOD 

A. Model Structure 

 The research model has one input layer, two hidden 

layers (dense, dense, dense_relu), one dropout layer, one 

Gaussian layer, and two output layers. The structure 

model is shown in Figure 1. This model structure is 

designed for binary classification or probabilistic 

regression tasks. The sigmoid in the output layer indicates 

that the model generates probability values. This simple 

structure is suitable for datasets with small input 

dimensions and simple tasks, such as prediction or 

classification with limited data[11]. 

 The dense_input layer takes preprocessed data from a 

data input file, where features have been scaled for better 

convergence during training. The first dense layer is a 

fully connected layer that applies linear transformations, 

allowing the model to capture initial feature relationships. 

The dense_relu layer follows, incorporating the ReLU 

activation function, which helps the model learn complex 

patterns by introducing non-linearity while avoiding 

issues like vanishing gradients. The dropout_6 layer 

randomly deactivates a fraction of neurons during training 

to enhance generalization and prevent overfitting. 

Additionally, the gaussian_noise_6 layer injects random 

noise into the data, making the model more robust to 

variations and improving its ability to generalize to unseen 

tidal flood scenarios. The output layer represents the final 

prediction stage, combining all learned features. Finally, 

the output_sigmoid layer applies a sigmoid activation 

function, transforming the output into a probability value 

between 0 and 1, which is ideal for binary classification-

predicting whether a tidal flood will occur. With this 

structure, your model effectively learns from past tidal 

flood data to make accurate future predictions. To 

optimize performance, you can fine-tune the architecture 

by adjusting the number of neurons, dropout rate, or 

activation functions. 

 

B. Data 

 In this study, several types of data were used, which 

were downloaded from the site https://bnpb.go.id/ as 

reference data for flood events in the selected area and 

from the site https://data.marine.copernicus.eu/ for data 

used as variables. The variable data used include Sea 

Surface Height Above Sea Level (SLA), Significant Wave 

Height (SWH), Mean Wave Direction (MWD), Mean 

Wave Period (MWP), 10m u-component of wind, 10m u-

component of wind, Total Precipitation. Data used to 

process deep learning models. The data spans from 1 

January 2003 to 31 December 2023 (20 Years). 

 

C. Resampling, Scaling, and Tidal Flood Class 

 The flood data obtained earlier was used as a time 

indicator to determine the class of all variable data used. 

From the results obtained during the classification, the 

class value is obtained for all variables with class 1 as 

many as 289, which is categorized as “Flood Class,” and 

class 0 as many as 7380, which is classified as “Non-Flood 

Class.” The data used in this study experienced data 

imbalance problems, so data enhancement or resampling 

and data scaling are required to maximize the results. 

Resampling techniques are widely used to address class 

imbalance in deep learning datasets. Random 

oversampling (ROS) and undersampling (RUS) are 

common approaches, along with hybrid methods like 

SMOTE and its variants[12]. However, the effectiveness 

of these techniques depends on dataset characteristics 

such as imbalance ratio, size, dimensionality, and class 

overlap[13]. RUS can severely impact model 

performance, especially with highly imbalanced datasets, 

 
Figure. 1. Model Structure 

 
Figure. 2. Research Location Map 
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while SVM-SMOTE shows promise when paired with 

Random Forest and Gaussian Naïve Bayes classifiers[14]. 

In the context of breast cancer classification, standard 

class imbalance techniques can counteract bias towards 

the majority class but may not improve AUC-ROC 

performance[15]. Applying cleaning strategies to neural 

network outputs rather than input features alone may yield 

better results in big data scenarios[12].In this research, the 

resampling technique is SMOTE with scaling using 

MinMax Scaller. The resampling and scaling techniques 

produced data that was initially unbalanced, with 7380 for 

class “0” and 289 for class “1” to 11808 data with class 

‘1’ of 5904 and class “0” of 5904. This result makes the 

data balanced and gives better accuracy. 

 

D. Research Location 

 This research location covers the area in the west 

waters of Pandeglang Regency, Banten, with a longitude 

of 105.5 - 106.05° and a latitude of -6.75 - (-6.05)°. Figure 

2 shows that the research location includes several areas 

that often experience tidal floods, including Carita, 

Panimbang, Labuan, and Pagelaran.  

III. RESULTS AND DISCUSSION 

 The research results obtained reveal the vulnerability 

of the research location area. Extreme waves and 

abrasions are also still a big problem in tidal flooding. As 

in Table 1, the potential danger of extreme waves and 

abrasion in pandeglang is high. In Table 2, the potential 

vulnerability of pandeglang to extreme waves and 

abrasion is in the medium class; this explains that tidal 

flooding in the region has a high enough vulnerability, 

with 26,550 people affected. Table 3 shows the risk level 

of extreme waves and abrasion in the Pandeglang area, 

which is the highest risk level from its neighboring 

regions due to the potential danger and the number of 

people affected by this disaster. Waves are also a 

significant indicator of the occurrence of this tidal flood 

disaster. According to Gaol[16], natural and 

anthropogenic factors make coastal areas increasingly 

vulnerable to tidal flooding. Sea level rise due to climate 

change and land subsidence due to excessive groundwater 

extraction exacerbate flood risk in low-lying coastal 

regions[17]. 

From the table data related to the potential 

vulnerability of the population and dangers to extreme 

waves and abrasion above, Pandeglang District can be 

categorized as an area with a high level of risk even 

though it is still at a moderate vulnerability. Still, the 

potential for dangers in this area has a high potential. This 

high potential and risk can also be seen in Table 4; the 

table explains the potential and risk in the area used as the 

research location; four sub-districts are included in the 

 

TABLE 1. 

POTENTIAL DANGER OF EXTREME WAVES AND ABRASION IN BANTEN REGENCY. (SOURCE : ANALYSIS DATA NATIONAL  

DISASTER RISK ASSESSMENT DOCUMENT, 2021) 

District 
Danger 

Class 
Low (Ha) Medium (Ha) High (Ha) Total 

Lebak 161 45 1.232 1.438 High 

Pandeglang 2.766 1.512 2.857 7.121 High 

Serang 1.268 209 1.362 2.840 High 

Tanggerang 626 60 195 882 High 

 
 

TABLE 2. 

POTENTIAL POPULATION EXPOSED TO EXTREME WAVES AND ABRASION DISASTERS IN BANTEN REGENCY. (SOURCE : ANALYSIS 

DATA NATIONAL DISASTER RISK ASSESSMENT DOCUMENT, 2021) 

District 
Total Population 

Exposed 

Potential Population Exposure in Groups (People) 

Class Age Vulnerable 

Population 
Poor Population 

Disabled 

Population 

Lebak 10.273 1.095 1.447 36 Medium 

Pandeglang 26.550 2.677 4.276 80 Medium 

Serang 21.272 2.168 2.046 60 Medium 

Tanggerang 7.461 746 911 13 Medium 

 

  

TABLE 3. 

DISASTER RISK LEVEL OF EXTREME WAVES AND ABRASION IN BANTEN REGENCY. (SOURCE : ANALYSIS DATA NATIONAL  

DISASTER RISK ASSESSMENT DOCUMENT, 2021) 

District Danger Class Vulnerability Class Capacity Class Risk Class 

Pandeglang High High Medium High 

Lebak High High Medium Medium 

Tanggerang High High Medium Medium 

Serang High High Medium Medium 

 

  

TABLE 4. 

POTENTIAL AND RISK OF ROB FLOODING AT THE RESEARCH SITE. 

District Potenial and Risk 

Carita High 

Panimbang High 

Labuhan High 

Pageralaran High 
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research location with high potential and risk of tidal. 

Flooding.  
In Table 5, the four sub-districts are located in the 

coastal area and have a history of tidal floods recorded 

from the official website https://www.bnpb.go.id/, with a 

total of 14 occurrences in the last 20 years; this also makes 

the area highly vulnerable to tidal floods (BNPB, 2024). 

In deep learning models for flood prediction, classes 

are divided into two main categories: "flood” and “no 

flood”. According to Razali [18], this binary approach 

allows the model to learn to distinguish conditions at risk 

of flooding based on the parameters Sea Surface Height 

Above Sea Level (SLA), Significant Wave Height 

(SWH), Mean Wave Direction (MWD), Mean Wave 

Period (MWP), 10m u-component of wind, and Total 

Precipitation obtained from the Copernicus website. 

Multiple oceanic and atmospheric factors influence 

tidal flooding. Sea Surface Height Above Sea Level 

(SLA) has the highest impact because rising sea levels 

directly lead to flooding, especially during high tides or 

storm surges. Significant Wave Height (SWH) also plays 

a major role, as larger waves push more water inland, 

worsening floods[19]. Total Precipitation contributes by 

overwhelming drainage systems, especially when 

combined with high tides[20]. Wind components (U and 

V at 10m height) can either increase or decrease flooding 

by pushing seawater toward or away from the coast [21]. 

Mean Wave Direction (MWD) and Mean Wave Period 

(MWP) have a moderate impact, as wave energy and 

direction influence how water moves toward land[22]. 

Overall, SLA, SWH, and precipitation are the strongest 

predictors of tidal flooding, while wind and wave 

characteristics modify their severity. 

After dividing the classes into two main categories, 

namely “flood” and “not flood”, the results obtained 

before resampling the data are shown in Figure 3 (a) . The 

results of the data used are very far apart for the “flood” 

and “not flood” classes; this is because, in the last 20 

years, there were only 14 occurrences of tidal floods, 

which makes the proportion for class data unbalanced into 

a model. This data imbalance is unsuitable for deep 

learning modeling; it poses significant challenges for deep 

learning models in various domains. An unbalanced data 

distribution can negatively impact classification 

performance.[23].  
Therefore, the data resample technique is needed to 

balance the proportion of data classes; in this study, the 

data resample technique used is SMOTE with the scaling 

 

TABLE 5. 

FLOOD EVENTS IN THE STUDY AREA (BNPB, 2024). 

Date Disaster Area (Sub-District) District Province 

1/3/2023 Flood  Panimbang,  Picung Pandeglang Banten 

12/30/2022 Flood  Patia, Sobang    Pandeglang Banten 

12/28/2022 Flood  Pagelaran  Pandeglang Banten 

12/27/2022 Flood  Patia, Sobang, Cisata, Panimbang, Sukaresmi  Pandeglang Banten 

3/19/2022 Flood  Carita, Labuan, Panimbang  Pandeglang Banten 

3/1/2022 Flood  Labuan, Panimbang, Pagelaran, Mandalawangi, Cisata, Carita, 

Cadasari  

Pandeglang Banten 

12/6/2021 Flood  Labuan, Sukaresmi, Carita, Panimbang Pandeglang Banten 

11/7/2021 Flood Sukaresmi, Carita Pandeglang Banten 

1/28/2021 Flood  Sukaresmi, Labuan, Carita, Pagelaran, Patia, Sindangresmi Pandeglang Banten 

12/7/2020 Flood  Picung, Panimbang, Cikeusik, Angsana , Cigeulis, Sukaresmi  

Patia, Cibitung, Pagelaran, Munjul, Sindangresmi  

Pandeglang Banten 

11/22/2020 Flood  Cigeulis, Panimbang Pandeglang Banten 

5/25/2020 Flood  Pagelaran  Pandeglang Banten 

1/10/2020 Flood  Sobang,  Sukaresmi,  Pagelaran,  Sindangresmi,  Panimbang Pandeglang Banten 

11/7/2021 

 

Flood  Patia,Panimbang Pandeglang Banten 

 

 
(a)                                                                                           (b) 

 

Figure. 3. Proportion Data Before (a), and Proportion Data After Resampling (b) 
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method min-max smaller. The Synthetic Minority Over-

sampling Technique (SMOTE) technique is consistently 

used to balance the dataset and improve model accuracy 

[24]. In Figure 3 (b), the proportion of data after 

resampling the data gets maximum results, where the 

“flood” and “not flood” classes already have comparable 

Proportions; this will improve the results of the 

Performance of the model built.  
From the previous data's resample, the clustering 

results are used for deep learning modeling using the 

KERAS TensorFlow algorithm in Google Collab. Recent 

research has shown the versatility of KERAS TensorFlow 

in various prediction tasks, and it performs well in 

prediction. As shown in Table 6, the results of the 

previous data modeled with the KERAS TensorFlow 

algorithm were high; the model achieved an accuracy of 

0.86, indicating that 86% of the predictions were 

correct[25]. This model has separated positive and 

negative classes well. 

In Figure 4, the ROC curve result with an AUC of 0.93 

strongly argues that the deep learning model built with 

KERAS and TensorFlow is highly effective in predicting 

tidal floods. A model with such a high AUC demonstrates 

a strong ability to differentiate between flood and non-

flood cases, suggesting that it can reliably identify critical 

flood events. This level of performance is crucial for early 

warning systems, where accurate predictions can help 

mitigate potential disasters. Moreover, the steep rise in the 

ROC curve at lower false favorable rates indicates that the 

model achieves high sensitivity early on. This means it 

correctly detects most flood cases without excessively 

misclassifying non-flood cases as floods. Such a property 

is fundamental in flood prediction, where missing a flood 

event (false adverse) could have severe consequences. 

However, despite the high AUC, it is essential to 

consider the trade-off between precision and recall. A 

model that prioritizes high recall may trigger more false 

alarms, potentially leading to unnecessary evacuations or 

resource deployment. On the other hand, focusing too 

much on precision could result in missing actual flood 

events. About 49% of the original data has class 0 (Not 

Flooded), while about 51% has class 1 (Flooded) in Figure 

5 (a). Meanwhile, the model predicts about 51% of class 

0 and 49% of class 1 in Figure 5 (b). These results show 

that the model's predictions are close to the original data 

distribution, indicating that the model performs 

reasonably well. The model can capture the distribution of 

classes 1 and 0 accurately. Still, the slight difference in the 

proportion of the original data and the proportion of the 

Predicted data suggests the model may still have some 

 
Figure. 4. ROC Curve 

 
 

Figure. 5. Proportion Data Original (a), Proportion Data Predicted (b), Error Line (c) 

 

TABLE 6. 

POTENTIAL AND RISK OF ROB FLOODING AT THE RESEARCH SITE. 

Parameter of Performance Value 

Accuracy 0.86 

F1 Score 0.86 

AUC 0.93 

Precision for class 1 0.86 

Recall for class 1 0.86 
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bias or prediction errors. The errors appear to be relatively 

uniformly distributed, indicating that the model errors are 

spread evenly across the data points and are not 

concentrated in any particular region in Figure 5 (c). This 

uniform distribution of errors implies that the model's 

performance is consistent across the different data 

instances. Still, the presence of these errors suggests there 

is room for further improvement in the accuracy and 

generalizability of the model. Although the model 

accurately predicts class scores, error plots suggest room 

for development, optimization, and improvement—

prediction performance of the model.  

Figure 6 (a) shows that the flood prediction application 

has been designed, has seven input variables, and has a 

scatter plot display that gives a more informative 

impression. In Figure 6 (b), it can be seen that the flood 

prediction application can predict the value of class 0 (Not 

Flooded) correctly and accurately, with an informative 

display on the scatter plot and line graph as an average 

marker of the variables inputted. In Figure 6 (c), it can be 

seen that the flood prediction application can predict the 

value of class 1 (Flood) well and accurately, with an 

informative display on the scatter plot and line graph as 

an average marker of the variables inputted

IV. CONCLUSION 

This study successfully developed a deep learning-

based tidal flood prediction model for West Pandeglang 

Waters, Banten, using Keras and TensorFlow. By 

integrating multiple oceanic and atmospheric variables, 

the model demonstrated high accuracy (86%) and strong 

classification performance (AUC 0.93) in distinguishing 

flood and non-flood events. The application of SMOTE 

resampling and MinMax scaling effectively addressed 

dataset imbalance, enhancing model reliability in 

predicting rare but significant tidal flooding events. These 

findings highlight the potential of deep learning in 

improving flood forecasting and coastal disaster 

mitigation strategies. 

However, while the model achieved promising results, 

there are areas for further development. Future research 

should explore real-time data integration to enhance 

predictive accuracy and response efficiency. Additionally, 

incorporating more complex hydrodynamic variables and 

ensemble learning techniques could further improve 

model robustness. The findings of this study emphasize 

the importance of data-driven approaches in coastal 

management and disaster preparedness, supporting 

policymakers in designing effective early warning 

systems. Advancements in deep learning models for tidal 

flood prediction will be crucial for mitigating risks in 

vulnerable coastal regions, ensuring community resilience 

against climate-induced hazards. 
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