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Abstract- Hydrodynamics of a floating structure is of interest from offshore and coastal engineers 

who develop the wave energy converters and utilize the marine space resources. Recently, Rim [1-3] 

proposed an exact DtN (Dirichlet-to-Neumann) artificial boundary condition in order to solve three-

dimensional wave-structure interactions or wave motion over piecewise topographies numerically. 

This paper is concerned with another artificial boundary condition or so-called NtD (Neumann-to-

Dirichlet) boundary condition in order to solve water wave diffraction and independent radiation by 

a buoyant body. A virtual cylindrical surface enclosing the floating body is chosen as a boundary on 

which an exact NtD map is analytically derived from a solution of the exterior subregion and then it 

is specified as a boundary condition in order to solve the interior problem. The present model shows 

good accuracy through the comparison with the DtN approach and suggests the escalated results for 

the effects of heading angle of incident wave and draft of a buoyant chamfer box. 

 
Keywords-- wave-structure interaction, floating body, boundary element method, NtD boundary condition 

 

I. INTRODUCTION 1 

Hydrodynamics of a floating structure is of 

interest from offshore and coastal engineers. 

Typical examples are: wave energy converters [4-7] 

to reduce the greenhouse gas emission [8,9]; 

offshore structures such as LNG (Liquefied Natural 

Gas) shuttle carriers or floating airports [10]. 

Analytical studies of wave diffraction and 

radiation problems have been suggested. Tyvand 

[11] focused on wave diffraction and independent 

radiation by a submerged circular in two-

dimensional space cylinder by using a 

dimensionless parameter which is denoted as a ratio 

of radius and draft of the cylinder. Chatjigeorgiou 
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[12,13] suggested analytical solutions expressed as 

a radial Mathieu function in order to solve a three-

dimensional water wave diffraction problem by 

multiple cylinders with elliptical or circular cross-

section which are bottom-mounted on a seabed. The 

whole velocity potential consists of incident water 

wave potential and wave diffraction potential due to 

the existence of circular cylinders and the wall. The 

wall is considered as a cylinder with elliptical 

section of fixed major axis and zero minor axis. 

Each component potential in the total potential is 

represented analytically by the modified Bessel 

functions and modified Mathieu functions in an 

elliptic coordinate system, where the unknowns in 

expression for each component potential are 
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obtained by using the matching method for 

eigenfunction expansion. Such an eigenfunction 

matching method has been widely used in order to 

obtain the other analytical solutions for wave-

structure interaction problems [14-20]. The total 

water domain is divided into several subdomains 

and an analytical solution for velocity potential in 

the individual subdomain is expanded as a Fourier 

series in which the coefficients are determined by a 

matching condition on the interfaces between 

subdomains. Zheng et al. [21] focused on the two-

dimensional water wave diffraction and 

independent water wave radiation by a rectangular 

structure floating in front of a wall by using the 

eigenfunction matching method. The total fluid 

domain is divided into several subdomains: first 

subdomain is between the structure and the wall; 

second subdomain is beneath the structure; and 

third subdomain is other rest region located 

seawards. The solution for each subdomain is 

analytically expressed in form of series by use of 

the variable separation approach and the unknown 

coefficients in the series can be determined by a 

continuity condition of velocity and pressure on the 

interfaces between subdomains. Meanwhile, 

Bhattacharjee and Soares [22] adopted such an 

approach to solve a wave diffraction by a structure 

floating over a step-type seabed in the two-

dimensional space. Similar studies can also be 

found in Teng and Ning [23] and Teng et al. [24] for 

a bottom-mounted cylinder, Zheng and Zhang 

[25,26] for a floating cylinder, and Mavrakos et al. 

[27] for several floating cylinders, where the wave 

field in front of a wall is replaced into a 

horizontally-infinite wave field without the wall by 

the mirror-image principle [28]. Also, the 

approximate solution method of wave diffraction 

and independent radiation by several cylinders can 

be found [29,30], in which an exact solution of 

velocity potential field for each isolated cylinder is 

first obtained analytically and then the interference 

by another cylinder or the scattered water wave 

emanating from another cylinder is approximated as 

a planar wave based on assumption of much larger 

distances between the cylinders compared to the 

wavelength of water wave. It is noted that the 

analytical studies are all progressed in case of 

regular bodies, i.e. rectangular, circular or elliptical 

cylinders. Numerical and experimental methods 

have been proposed in order to cope with the case 

of irregular bodies. Gao et al. [31] adopted a 

numerical water wave tank with height of 0.8m, 

length of 14m and width of 0.1m to simulate a two-

dimensional resonant motion of surface water wave 

around a rectangular structure floating over mild-

slope seabed. Narayanan et al. [32] studied a two-

dimensional behavior for a wake of a vertical 

cylinder near a wall by using a thin filament 

attached to the cylinder. Michele et al. [33] studied 

the optimal design for an array of several flap gates 

near a vertical wall by combining boundary element 

method with the principle of image. Later, Yuan et 

al. [34] adopted a three-dimensional panel method 

and the mirror-image method to study an effect of 

side wall on hydrodynamic characteristic of a ship 

moving forward with constant speed. Meanwhile, 

Sarkar et al. [35] studied an effect of straight coastal 

line on the characteristic of a flap WEC (Wave 

Energy Convertor) based on Green’s boundary 

integral equation for a semi-infinite water domain. 

Tsay et al. [36] and Tsay and Liu [37] proposed a 

hybrid type of finite element model to solve wave 

diffraction, refraction and dissipation by offshore 

structures. The whole water domain is separated 

into a finite volume of interior subregion and the 

other infinite exterior subregion, where the interior 

subregion is meshed by finite element method while 

the exterior subregion provides analytical 

expressions for velocity potential. The principle of 

variation is then applied to match continuity 

condition of potential and its derivative on each 

interface of subdomains. On the other hand, the 

BEM (boundary element method) is adopted widely 

in order to determine the velocity potential by wave 

diffraction, scattering and radiation [38-40]. One of 

difficulties in implementing BEM is to solve the 

problem on how to specify a boundary condition as 

exactly as possible, especially, at the location far 

from the considered bodies. Several ways were 

proposed to cope with this difficulty. Eatock et al. 

[41] chose a virtual cylindrical surface in order to 

extract a finite volume of fluid domain from open 

sea and then supposed that the loop integral of 

velocity potential over the virtual surface is very 

close to zero when the distance between the virtual 

surface and the considered body is sufficiently long. 

Higdon [42,43] suggested an absorbing boundary 

condition so that the linear plane waves with 
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different speeds can transmit a virtual boundary 

without reflection. Such an approach can be found 

in other studies [44-46]. Meanwhile, Liao and 

Wong [47, 48] proposed multi-transmitting 

formulae (MTF) with an artificial speed and a 

spatial extrapolation in order to maintain the non-

reflection of one-directional incident water waves 

with different propagation speeds on a virtual 

boundary. Chen and Liao [49] escalated such a 

method to the attenuating water waves. On the other 

hand, Shao and Faltinsen [50] made a damping zone 

in the vicinity of a virtual cylinder and proposed a 

damping formula on the damping zone in which the 

unknown damping coefficients are specified 

empirically. Xu and Duan [51] suggested a novel 

MTF on a damping zone in order to solve a three-

dimensional hydrodynamic interaction between 

several floating bodies in spatial and time domains 

[52]. Chen and Liang [53] focused on a free-surface 

flow around floating bodies by use of a multi-

domain approach in which the water domain is 

divided into an interior subdomain including the 

considered body, an exterior subdomain and a 

transit subdomain, where the viscosity of fluid and 

the nonlinearity of free water surface are considered 

in interior subdomain but the viscosity and 

nonlinearity are ignored and thus the linear 

potential theory is applied in the exterior 

subdomain. The Green function is adopted in the 

exterior subdomain to satisfy Sommerfeld radiation 

condition, free-surface boundary condition and the 

other boundary condition. Liang and Chen [54] 

adopted such an approach to determine the first and 

second-order drift wave loads acting on floating 

bodies. Recently, Rim [1-3] and Rim et al. [55-57] 

proposed an exact DtN (Dirichlet-to-Neumann) 

boundary condition to solve three-dimensional 

wave-structure interactions or wave motion over 

piecewise topographies numerically. This paper 

proposes a NtD boundary condition in order to 

solve water wave diffraction and independent 

radiation by a buoyant body in a finite-depth water 

region. 

 

I. FORMULATION OF PROBLEM 

A. Preliminaries 
Focus on a body floating on water of finite 

depth ℎ with an incident water wave with amplitude 

𝐴, angular velocity 𝜔 and incident angle α as shown 

in Figure 1a, where the Oxy−plane is set on the still 

water surface while the positive direction of 

Oz−axis is upward. Under the assumption that the 

fluid is incompressible and inviscid and the flow is 

irrotational, the time-periodic wave field around the 

body can be written in terms of velocity potential as 

follows: 

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = Re[𝛷(𝑥, 𝑦, 𝑧; 𝜔)𝑒−i𝜔𝑡],              (1) 

where i = √−1 is an imaginary unit and 

𝛷(𝑥, 𝑦, 𝑧; 𝜔) denotes an amplitude of 𝜙 can be 

written as 𝛷 = 𝛷𝐷 + 𝛷𝑅 in which 𝛷𝐷 and 𝛷𝑅 are 

amplitudes of potentials due to wave diffraction by 

the fixed buoy and radiation by the oscillating buoy, 

respectively. 

 

B. Wave diffraction 
The diffraction potential 𝛷𝐷 is composed of 

an incident potential 𝛷𝐼 and a scattered potential 𝛷𝑆 

as follows: 

𝛷𝐷(𝑥, 𝑦, 𝑧; 𝜔) = 𝛷𝐼(𝑥, 𝑦, 𝑧; 𝜔) 

+𝛷𝑆(𝑥, 𝑦, 𝑧; 𝜔).              (2) 

The incident potential 𝛷𝐼 is well-known as 

𝛷𝐼(𝑥, 𝑦, 𝑧; 𝜔) =

−
i𝑔𝐴cosh 𝑘0(𝑧+ℎ)

𝜔 cosh 𝑘0ℎ
𝑒i𝑘0(𝑥 cos 𝛼+𝑦 sin 𝛼),        (3) 

where 𝑘0 is called a wave number which satisfies 

the following dispersion relation 𝜔2 =
𝑔𝑘0 tanh 𝑘0ℎ. The potential 𝛷𝑆 for a scattered 

Figure 1. Problem definition (a) Perspective view of water wave region (b) Front view of interior subregion. 
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water wave satisfies the following governing 

equation and boundary conditions: 
𝜕2𝛷𝑆

𝜕𝑥2 +
𝜕2𝛷𝑆

𝜕𝑦2 +
𝜕2𝛷𝑆

𝜕𝑧2 = 0  

everywhere in water region,         (4) 
𝜕𝛷𝑆

𝜕𝑧
−

𝜔2

𝑔
𝛷𝑆 = 0  

on still water level 𝑧 = 0,            (5) 
𝜕𝛷𝑆

𝜕𝑛
= −

𝜕𝛷𝐼

𝜕𝑛
   

on wetted part of the body surface, (6) 
𝜕𝛷𝑆

𝜕𝑧
= 0  at seafloor 𝑧 = −ℎ,  (7) 

√𝑟 (
𝜕𝛷𝑆

𝜕𝑟
− i𝑘0𝛷𝑆) = 0 at 𝑟 → ∞,                     (8) 

where 𝑛 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) means a unit vector 

normal to the body surface and pointing the inner 

part of water domain. 

 

C. Wave radiation 
The oscillatory motion of the floating body 

under the small amplitude wave can be denoted as 

𝜉𝐿(𝑡) = Re[𝜉𝐿𝑒−i𝜔𝑡] by which the radiation 

potential 𝛷𝑅 is then decomposed into 

𝛷𝑅 = ∑ (−i𝜔𝜉𝐿)𝛷𝐿
6
𝐿=1 ,                     (9) 

where 𝜉𝐿 is an amplitude of 𝐿-th modal motion of 

the body and 𝛷𝐿 is a complex amplitude of a 

radiation potential by the body oscillation in case of 

unit amplitude of 𝐿-th modal velocity, in which 𝐿 =
1, 6̅̅ ̅̅̅ means three translational modes and three 

rotational modes, i.e. six degrees-of-freedom 

(DOFs). 

The potential 𝛷𝐿 for the radiated water wave 

is specified by the following governing equation 

and boundary conditions: 
𝜕2𝛷𝐿

𝜕𝑥2 +
𝜕2𝛷𝐿

𝜕𝑦2 +
𝜕2𝛷𝐿

𝜕𝑧2 = 0 everywhere in water 

region,       (10) 
𝜕𝛷𝐿

𝜕𝑧
−

𝜔2

𝑔
𝛷𝐿 = 0 on still water level 𝑧 = 0,              

(11) 
𝜕𝛷𝐿

𝜕𝑛
= 𝑢𝑛,𝐿  on wetted part of the body surface,         

(12) 
𝜕𝛷𝐿

𝜕𝑧
= 0  at seafloor 𝑧 = −ℎ,                         (13) 

√𝑟 (
𝜕𝛷𝐿

𝜕𝑟
− i𝑘0𝛷𝐿) = 0 at 𝑟 → ∞,  

                      (14) 

where 𝑢𝑛,𝐿 denotes a normal component of velocity 

on the body surface when the body is under a 𝐿-th 

modal oscillation with unit amplitude of velocity. 

 

D. Constitutive equations in the interior 

subregion 
To numerically solve a hydrodynamic 

interaction between the incident water wave and the 

floating body in the confined water subregion with 

finite volume, an artificial circular cylinder 𝛤𝑅 of 

radius 𝑅 is adopted as seen in Figure 1, where the 

value of 𝑅 has to be selected such that the artificial 

cylinder can include the body. Then the fluid 

domain is divided into an exterior subregion 𝛺𝑒 and 

an interior subregion 𝛺𝑖, where 𝛺𝑖 is surrounded by 

still water surface 𝛤𝐹, seabed 𝛤𝐷, the wetted surface 

of body 𝛤𝐵, and the artificial surface 𝛤𝑅 as shown in 

Figure 1b while 𝛺𝑒 is a rest part unbounded 

horizontally. The boundary conditions on 𝛤𝑅, 𝛤𝐵 and 

𝛤𝐷 are already given in Equations (5)-(7) and (11)-

(13), thus it is required to specify a boundary 

condition on 𝛤𝑅 only to solve 𝛷𝜒 (𝜒 = 𝑆, 𝐿) in 𝛺𝑖. 

The boundary condition on 𝛤𝑅 can be set in form of 

𝛷𝜒 = 𝛬
𝜕𝛷𝜒

𝜕𝑟
, where 𝛬 is called a Neumann-to-

Dirichlet (NtD) operator since it maps the 

Neumann-type data on 𝛤𝑅 into a Dirichlet-type 

value on a point of 𝛤𝑅, which will be further 

considered in the next section. The wave-

interaction in the interior subregion can then be 

governed by 
𝜕2𝛷𝜒

𝜕𝑥2 +
𝜕2𝛷𝜒

𝜕𝑦2 +
𝜕2𝛷𝜒

𝜕𝑧2 = 0  in 𝛺𝑖,                (15) 

𝜕𝛷𝜒

𝜕𝑧
−

𝜔2

𝑔
𝛷𝜒 = 0  on 𝛤𝐹,                      (16) 

𝜕𝛷𝜒

𝜕𝑛
= {

−
𝜕𝛷𝐼

𝜕𝑛
  if 𝜒 = 𝑆

𝑢𝑛,𝐿    if 𝜒 = 𝐿
  on 𝛤𝐵,               (17) 

𝜕𝛷𝜒

𝜕𝑧
= 0  on 𝛤𝐷,                           (18) 

𝛷𝜒 = 𝛬
𝜕𝛷𝜒

𝜕𝑟
  on 𝛤𝑅.                        (19) 

 

E. NtD artificial boundary condition 
The NtD map on 𝛤𝑅 can be obtained based on 

an analytical solution for 𝛺𝑒. The velocity potential 

in 𝛺𝑒 is governed by 
𝜕2𝛷𝜒

𝜕𝑥2 +
𝜕2𝛷𝜒

𝜕𝑦2 +
𝜕2𝛷𝜒

𝜕𝑧2 = 0  in 𝛺𝑒,                    (20) 

𝜕𝛷𝜒

𝜕𝑧
−

𝜔2

𝑔
𝛷𝜒 = 0  on 𝑧 = 0 and 𝑟 ≥ 𝑅,            

(21) 
𝜕𝛷𝜒

𝜕𝑧
= 0  on 𝑧 = −ℎ and 𝑟 ≥ 𝑅,                 (22) 
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√𝑟 (
𝜕𝛷𝜒

𝜕𝑟
− i𝑘0𝛷𝜒) = 0    at 𝑟 → ∞,                

(23) 
𝜕𝛷𝜒

𝜕𝑟
=

𝜕𝛷𝜒(𝑅,𝜃,𝑧)

𝜕𝑟
   on 𝛤𝑅,                        (24) 

where Equation (24) is called a Neumann boundary 

condition, i.e. it is assumed that the normal 

derivative of spatial potential on 𝛤𝑅 is set as an 

already-specified function 𝛯(𝑅, 𝜃, 𝑧) or 
𝜕𝛷𝜒(𝑅,𝜃,𝑧)

𝜕𝑟
 

intelligibly. 

A general form of the solution satisfying 

Equations (20)-(23) can be expressed as [58,59] 

𝛷𝜒(𝑟, 𝜃, 𝑧) =

∑ {[𝑎𝑚0𝐻𝑚(𝑘0𝑟) cosh 𝑘0(𝑧 + ℎ) +∞
𝑚=0

∑ 𝑎𝑚𝑛𝐾𝑚(𝑘𝑛𝑟) cos 𝑘𝑛(𝑧 +∞
𝑛=1

ℎ)] cos 𝑚𝜃 + [𝑏𝑚0𝐻𝑚(𝑘0𝑟) cosh 𝑘0(𝑧 +
ℎ) + ∑ 𝑏𝑚𝑛𝐾𝑚(𝑘𝑛𝑟) cos 𝑘𝑛(𝑧 +∞

𝑛=1

ℎ)] sin 𝑚𝜃},                                                      

(25) 

and its radial derivative is expressed as 
𝜕𝛷𝜒(𝑟,𝜃,𝑧)

𝜕𝑟
=

∑ {[𝑎𝑚0𝐻𝑚
′ (𝑘0𝑟) cosh 𝑘0(𝑧 + ℎ) +∞

𝑚=0

∑ 𝑎𝑚𝑛𝑘𝑛𝐾𝑚
′ (𝑘𝑛𝑟) cos 𝑘𝑛(𝑧 +∞

𝑛=1

ℎ)] cos 𝑚𝜃 + [𝑏𝑚0𝐻𝑚
′ (𝑘0𝑟) cosh 𝑘0(𝑧 +

ℎ) + ∑ 𝑏𝑚𝑛𝑘𝑛𝐾𝑚
′ (𝑘𝑛𝑟) cos 𝑘𝑛(𝑧 +∞

𝑛=1

ℎ)] sin 𝑚𝜃},                                                     

(26) 

where 𝐾𝑚(∙) is a modified second-kind Bessel 

function with order m (m = 0,1,2,...), 𝐻𝑚(∙) is a first-

kind Hankel function with order m, 𝑘𝑛 (𝑛 > 0) 

denotes an eigenvalue with order 𝑛 calculated by 

𝜔2 = −𝑔𝑘𝑛 tan 𝑘𝑛ℎ, and the coefficients 𝑎𝑚𝑛 and 

𝑏𝑚𝑛 are unknowns as for now and will be 

determined in the following paragraph. 

Equation (26) is expressed as a type of 

Fourier series with 𝜃, where the Fourier coefficients 

can be again expressed as a type of series composed 

of the following orthonormal functions with 

reference to 𝑧 in a domain [−ℎ, 0]: 

𝑍𝑘𝑛
(𝑧) = {

𝑁𝑘0

−0.5 cosh 𝑘0(𝑧 + ℎ) , 𝑛 = 0

𝑁𝑘𝑛

−0.5 cos 𝑘𝑛(𝑧 + ℎ) , 𝑛 ≠ 0
                

(27) 

where 

𝑁𝑘𝑛
= {

ℎ

2
(1 +

sinh 2𝑘0ℎ

2𝑘0ℎ
) , 𝑛 = 0

ℎ

2
(1 +

sin 2𝑘𝑛ℎ

2𝑘𝑛ℎ
) , 𝑛 ≠ 0

                    (28) 

Substituting 𝑟 = 𝑅 into Equation (26) and 

from the boundary condition (24) on 𝑟 = 𝑅, the 

unknown coefficients 𝑎𝑚𝑛 and 𝑏𝑚𝑛 can be 

expressed from Equation (27) as follows: 

𝑎𝑚𝑛 =
𝑁𝑘𝑛

−0.5

𝜋𝜀𝑚𝑘𝑛𝐹𝑚
′ (𝑘𝑛𝑅)

∫ ∫
𝜕𝛷𝜒(𝑅,𝜃′,𝑧′)

𝜕𝑟
𝑍𝑘𝑛

(𝑧′) cos 𝑚𝜃′ 𝑑𝜃′𝑑𝑧′2𝜋

0

0

−ℎ
     

   (29) 

𝑏𝑚𝑛 =
𝑁𝑘𝑛

−0.5

𝜋𝜀𝑚𝑘𝑛𝐹𝑚
′ (𝑘𝑛𝑅)

∫ ∫
𝜕𝛷𝜒(𝑅,𝜃′,𝑧′)

𝜕𝑟
𝑍𝑘𝑛

(𝑧′) sin 𝑚𝜃′ 𝑑𝜃′𝑑𝑧′2𝜋

0

0

−ℎ
     

   (30) 

where 

𝜀𝑚 = {
2, 𝑚 = 0
1, 𝑚 ≠ 0 

                                 (31) 

𝐹𝑚(𝑘𝑛𝑟) = {
𝐻𝑚(𝑘0𝑟), 𝑛 = 0

𝐾𝑚(𝑘𝑛𝑟), 𝑛 ≠ 0 
                       (32) 

and 𝐹𝑚
′ (∙) is a derivative of 𝐹𝑚(∙) while 𝜃′ and 𝑧′ 

denote independent variables apparently different 

from 𝜃 and 𝑧. 

The solution for the exterior subregion (20)-

(24) is therefore obtained finally from Equations 

(25), (29) and (30) as follows: 

𝛷𝑆(𝑟, 𝜃, 𝑧) =

∑ ∑ ∫ ∫
𝐹𝑚(𝑘𝑛𝑟)

𝜋𝜀𝑚𝑘𝑛𝐹𝑚
′ (𝑘𝑛𝑅)

𝑍𝑘𝑛
(𝑧)𝑍𝑘𝑛

(𝑧′) cos 𝑚(𝜃 −
2𝜋

0

0

−ℎ
∞
𝑛=0

∞
𝑚=0

𝜃′)
𝜕𝛷𝜒(𝑅,𝜃′,𝑧′)

𝜕𝑟
𝑑𝜃′𝑑𝑧′  (33) 

Substitution of 𝑟 = 𝑅 into Equation (33) will 

result in a NtD artificial boundary condition on 𝛤𝑅 

as follows: 

𝛷𝑆(𝑅, 𝜃, 𝑧) = 𝛬
𝜕𝛷𝑆(𝑅, 𝜃, 𝑧)

𝜕𝑟
 

∑ ∑ ∫ ∫ 𝜆𝑚𝑛(𝑧, 𝑧′, 𝜃 −
2𝜋

0

0

−ℎ
∞
𝑛=0

∞
𝑚=0

𝜃′)
𝜕𝛷𝜒(𝑅,𝜃′,𝑧′)

𝜕𝑟
𝑑𝜃′𝑑𝑧′, (34) 

where 𝜆𝑚𝑛(𝑧, 𝑧′, 𝜃 − 𝜃′) is a NtD kernel specified 

as 

𝜆𝑚𝑛(𝑧, 𝑧′, 𝜃 − 𝜃′) =
𝐹𝑚(𝑘𝑛𝑅)

𝜋𝜀𝑚𝑘𝑛𝐹𝑚
′ (𝑘𝑛𝑅)

𝑍𝑘𝑛
(𝑧)𝑍𝑘𝑛

(𝑧′) cos 𝑚(𝜃 − 𝜃′).        

(35) 

 

F. Numerical implementation with NtD 

boundary condition 
The following integral equation for potential 

𝛷𝜒 is constructed from the Green's second identity 

as follows: 
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2𝜋𝛷𝜒(𝑃) = ∫ [𝛷𝜒(𝑄)
𝜕𝐺(𝑃,𝑄)

𝜕𝑛𝑄
−

𝛤

𝜕𝛷𝜒(𝑄)

𝜕𝑛𝑄
𝐺(𝑃, 𝑄)] 𝑑𝛤𝑄,                (36) 

where 𝛤 denotes an entire boundary surface of 𝛺𝑖 

(i.e. 𝛤 = 𝛤𝐹 + 𝛤𝐵 + 𝛤𝐷 + 𝛤𝑅), 𝑃 and 𝑄 are field and 

source points on 𝛤, respectively, 𝑛𝑄 denotes a unit 

normal vector to the surface 𝛤 starting from a point 

𝑄, and 𝐺 is a Green's function defind by 

𝐺(𝑃, 𝑄) =
1

𝑟
=

1

|𝑃−𝑄|
 .                          (37) 

From the boundary conditions (16)-(19) and 

(34), the Equation (36) can be rearranged as 

2𝜋𝛷𝜒(𝑃) − (𝐷𝛤𝐹+𝛤𝐵+𝛤𝐷
𝛷𝜒)(𝑃)

−
𝜔2

𝑔
[(𝑆𝛤𝐹

𝛷𝜒)(𝑃)]

− (𝑆𝛤𝑅

𝜕𝛷𝜒

𝜕𝑟
) (𝑃) − 

∑ ∑ ∫ ∫ 𝜆𝑚𝑛(𝑧, 𝑧′, 𝜃 −
2𝜋

0

0

−ℎ
∞
𝑛=0

∞
𝑚=0

𝜃′) [(𝐷𝛤𝑅

𝜕𝛷𝜒

𝜕𝑟
) (𝑃)] 𝑑𝜃′𝑑𝑧′ =

{
(𝑆𝛤𝐵

𝜕𝛷𝐼

𝜕𝑛
) (𝑃)   if 𝜒 = 𝑆

−(𝑆𝛤𝐵
𝑢𝑛,𝐿)(𝑃)  if 𝜒 = 𝐿

,                        (38) 

where 𝑆𝛿𝜓 and 𝐷𝛿𝜓 denote operators or 

functionals of spatial function 𝜓 defined on an 

arbitrary surface 𝛿 defined by 

(𝑆𝛿𝜓)(𝑃) = ∫ 𝐺(𝑃, 𝑄)𝜓(𝑄)𝑑𝛿𝑄𝛿
                     (39) 

(𝐷𝛿𝜓)(𝑃) = ∫
𝜕𝐺(𝑃,𝑄)

𝜕𝑛𝑄
𝜓(𝑄)𝑑𝛿𝑄𝛿

                     (40) 

Since 𝛷𝐼 and 𝑢𝑛,𝐿 in the right-handed side of 

Equation (38) are given already in Equation (3) and 

by preliminary set of 𝐿-th modal oscillatory motion 

of the floating body with unit amplitude of velocity, 

therefore the unkown quantities in the left-handed 

side of Equation (38), i.e. 𝛷𝜒 on 𝛤𝐹 + 𝛤𝐵 + 𝛤𝐷 and 
𝜕𝛷𝜒

𝜕𝑟
 on 𝛤𝑅 can be solved by dividing the entire 

boundary 𝛤 into a finite number of panels and by 

truncating the series in Equation (38). 

 

 

 

 

 

 

II. RESULTS AND DISCUSSION 

After the unknown potentials 𝛷𝜒 (𝜒 =

𝑆, 𝐿, 𝐷) on 𝛤𝐹 and 𝛤𝐵 are determined from Equations 

(38), (2) and (3), the 𝑘-th (𝑘 = 1, 6̅̅ ̅̅̅) components of 

time-periodic excitation force and radiation force 

by wave diffraction and radiation can be 

respectively expressed as  

𝑓𝐷
(𝑘)

(𝜔, 𝑡) = Re [𝐹𝐷
(𝑘)

(𝜔)𝑒−i𝜔𝑡]                     

(41) 

and 

𝑓𝑅
(𝑘)

(𝜔, 𝑡) = Re [𝐹𝑅
(𝑘)

(𝜔)𝑒−i𝜔𝑡],                     

(42) 

where 𝑘 = 1, 3̅̅ ̅̅̅ and 𝑘 = 4, 6̅̅ ̅̅̅ mean the x-, y- and z-

components of the wave excitation/radiation force 

and its moment about the barycentre of body, 

respectively, and the amplitudes 𝐹𝐷
(𝑘)

 and 𝐹𝑅
(𝑘)

 are 

calculated by 

𝐹𝐷
(𝑘)(𝜔) = −i𝜔𝜌 ∫ 𝛷𝐷(𝑥, 𝑦, 𝑧; 𝜔)𝑛𝑘𝑑𝛤

𝛤𝐵
,          (43) 

𝐹𝑅
(𝑘)(𝜔) = −i𝜔𝜌 ∫ 𝛷𝑅(𝑥, 𝑦, 𝑧; 𝜔)𝑛𝑘𝑑𝛤

𝛤𝐵
=

−𝜔2𝜌 ∑ 𝜉𝐿 ∫ 𝛷𝐿(𝑥, 𝑦, 𝑧; 𝜔)𝑛𝑘𝑑𝛤
𝛤𝐵

6
𝐿=1 =

∑ 𝜔2𝜉𝐿𝜇̂𝐿
(𝑘)

(𝜔)6
𝐿=1 + ∑ i𝜔𝜉𝐿𝜈̂𝐿

(𝑘)
(𝜔)6

𝐿=1 .            (44) 

Where 

𝜇̂𝐿
(𝑘)(𝜔) = −𝜌Re [∫ 𝛷𝐿(𝑥, 𝑦, 𝑧; 𝜔)𝑛𝑘𝑑𝛤

𝛤𝐵
]      (45) 

And 

𝜈̂𝐿
(𝑘)

(𝜔) = −𝜌𝜔Im [∫ 𝛷𝐿(𝑥, 𝑦, 𝑧; 𝜔)𝑛𝑘𝑑𝛤
𝛤𝐵

]   (46) 

denote 𝑘-th components of hydrodynamic 

coefficients, i.e. added mass for Equation (45) and 

damping coefficients for Equation (46), due to the 

𝐿-th modal oscillatory motion of submerged 

structure with unit amplitude of velocity, 

respectively, and 𝑛𝑘 is specified by 𝑛1 = 𝑛𝑥, 𝑛2 =
𝑛𝑦, 𝑛3 = 𝑛𝑧, 𝑛4 = −(𝑧 − 𝑧0)𝑛𝑦 + (𝑦 − 𝑦0)𝑛𝑧, 

𝑛5 = (𝑧 − 𝑧0)𝑛𝑥 − (𝑥 − 𝑥0)𝑛𝑧, 𝑛6 = −(𝑦 −
𝑦0)𝑛𝑥 + (𝑥 − 𝑥0)𝑛𝑥, where (𝑥0, 𝑦0, 𝑧0) denotes 

the coordinates of body center. 

The time-periodic wave elevation due to 

the wave diffraction can be expressed by 

𝜂(𝑥, 𝑦, 𝜔, 𝑡) = Re[𝜂̂(𝑥, 𝑦, 𝜔)𝑒−i𝜔𝑡], where the 

complex amplitude 𝜂̂ is calculated by 

𝜂̂(𝑥, 𝑦, 𝜔) =
i𝜔

𝑔
𝛷𝐷(𝑥, 𝑦, 0; 𝜔).                     (47) 
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Figure 2. Comparison between DtN boundary condition [3,60] and NtD boundary condition (present) (a) A buoyant chamfer box 

with dimensions (b) Wave elevation around the chamfer box (c) Excitation forces; (d) Added mass and damping coefficients. 

 
TABLE 1. 

RELATIVE ERROR ACCORDING TO THE DIFFERENT VALUES OF 𝑀 AND 𝑁  

𝑀 𝑁 Relative error, % 

3 2 21.87 
5 4 11.95 

7 5 6.87 

9 7 4.52 
11 8 3.28 

14 10 2.59 

17 15 2.25 
21 18 2.12 

A. Model validation 
The NtD approach presented here is 

compared with a DtN model presented in Rim 

[3,60] which was fully validated through 

comparison with the analytical approach based 

on the eigenfunction expansion method. Figure 

2a shows a buoyant chamfer box with 𝐿𝐵, 𝑊𝐵, 𝐻𝐵, 

𝑑𝐵 and 𝑅𝐵 which denote length, width, height, draft 

and fillet radius, respectively. The results for the 

box with 𝐻𝐵/𝐿𝐵 =1.1, 𝑊𝐵/𝐿𝐵 =0.8, 𝑅𝐵/
𝐿𝐵 =0.15, 𝑑𝐵/𝐿𝐵 =0.65 and ℎ/𝐿𝐵 =3 are 

described in Figures 2b-d. Figure 2b shows the 

three-dimensional water wave elevation around the 

box at time 𝑡 = 2𝑘𝜋/𝜔 (k=0, 1, ...)  under the 

incident water wave with 𝐴/𝐿𝐵 =0.2, 𝐿𝐵/𝜆 =0.33 

and 𝛼 = 0°, where 𝜆 is a wavelength determined 

from 𝜆 = 2𝜋 𝑘0⁄ . Figure 2c shows the excitation 

forces acting to the box in case of 𝛼 = 0°, where 

the excitation forces are normalized by 

 

𝐹𝑘(𝜔) = |𝐹𝐷
(𝑘)(𝜔)| /𝜌𝑔𝐴𝐿𝐵𝑊𝐵,   𝑘=1, 3.               

(48) 

Figure 2d shows the hydrodynamic 

coefficients which are normalized by 

𝜇𝐿
(𝑘)(𝜔) = {

𝜇̂𝐿
(𝑘)(𝜔)/𝜌𝐿𝐵𝑊𝐵𝑑𝐵,   𝐿, 𝑘 = 1,2,3

𝜇̂𝐿
(𝑘)(𝜔)/𝜌𝐿𝐵𝑊𝐵𝑑𝐵

3 ,   𝐿, 𝑘 = 4,5,6

𝜇̂𝐿
(𝑘)(𝜔)/𝜌𝐿𝐵𝑊𝐵𝑑𝐵

2 ,        𝑒𝑙𝑠𝑒

            

(49) 
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and 

𝜈𝐿
(𝑘)(𝜔) = {

𝜈̂𝐿
(𝑘)

(𝜔)/𝜌𝜔𝐿𝐵𝑊𝐵𝑑𝐵,   𝐿, 𝑘 = 1,2,3

𝜈̂𝐿
(𝑘)

(𝜔)/𝜌𝜔𝐿𝐵𝑊𝐵𝑑𝐵
3 ,   𝐿, 𝑘 = 4,5,6

𝜈̂𝐿
(𝑘)

(𝜔)/𝜌𝜔𝐿𝐵𝑊𝐵𝑑𝐵
2 ,        𝑒𝑙𝑠𝑒

 .           

(49) 

Figures 2c and d show a little error (i.e. 

relative error less than 2.25%) between the 

results by the NtD method (present) and the 

DtN method [3,60], which is because the error 

might occur in meshing as wall as numerical 

calculation of Equation (38), but it will be 

reduced in case of denser mesh and increased 

number of truncated terms of the series in 

Equation (38). It is noted that the results 

presented in Figure 2 were obtained for 𝐾 =
36982, 𝑀 = 17 and 𝑁 = 15, where 𝐾 is the 

number of mesh elements on the boundary of 

interior subdomain, 𝑀 and 𝑁 denote the 

numbers of truncated terms in the series for 𝑚 

and 𝑛 in Equation (38), respectively. The 

relative errors of the present results to the 

antecedent DtN method [3,60] are shown in 

Table 1 with different 𝑀 and 𝑁. The convergent 

results in Table 1 show the validation of the 

present NtD approach. 
 

 

 
Figure 3. Effects of incident angle and draft (a) Effects of incident angle on excitation forces (b) Effects of draft on added mass. 

 

B. Effects of some parameters 
Figure 3 shows the effects of incident angle 

and draft on excitation forces and hydrodynamic 

coefficients. Figure 3a shows the effect of incident 

angle on excitation forces acting to the same 

chamfer box as in Figure 2 except that the incident 

angle is selected as 𝛼 = 0°, 20°, 40°, 60° and 90°, 

respectively. All plots of surge and heave forces 

versus 𝐿𝐵/𝜆 in Figure 3a are less fluctuating and 

the peak points of surge force are lowering with the 

increment of 𝛼 from 0° to 90°. It can also be found 

that the peak points in the plot of surge force for 

each 𝛼 are lowering according to the increment of 

𝐿𝐵/𝜆. Figure 3b shows the effect of draft on added 

mass of the same chamfer box as in Figure 2 except 

that the draft is selected as 𝑑𝐵/𝐿𝐵 =0.65 and 0.85$. 

All plots in Figure 3b are decreasing according to 

the increment of 𝐿𝐵/𝜆. It can also be found that the 

translational and rotational added masses in 𝑥 − 

and 𝑦 − directions in case of 𝑑𝐵/𝐿𝐵 =0.85 are 

greater than the results in case of 𝑑𝐵/𝐿𝐵 =0.65 

while the translational and rotational added masses 

in 𝑧 − direction in case of 𝑑𝐵/𝐿𝐵 =0.85 are smaller 

than the results in case of 𝑑𝐵/𝐿𝐵 =0.65. 

 

 

III. CONCLUSION 
This paper aims to suggest a NtD boundary 

condition in order to solve water wave diffraction 

and independent radiation by a buoyant body in 

water of finite depth. A virtual cylindrical surface 

enclosing the floating body is chosen as a boundary 

on which an exact NtD map is analytically derived 

from a solution of the exterior subregion and then it 

is specified as a boundary condition in order to 

solve the interior problem. The present model 
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shows good accuracy through the comparison with 

the DtN approach [3,60]. The present NtD approach 

is extended to consider the effects of incident angle 

of the incident wave and draft of a buoyant chamfer 

box. All the plots of surge and heave forces for 

different incident angles are found to be less 

fluctuating and the peak points of surge force are 

lowering according to the increase of incident 

angle. And the translational and rotational added 

masses in 𝑥 − direction and 𝑦 − direction are found 

to be increasing according to the increment of draft 

while the translational and rotational added masses 

in 𝑧 − direction are found to be decreasing 

according to the increment of draft. The present 

NtD approach can be adopted to study the three-

dimensional linear wave interaction with an 

arbitrarily-shaped floating body, and the nonlinear 

wave-structure interaction will be continued. 
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