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Abstract⎯ Mangrove ecosystems are important in carbon sequestration and climate regulation and contribute to climate 

change mitigation. However, carbon stock estimation is still mostly done manually, which is less efficient. This study utilizes 

remote sensing to investigate the correlation between mangrove carbon stocks and climate variability in West Java from 2019 

to 2023. Mangrove land cover classification was performed using the Random Forest algorithm with NDVI and NDWI indices, 

while the relationship between carbon stock and climate factors was analyzed using linear regression. The results showed that 

increased precipitation was associated with higher carbon stocks (R2=0.5514), while carbon stocks had a negative correlation 

with 2-meter temperature (R2=0.8242) and sea surface temperature (SST) (R2=0.7111). This study enhances our 

understanding of mangrove-climate interactions and provides valuable insights for developing remote sensing-based climate 

resilience and coastal ecosystem management policies.  
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I. INTRODUCTION1 

Mangroves are essential ecosystems in coastal areas, 

serving as habitats for various species, coastal abrasion 

barriers, and natural carbon sinks [1]. Mangrove 

ecosystems are unique in their ability to thrive in high-

salinity environments and play a vital role in maintaining 

the quality of coastal environments. In addition, 

mangroves also can sequester blue carbon, which is 

carbon stored in coastal ecosystems. [2]. One important 

indicator used to measure the carbon storage capability of 

mangrove ecosystems is carbon stock. Carbon stock refers 

to the amount of carbon stored in mangrove biomass, both 

above and below ground [3]. Mangrove carbon stocks can 

store three to four times more carbon than terrestrial 

forests, with most of the carbon stored in the soil [4]. 

However, man-grove deforestation threatens these 

ecosystems, making conservation and restoration efforts 

essential to maintaining mangrove carbon stocks and 

supporting adaptation to climate change impacts [5].  

Indonesia has ±3.36 million hectares of 

mangrove forests, making it the country with the largest 

mangrove forest area in Asia and even in the world [6]. 

One of the provinces in Indonesia, namely West Java, has 

a large mangrove forest [7]. Areas in West Java have 

undergone restoration efforts, resulting in diverse 

mangrove ecosystems. Mangrove forests in West Java 

play an essential role in carbon sequestration, as shown by 
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the Ciletuh mangrove forest, which has an estimated 

aboveground carbon storage of 14.93 t C ha-1 [8]. West 

Java's climate is influenced by tropical variability, 

including phenomena such as the El Niño Southern 

Oscillation (ENSO), Indian Ocean Dipole (IOD), and the 

Asia-Australia Monsoon, which affect precipitation 

patterns [9].  

 The amount of carbon sequestration stored in 

mangroves must be calculated to address global climate 

issues and improve the function of this forest-type [10]. 

Some botanists still rely on manual estimation methods to 

assess carbon storage in mangroves, which takes a long 

time [11]. Therefore, the utilization of technology can be 

a solution to improve efficiency in the marine field [12]. 

One application of marine technology that can be done is 

remote sensing. Remote sensing is an effective method for 

monitoring and estimating the amount of mangrove 

carbon [10]. In addition, this study offers the novelty of 

integrating climate variability data (precipitation, 2-meter 

temperature, and sea surface temperature) to explore the 

relationship between carbon stocks and climate factors 

affecting mangrove ecosystems in West Java. 

Remote sensing provides multi-temporal and 

multi-spectral data on land use and land cover [13]. After 

reviewing the literature on the advantages and limitations 

of various approaches, we used machine learning models 

to prepare man-grove land cover. Random forest was 

applied because it offers the best precision of all available 

classification techniques [14]. Random forest is a 
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supervised learning algorithm that can be used in 

classification [15]. 

Therefore, the research aims to utilize remote 

sensing technology in classifying mangrove land cover. 

Mangroves possess unique characteristics that enable 

effective detection through satellite imagery. As 

vegetation grows in coastal environments with high 

salinity and humid conditions, mangroves respond 

significantly to certain spectral bands, particularly in the 

red and near-infrared (NIR) regions. The red (B4) and 

near-infrared (B8) bands are susceptible to vegetation 

conditions. In contrast, the green (B3) and far-infrared 

(SWIR) bands can identify moisture and water content in 

vegetation. After the mangrove land cover classification 

process, the next step is calculating mangrove biomass 

and carbon stock using estimation formulas based on 

previous research literature that utilizes remote sensing 

data. The results of these calculations will then be 

analyzed to explore the correlative relationship between 

measured carbon stocks and climate variability, which in 

this case is represented by Precipitation, 2-meter 

Temperature, and Sea Surface Temperature parameters in 

the West Java region.  

II. METHOD 

A. Research Location 

This study covers the data period from 2019 to 2023. 

The research location is focused on mangrove ecosystems 

in the West Java region, as shown in Figure 1. The area 

has a diversity of climates and environmental conditions 

that can vary mangrove carbon stocks.  

B. Data 

The data used in this study include mangrove land 

cover obtained from Sentinel-2 satellite imagery, as well 

as climate variability data consisting of precipitation 

parameters, Sea Surface Temperature (SST), and air 

temperature at a height of 2 meters (2-meter 

Temperature), as listed in Table 1. Although allometric 

data from the Central Java region are not used directly in 

the analysis, they serve as a reference to inform and 

develop the carbon stock estimation method applied in 

this study. 

Climate data, which includes precipitation, air 

temperature at the height of two meters (2-meter 

Temperature), and Sea Surface Temperature (SST), is 

processed using Google Colab and visualized with the 

QGIS application. Meanwhile, Sentinel-2A image data 

were processed using Google Earth Engine (GEE) to 

produce multitemporal information on mangrove cover. 

The processing process includes radiometric correction, 

atmospheric correction, cloud and cirrus removal, and the 

addition of vegetation indices such as NDVI and NDWI 

to support further analysis. 

 

C. Data Processing 

Data processing in this study classifies mangrove land 

cover using the random forest method to obtain mangrove 

 
Figure. 1. Research Location Map 

 
Figure. 2. Flowchart research 
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areas. After the mangrove land area is received, it is 

subclassified to determine its density class and calculate 

the carbon stock value, which will be analyzed with 

climate data. A flowchart of this research is presented in 

Figure 2. 

The Normalized Difference Vegetation Index (NDVI) is 

a satellite image-based calculation method used to 

identify the greenness of vegetation [16]. NDVI can 

provide information on vegetation-related parameters, 

such as green leaf biomass and green foliage area, which 

aid in classifying vegetation types. Meanwhile, the 

Normalized Difference Water Index (NDWI) is a 

technique used to measure the moisture level or water 

content in satellite images. The equation between NDVI 

and NDWI is in Table 2. 

This study employed the Random Forest algorithm, a 

machine-learning method that has demonstrated high 

accuracy in mangrove identification and mapping for 

mangrove cover classification. This method combines 

multiple decision trees to create a robust classifier and 

includes the ability to handle large datasets efficiently and 

select essential features for classification [17]. In 

Mangrove research, random forest has been used to 

predict intertidal wetland migration under sea level rise 

[18], assess mangrove leaf health [19], and map mangrove 

distribution [20]. In addition, this method can achieve 

high accuracy with a relatively small sample size, making 

it suitable for large-scale and long-term mangrove 

monitoring [17]. 

 This study used Random Forest to classify Sentinel-2 

satellite images, utilizing 100 decision trees. Five samples 

were required for each tree leaf, and a sample fraction of 

70% was used to construct each tree. The model was 

trained on training data with mangrove and non-mangrove 

classes, using selected Sentinel-2 image bands, including 

B2, B3, B4, and B8.  

Several metrics were used to evaluate the Random 

Forest model's performance, including recall, Precision, 

F1 Score, and Validation Accuracy. The metrics evaluate 

how effectively the model categorizes the classes in the 

image, particularly the mangrove class (class 1). Precision 

measures the accuracy of optimistic predictions, while 

Recal indicates the proportion of actual positives correctly 

identified. F1 score measures the harmonic mean of 

Precision and Recall, providing a balanced assessment of 

the model's performance, and Validation Accuracy 

reflects the model's correct classification across all classes 

[21]. These metrics are critical for evaluating model 

effectiveness in a variety of applications, including 

mathematical question classification, plant disease 

recognition, and attention level identification [22].  

 

 

 

 The equation between Precision, Recall, and F1 score is 

as follows [23]: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

True Positives+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
True Positives

True Positives + False Negatives 
   (4) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
) (5) 

 

The F1 score provides a more accurate representation of 

the model's performance in cases of an imbalance between 

precision and recall. This study calculated Recall, 

Precision, and F1 score values for the mangrove class 

(class 1) to assess the model's effectiveness in identifying 

and classifying mangroves on Sentinel-2 satellite images. 

These Recall, Precision, and F1 scores provide a more in-

depth picture of the model's performance distinguishing 

mangroves from non-mangroves, which is essential for 

accurately mapping mangrove vegetation. Validation 

Accuracy measures the overall success of the model in 

classifying the validation data, which is calculated by 

comparing the number of correct predictions to the total 

amount of data in the validation set. 

After the mangrove cover was identified, the mangrove 

area was calculated using the formula : 

 

𝑚𝑎𝑛𝑔𝑟𝑜𝑣𝑒 𝑎𝑟𝑒𝑎 = ∑(𝑝𝑖𝑥𝑒𝑙 ×  𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) (6)  

 

This calculation was done using the reduce region 

method, which sums all mangrove pixel values within the 

study area. The results obtained can be used to analyze 

changes in mangrove cover and their impact on 

environmental and climate variability in the region. At 

this stage, mangrove classification is based on the range 

of NDVI values used to determine the density level. The 

spectral value of mangroves based on their density level 

shows significant differences in reflectance characteristics 

 

TABLE 1. 

DATA SOURCE 

Data Years  Source 

Sentinel 2 2019 -2023 10 x 10 meter Copernicus 

Precipitation 2019 -2023 0,1° x 0,1° GSMap 

2-meter Temperature 2019 -2023 0,25° x 0,25° ECMWF 

Sea Surface Temperature 2019 -2023 0,25° x 0,25° ECMWF 

 

 

TABLE 2. 

VEGETATION FORMULA 

Spektral Indeks Formula Sentinel 2 Band  

Normalized Difference Vegetation Index  
  

(1) 

Normalized Difference Water Index  
  

(2) 
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[24]. Mangrove vegetation is characterized by high 

reflectance values in the near-infrared (NIR) band and the 

highest absorption values in the blue-to-red spectral range. 

The average values of NDVI for each classification class 

and mangrove density are presented in Table 3. 

 

 

 After determining the mangrove density, carbon stock  

Estimation was conducted through mangrove biomass 

conversion. Biomass estimation does not rely on direct 

allometric data calculations in the field in this study but 

instead uses estimation formulas developed from previous 

research. [25] : 

 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 17,4 − 110,2 × 𝑁𝐷𝑉𝐼 + 220 × 𝑁𝐷𝑉𝐼2 (7) 

 

This formula relates NDVI (Normalized Difference 

Vegetation Index) values to mangrove biomass, enabling 

biomass estimation from satellite imagery. NDVI is a 

vegetation index used to measure plant health, where 

higher NDVI values indicate better vegetation levels. In 

this case, the higher the NDVI value, the greater the 

biomass value that can be estimated for the mangrove 

cover. 

Once the biomass is calculated, in Figure 5, carbon 

stocks can be estimated by multiplying the biomass value 

obtained by a carbon conversion factor. According to 

chemical composition analysis, the carbon fraction in 

mangrove biomass is close to 46.82%. For specific 

mangrove species, they recommended using 46.3% for B. 

gymnorrhiza, 45.9% for R. apiculata, and 47.1% for S. 

alba [26]. The study used a factor of 0.47 to convert 

carbon stocks; a factor of 0.47 is commonly used to 

convert biomass to carbon stocks in forest ecosystems 

[27]. 

 

𝐶𝑎𝑟𝑏𝑜𝑛 𝑆𝑡𝑜𝑐𝑘 = 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 × 0,47 (8) 

 

Based on ratios found in mangrove ecosystem studies, a 

factor of 0.47 was used to convert mangrove biomass to 

carbon stock. This estimates the amount of carbon stored 

in the identified mangrove ecosystem. 

After obtaining the carbon stock estimation results, the 

next step is to process climate data, which includes 

precipitation, air temperature at the height of two meters 

(2-meter Temperature), and Sea Surface Temperature 

(SST). These data were obtained from the GSMaP source 

for precipitation and ECMWF for 2m Temperature and 

SST. These three parameters are crucial because they 

significantly impact mangrove growth and vegetation 

density. The data obtained were then processed and 

visualized using QGIS software, which allows spatial 

analysis and integration with carbon stock data to 

understand the relationship between climate variability 

and mangrove ecosystem dynamics. 

III. RESULTS AND DISCUSSION 

The Random Forest method has been proven to be an 

effective technique for land cover classification using 

satellite imagery [28]. A study using Random Forest and 

Sentinel-2 imagery in Google Earth Engine demonstrated 

its effectiveness in rapid land cover mapping, with 

88.32% accuracy for a 5-class classification scheme [29]. 

These studies collectively highlight the robustness and 

accuracy of the Random Forest method in classifying land 

cover across various geographical contexts.  

The performance of this deep learning model is 

reflected in Table 4. The table shows that the model 

performance varies yearly, with different Recall, 

Precision, F1 Score, and Validation Accuracy values. The 

results differ annually, with lower F1 score values 

recorded in 2020 and 2021. In contrast, the highest F1 

score was in 2022, reaching 0.8544. This variation in 

model performance indicates fluctuations in the quality of 

model predictions from year to year. This may be due to 

certain factors affecting the quality of input data and the 

estimation process. 

The decrease in F1 scores in 2020 and 2021 may be 

attributed to several factors related to using secondary 

data from Sentinel-2A imagery. One of the leading causes 

is the potential error in the satellite data during this period. 

Several factors may contribute to these errors, including 

atmospheric effects such as scattering and absorption by 

aerosols or water vapor, as well as cloud contamination 

that can compromise the accuracy of NDVI values. In 

addition, sensor calibration issues, spatial resolution that 

may not be able to capture vegetation heterogeneity at 

small scales, and temporal resolution that may miss short-

term changes in vegetation also pose challenges. All these 

factors can affect the biomass estimates calculated from 

 

TABLE 3. 

VEGETATION FORMULA 

Density Class Min NDVI Max NDVI 

Solid 0,782 0,876 

Medium 0,139 0,392 

Sparse -0,030 0,293 

 

 

TABLE 4. 

MODEL PERFORMANCE 

Year Recall Precision F1 Score Validation Accuracy 

2019 0.6605 0.9020 0.7626 0.87776 

2020 0.5068 0.5237 0.5154 0.77098 

2021 0.4975 0.6116 0.5486 0.79658 

2022 0.7813 0.9437 0.8544 0.7784 

2023 0.7790 0.8647 0.8190 0.8020 
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the NDVI values, resulting in a decrease in model 

performance in specific years. 

Despite the relatively low F1 score in 2020 and 2021, 

the model still showed good accuracy. Validation 

accuracy in both years was recorded at 0.77098 in 2020 

and 0.79658 in 2021, indicating that the model could 

perform classification with a reasonably high success rate 

on the validation data. This shows that even as the balance 

between precision and recall, as represented by the F1 

score, decreases, the model's accuracy remains a key 

indicator of good performance. 

 This validation accuracy value can be interpreted as 

the model successfully identifying common patterns in the 

data, even if the precision or recall is not always optimal. 

Thus, the model's overall performance remains reliable 

for mangrove cover analysis and biomass estimation 

despite technical challenges with the input data from 

satellite imagery in specific years. These results 

demonstrate the importance of considering multiple 

evaluation metrics simultaneously to get a comprehensive 

picture of model performance. 

 

Figure 3 shows the development of the mangrove 

distribution area from 2019 to 2023. The mangrove area 

recorded a significant increase during this period. The 

most notable growth occurred in 2022, reaching more than 

11,000 hectares. However, in 2023, it slightly decreased 

to 10,000 hectares. This indicates a significant effort in 

maintaining and restoring the mangrove ecosystem. 

Figure 4 presents the dynamics of mangrove density 

change over the last five years, which can be used to 

identify patterns of mangrove degradation or regeneration 

in the coastal areas of West Java. Based on the data shown, 

mangrove density has increased yearly. In 2019, the 

sparse category still dominated the mangrove density 

class, but in subsequent years, the density increased to the 

moderate category. This increasing trend indicates the 

potential for mangrove regeneration in the area, which 

could indicate a successful rehabilitation program or 

natural factors that support mangrove growth. In addition, 

this information can serve as a basis for policy-making 

related to the conservation and rehabilitation of mangrove 

ecosystems in the area. 

Mangroves exhibit varied responses to nutrient 

enrichment, with some species exhibiting increased 

growth while others experience adverse effects or no 

significant change [30]. Anthropogenic nitrogen and 

phosphorus inputs from agricultural, aquaculture, and 

urban runoff impact mangrove ecosystems, potentially 

affecting their resilience to climate change and carbon 

 
Figure. 3. Mangrove Distribution Area 

 
Figure. 4. Mangrove Density in West Java from 2019 to 2023 (a – e). 

 
Figure. 5. Biomass and Carbon Stock Graph 
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storage capacity [31]. In coastal waters, nutrient profiles 

directly affect mangrove composition and growth, with 

lower nutrient content correlating with reduced mangrove 

growth [32]. Interestingly, bacteria isolated from 

mangrove environments show potential as plant growth-

promoting inoculants, potentially reducing the need for 

synthetic fertilizers in agricultural applications [33]. 

Figure 5 compares mangrove biomass and carbon 

stocks over the same period. Biomass and carbon stocks 

exhibit a parallel pattern, where an increase in biomass 

always accompanies an increase in carbon stocks. 

Biomass fluctuated with the highest value recorded in 

2022 at 9,883,964.17 tons, along with the largest area of 

11,527 Ha. In contrast, 2019 recorded the lowest biomass 

of 2,780,307.83 tons in 6,597 Ha. Carbon stocks exhibited 

a similar pattern to biomass, with the highest value of 

4,645,463.16 tons in 2022 and the lowest value of 

1,306,744.68 tons in 2019. Despite the large size of the 

area, the decrease in biomass and carbon stocks by 2023 

indicates the possibility of environmental change or 

degradation of mangrove vegetation. This highlights the 

importance of maintaining the ecosystem to maximize 

potential biomass and carbon stocks. Climate dynamics 

influence carbon stocks in mangrove ecosystems. 

Indonesia's climate is significantly influenced by the El 

Nino-Southern Oscillation (ENSO) and the Indian Ocean 

Dipole (IOD). These phenomena primarily affect 

precipitation patterns, with impacts being most substantial 

during the dry season and weaker in the wet season [34]. 

ENSO impacts Indonesia's northern and eastern regions 

independently, while the IOD independently affects the 

southern and western areas [34]. Adverse IOD events are 

associated with higher precipitation and more extensive 

and longer mesospheric-scale convective complexes [35]. 

ENSO and IOD also affect sea surface temperature (SST) 

in Indonesian seas, with ENSO having a more substantial 

effect on the Java Sea [36]. These climate modes shape 

Indonesia’s weather patterns and hydrometeorological 

conditions.  Figure 6 shows the diverse dynamics of IOD 

and ENSO. 2019 experienced a strong positive IOD, 

accompanied by a weak El Niño. In 2020, the IOD was 

neutral, while a moderate La Niña occurred. The La Niña 

trend continues in 2021 with weak to moderate intensity, 

while the IOD remains neutral. 2022 exhibits stable 

ENSO and IOD conditions in a neutral phase with no 

significant anomalies. Entering 2023, the IOD remains 

neutral, but a weak El Niño develops. The variations in 

IOD and ENSO during the 2019-2023 period certainly 

affected atmospheric and oceanic conditions in Indonesia. 

Changes in these two phenomena can be reflected in the 

three parameters used in the analysis: precipitation, 2-

meter Temperature, and Sea Surface Temperature (SST). 

The classification of precipitation parameters is as in 

Table 5, based on the Minister of Forestry Decree No. 

837/UM/II/1980 and No. 683/KPTS/UM/1981. 

 

In Figure 7, the dominance of lighter colors with an 

intensity of 2700 mm/year 2019 indicates precipitation in 

the medium category. Between 2020 and 2022, the 

intensity of the red color increased, reflecting a significant 

rise in rainfall due to La Niña, with intensities reaching 

3300-3900 mm/year, falling within the high to very high 

category. However, in 2023, the color returns to a lighter 

shade, indicating a drastic decrease in precipitation with 

intensity to 1800 mm/year as El Niño returns. This pattern 

confirms the close relationship between ENSO dynamics 

and precipitation variability in the study area.  

Figure 7 shows the pattern of annual temperature 

changes in the analyzed area. The color scale on the map 

indicates a temperature range of 21°C to 29°C, with 

lighter colors representing higher temperatures and darker 

colors representing lower temperatures. Generally, the 

temperature distribution pattern exhibits a relatively 

consistent trend from year to year, with high-temperature 

 
Figure. 6. (a) IOD Graph, (b) ENSO Graph 

Source : sealevel.jpl.nasa.gov 

 

TABLE 5. 

THE CLASSIFICATION OF PRECIPITATION PARAMETERS 

Class Precipitation (mm/year) Classification Score 

1 1500 - 2000 Very Low 10 

2 2000 - 2500 Low 20 

3 2500 - 3000 Medium 30 

4 3000 - 3500 High 40 

5 3500 - 4000 Very High 50 
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areas tending to stabilize in the central part of the region. 

In contrast, lower temperatures are scattered in the 

periphery, especially in areas bordering waters. 

Figure 7 shows the SST distribution in West Java over 

five years from 2019 to 2023. The color scale ranges from 

26 to 30 degrees Celsius, with lighter shades indicating 

lower temperatures and darker shades indicating higher 

temperatures. The map shows that this region's sea surface 

temperature (SST) tends to be higher in the north and 

slightly lower in the south. The SST distribution pattern 

generally shows consistency from year to year, although 

slight variations exist. Although global studies indicate a 

positive relationship between carbon density and 

precipitation, this correlation is not consistently observed 

in regional comparisons. Sediment depth, influenced by 

long-term geomorphological processes, is crucial in 

determining carbon stocks. [34].  

Figure 8 shows the relationship between precipitation 

and average carbon stock. The linear regression results 

indicate a positive correlation, as shown by the equation y 

= 89.188x + 1069, with a coefficient of determination (R²) 

of 0.5514. This suggests that the higher the average 

carbon stock, the higher the precipitation in the region, 

although other factors also influence this relationship. 

Figure 9 illustrates the relationship between average 

carbon stock and air temperature at a height of 2 meters. 

The linear regression results indicate a negative 

relationship, as the equation y =- 0.3165x + 29.48, with an 

R-squared value of 0.8242. This suggests that higher 

carbon stocks are generally associated with lower air 

temperatures, exhibiting a substantial correlation. Figure 

10 illustrates the relationship between average carbon 

stock and sea surface temperature (SST). The relationship 

is also negative, with the equation y =- 0.2306x + 30.766 

and R² = 0.7111. This suggests increased carbon stock is 

associated with lower sea surface temperatures (SST) in 

the study area. 

This study discusses carbon stock estimation and 

employs a quantitative approach, using linear regression 

analysis, to determine the relationship between carbon 

stocks and climate variability in West Java. This area has 

not been widely studied in this context. Fluctuations in 

these factors can reflect the dynamics of mangrove growth 

and productivity in absorbing and storing carbon. In 

general, the results of this study indicate that carbon 

 
Figure. 7. Visualization 

 
Figure. 8 Graph of the Correlation Carbon Stock and Precipitation 
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stocks tend to increase with increasing precipitation, with 

an R² of 0.5514, suggesting a moderate relationship 

between these two variables. However, other factors, such 

as environmental conditions and human activities, may 

also contribute to the dynamics of carbon stocks in 

mangrove ecosystems. However, there was an anomaly in 

2021, when the mangrove area increased, but carbon 

stocks decreased. This may be influenced by a decrease in 

precipitation compared to the previous year and other 

factors, such as errors in data processing, which are 

reflected in the low F1-score values in 2020 and 2021.  

Besides precipitation, air temperature at 2 meters 

height (2-meter Temperature) also relates to carbon 

stocks. The linear regression results show a negative 

correlation with the equation y = -0.3165x + 29.48, with 

an R-squared value of 0.8242. This indicates that the 

higher the carbon stock, the lower the air temperature in 

the region. This can be attributed to the role of mangrove 

ecosystems in sequestering carbon and lowering ambient 

temperatures through evapotranspiration, as well as the 

increased humidity generated by denser mangrove forests.   

A similar negative relationship was also found 

between carbon stock and Sea Surface Temperature 

(SST), with the equation y = -0.2306x + 30.766 and an R² 

value of 0.7111. The higher the carbon stock, the lower 

the SST in the study area. The decrease in SST associated 

with higher carbon stocks can be attributed to increased 

mangrove cover, which reduces heat runoff into coastal 

waters and increases the infiltration of rainwater into the 

soil, ultimately helping to maintain thermal balance in the 

surrounding environment.   

These results show that precipitation, 2-meter 

temperature, and Sea Surface Temperature influence 

carbon stocks in mangrove ecosystems. This suggests that 

mangrove ecosystems play a crucial role in regulating 

environmental temperatures and are a potential factor in 

mitigating climate change. However, the variability of the 

data also suggests that other contributing factors, such as 

environmental conditions, salinity, and human activities, 

can affect the balance of this ecosystem. Therefore, a 

comprehensive approach that considers various ecological 

factors is needed to holistically understand carbon stock 

dynamics in mangrove ecosystems.  

 

 

 

 

Figure. 9. Graph of the Correlation Carbon Stock and 2-meter Temperature 

 
Figure. 10. Graph of the Correlation between Carbon Stock and SST 
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IV. CONCLUSION 

This study utilized remote sensing and machine learning data to 

examine the relationship between mangrove carbon stocks and climate 

variability in West Java from 2019 to 2023. Land cover classification 

using the Random Forest algorithm and NDVI and NDWI indices 

accurately identified mangrove ecosystems. Carbon stock estimation 

results indicate that precipitation has a positive correlation with carbon 

stock (R² = 0.5514), while 2-m temperature (R² = 0.8242) and sea surface 

temperature (R² = 0.7111) exhibit a negative correlation, suggesting that 

rising temperatures can stress mangrove ecosystems and reduce their 

carbon sequestration capacity. Linear regression analysis demonstrated 

that climate variability plays a significant role in the dynamics of 

mangrove carbon stocks. Remote sensing and machine learning proved 

to be effective methods for large-scale and long-term mapping of 

mangrove ecosystems. 

This study emphasizes the crucial role of stable climatic conditions 

in maintaining mangrove productivity and underscores the importance 

of integrated conservation strategies in enhancing mangrove resilience 

to climate variability. Using Random Forest algorithms and Sentinel-2 

satellite imagery proved a practical approach for accurate mangrove 

classification and biomass estimation. The research also demonstrates 

that remote sensing technologies and machine learning models provide 

a reliable method for large-scale and long-term monitoring of mangrove 

ecosystems.  

To ensure the sustainability of mangrove ecosystems and their 

carbon sequestration capabilities, it is crucial to implement and 

strengthen conservation and restoration programs, particularly in areas 

vulnerable to temperature stress and environmental degradation. 

Policymakers should integrate climate variability considerations into 

coastal management plans to mitigate the adverse effects of rising air and 

sea surface temperatures on mangroves. Advancements in remote 

sensing technology, combined with additional environmental parameters 

such as soil salinity and nutrient profiles, are recommended to enhance 

the accuracy of carbon stock estimations. Engaging local communities 

in mangrove conservation initiatives is crucial for promoting sustainable 

management practices and increasing awareness of the ecological 

benefits of mangroves. Furthermore, establishing long-term monitoring 

programs will facilitate the continuous assessment of climate impacts on 

mangrove carbon stocks, ensuring that comprehensive, real-time data 

inform adaptive management strategies. These measures will safeguard 

mangrove ecosystems, enhance their resilience to climate variability, 

and support their role in mitigating climate change and preserving 

coastal biodiversity.  

The research highlights the urgent need for coordinated efforts to 

protect mangrove ecosystems as vital carbon sinks, ensuring their long-

term contributions to climate change mitigation and coastal biodiversity 

preservation. 
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