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Abstract— The propulsion motor is essential to a ship's propulsion system, enabling effective maritime operations by
converting energy into motion. The system's performance can be negatively impacted by dynamic factors such as load
fluctuations, speed variations, and difficult marine conditions. This study presents a real-time condition monitoring system
specifically designed for ship propulsion motors., utilizing non-invasive analysis of nonlinear acoustic signals to assess their
performance. These signals are processed through the Short-Time Fourier Transform (STFT) to extract frequency-domain
features that are indicative of the motor's condition. A significant advancement in this research is the optimisation of
acoustic sensor placement, achieved through a Completely Randomised Design (CRD) approach, which has been validated
using Tukey's test. Sensors were assessed at distances between 10 cm and 210 cm, with the most effective positioning
identified at 110 cm. This placement achieved 100% accuracy in detecting faults such as cracks and uneven wear in motor
bearings. This methodology effectively addresses challenges associated with nonlinear signal analysis and external noise
interference, providing a precise, reliable, and cost-effective monitoring solution. The system improves the reliability and
efficiency of marine propulsion motors by enabling early fault detection. This results in lower maintenance costs and
decreased operational downtime, which is crucial for both marine and industrial applications.
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|. INTRODUCTION

The propulsion motor is a fundamental component of

a vessel's propulsion system, responsible for converting
energy into motion to ensure operational performance.
As the primary driver of the wvessel, its proper
functioning is essential not only for propulsion but also
for the operation of auxiliary systems that rely on stable
power delivery. The functionality of propulsion motors is
influenced by various dynamic conditions, including
load fluctuations, rotational speed variations, and
environmental factors such as waves, currents, and wind
[1]. These conditions create complex operational
environments that require the motor to consistently adapt
to varying demands, increasing the risk of wear and
failure over time. Without effective monitoring and
maintenance, minor issues in the propulsion motor can
escalate into critical failures that may result in costly
repairs or even operational downtime. These factors
subject the propulsion motor to stresses that can
compromise its performance and, if left undetected, lead
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to operational failures. The potential consequences of
propulsion motor failures extend beyond mere financial
losses; they also pose significant risks to the safety of the
vessel and its crew. Consequently, developing robust
condition monitoring systems for propulsion motors is
imperative to maintain their reliability and efficiency [2].
Such systems play a crucial role in ensuring the long-
term operational viability of vessels by enabling early
fault detection and facilitating proactive maintenance
interventions. Moreover, advancements in condition
monitoring technology offer opportunities to enhance
energy efficiency, reduce environmental impact, and
optimize overall vessel performance [3]. Condition
monitoring entails the continuous assessment of the
motor's operational performance to enable timely
maintenance interventions. This systematic approach
ensures that anomalies in motor behavior are detected
early, reducing the likelihood of unexpected failures that
could disrupt operations. Data collected from condition
monitoring provides predictive insights into potential
failures, thereby mitigating risks of severe damage,
optimizing maintenance schedules, and enhancing
overall equipment longevity [4]. These insights allow
operators to prioritize repairs and allocate resources
more efficiently, minimizing downtime and enhancing
operational productivity. Such proactive maintenance
practices not only improve system reliability but also
reduce costs and prevent collateral damage to
interconnected  machinery components, such as
gearboxes and pumps, which are often impacted by
motor failures. Monitoring can be conducted through
periodic or continuous methods, depending on the
operational criticality of the motor and the available
monitoring infrastructure. Periodic monitoring involves
scheduled inspections, which may miss early-stage
issues, while continuous monitoring offers real-time
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data, enabling immediate responses to emerging
problems. Addressing both mechanical and electrical
failures is critical, as each presents unique challenges.
Common mechanical issues include shaft imbalance,
uneven air gaps, and bearing damage, whereas electrical
failures typically involve stator and rotor malfunctions
[5]. Mechanical issues, such as bearing damage, not only
affect the motor's capacity to handle loads but can also
create secondary effects like misalignment and excessive
vibrations that further degrade performance. Among the
various types of failures identified, bearing failures are
the most common, representing 41% of induction motor
failures. This is followed by issues related to stator
windings, which account for 37%. Rotor problems
contribute to 10% of failures, while other sources of
failure make up the remaining 12% [6]. Bearing damage
can significantly impact motor performance, leading to
elevated operating temperatures, sparking, decreased
efficiency, and rotor shaft deformation, which manifest
as vibrations and noise. These symptoms, if left
unaddressed, can result in complete motor failure,
necessitating costly repairs or replacements and
potentially causing extended operational disruptions. By
utilising advanced monitoring technologies, operators are
able to proactively address these risks, thereby ensuring
the long-term reliability and efficiency of motor systems
[7].

Despite these advances, several challenges persist in
propulsion motor condition monitoring. Traditional
linear signal analysis methods are insufficient for
detecting early-stage faults or irregular condition
changes in non-linear dynamic systems, such as marine
propulsion motors. These methods struggle to capture the
complexities of signals influenced by varying operational
and environmental factors, limiting their effectiveness in
dynamic maritime conditions. Moreover, invasive
monitoring techniques often require direct interaction
with motor elements, which complicates their application
in dynamic environments and increases maintenance
costs [8]. Such techniques can also introduce additional
risks, such as potential damage to motor components
during sensor installation or maintenance activities.
Acoustic-based non-invasive methods, while promising,
are hindered by overlapping noise and the complex non-
linear nature of the signals, leading to reduced diagnostic
accuracy [9].

Environmental noise, vibrations from other
machinery, and variations in operational conditions can
mask critical fault indicators, making accurate diagnosis
challenging [10]. Additionally, the lack of standardized
procedures for sensor placement and signal processing
further complicates the implementation of non-invasive
monitoring systems. These issues highlight the necessity
for innovative strategies to improve the reliability and
efficiency of condition monitoring systems [11].

Developing advanced algorithms capable of isolating
and analyzing fault-specific signal features within noisy
and non-linear datasets is a key research priority.
Furthermore,  optimizing sensor placement and
leveraging real-time data processing technologies can
significantly improve the accuracy and practicality of
condition monitoring systems for propulsion motors
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[12]. The second phase focused on health monitoring in a
rotor winding short circuit. Both phases utilised invasive
techniques, which have inherent limitations, particularly
the difficulty of installing sensors on moving motor parts
[13]. This necessitated the development of health
monitoring through non-invasive techniques. The health
monitoring system was further developed by utilising
flux signals generated during motor operation as
monitoring data [14]. Additionally, the operational
efficiency of the motor was investigated to assess the
extent of energy loss when the bearing operates under
faulty conditions [15]. Further advancements in motor
monitoring, with an emphasis on bearings, were pursued
using non-invasive techniques based on acoustic
analysis, given that this method is simpler and more cost-
effective compared to others. However, challenges arise
due to the overlapping nature of acoustic signals with
surrounding noise, which significantly affects the
accuracy of diagnostic results, as these acoustic signals
are inherently non-linear [16-19]. Traditional monitoring
technologies generally utilise linear methods, which are
constrained in their capacity to accurately capture the
intricate signal patterns associated with non-linear
dynamic systems, such as marine propulsion motors.
Nevertheless, advancements in non-linear signal analysis
methods have made it possible to accurately depict the
behaviour of more complex systems.

This study introduces a novel methodology that
addresses these limitations by leveraging non-linear
signal processing techniques to monitor marine
propulsion motors under dynamic conditions. The
proposed approach emphasizes the analysis of non-linear
acoustic signals to capture complex behaviors, offering
improved diagnostic capabilities compared to traditional
methods. Furthermore, this research highlights the
critical importance of sensor placement in achieving
accurate monitoring results. By employing Short-Time
Fourier Transform (STFT) for feature extraction and
utilizing statistical methods such as Completely
Randomized Design (CRD) and the Tukey test, the study
optimizes sensor placement to enhance diagnostic
precision.

A key contribution of this research is the integration
of non-linear signal analysis with real-time
implementation using a Raspberry Pi platform. This
innovative approach enables efficient monitoring of
induction motor bearings, even in challenging maritime
environments, by addressing both signal complexity and
noise interference. Additionally, the proposed system
offers a cost-effective and practical solution for
improving the reliability and operational efficiency of
marine propulsion systems.

Il. METHOD

A. System Monitoring

The configuration of the monitoring system for the
ship's propulsion motor, along with the development of
an optimal sensor placement strategy, is illustrated in
Figure 1. The monitoring system requires several
supporting components to represent the propulsion
motor, including the motor itself, a microphone, a
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Raspberry Pi programmed with Python, sound sensors,
and an LCD for presenting graphs and monitoring
results. The focus of the research is on the bearings of
the ship's propulsion motor, specifically monitoring the
outer race, inner race, and ball-bearing elements. The
placement of the sensors is a variable that significantly
influences the accuracy of the monitoring process. The
experimental conditions for the placement of the sound
sensors are set at distances of 10 cm, 60 cm, 110 cm, 160
cm, and 210 cm from the motor's body.

The microphone, functioning as a sound sensor,
records the operational sounds of the motor.

Subsequently, the audio signals are processed for
diagnosing the condition of the bearings, with the central
processing carried out on a Raspberry Pi. The results of
this monitoring are displayed on an LCD screen. Figure
2 illustrates the research flow, demonstrating how the
research objectives are achieved. Once the software and
collection

hardware have been developed, data
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commences. The initial audio data collected pertains to
sound from the source under normal conditions, with
variations in the placement of the sound sensor at
specific distances, which serves as a reference signal.
The non-linear audio signals are processed using Short-
Time Fourier Transform (STFT), enabling the extraction
of unique signal characteristics that reflect the condition
of the ship's drive motor components. Different sensor
placements create opportunities for the test audio signals
to overlap with external noise. Consequently, this
research implements an optimal sensor placement
strategy, employing the statistical technique of
Completely Randomised Design (CRD). Should the
placement of the sensors significantly influence the
accuracy of monitoring, the next step will involve
determining the optimal sensor placement, to
achieve high monitoring accuracy.

Induction Motor

Figure. 1. Configuration of motor monitoring system.
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Figure. 2. Flowchart of motor condition monitoring with the development of optimal sensor placement strategy

B. Ship Propulsion Motor Rotation Frequency

Detecting damage in bearings is crucial, as any
deterioration can adversely affect the reliability of
induction motors. When bearings fail, they can cause the
rotor to become misaligned with the stator, resulting in
noise emanating from the rotor. If a bearing operates
under damaged conditions, it generates periodic impulses
at specific frequencies. These impulses are referred to as
characteristic defect frequencies. Equations (1)-(3)
provide the calculations for the frequencies of bearing

elements, where Nb represents the number of balls, nm
denotes the rotational speed, db indicates the ball
diameter, Dp signifies the pitch diameter, and ocis the
contact angle of the balls [20].

Outer race bearing f, = {%ﬁ xnm){1l— % ® cos ) (1)

Inner race bearing f, = {%ﬁ xnm)(1+ % x cos ) (2)

Ball Bearing fi= (%x nm)(1— (%T cos® oc) (3)
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The frequency of the bearing is repeated across each of
its harmonic components as the constant increases [21].
The periodic frequency of the bearing is denoted as f, ,
while the characteristic frequency of the bearing
elements is represented by f,,, according to equations (1)-
(3), and constants k=1,2,34... Consequently, the
harmonic frequency components of the bearing elements
can be expressed as follows :

fo=lkxfl (4)
The repetition of treatments is employed to ensure a high

level of accuracy. Data collection was repeated five
times for each case and variation in sensor placement.
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The testing of the ship's propulsion motor
components, specifically the inner, outer, and ball
bearings, has revealed significant damage (see Figure 3).
The deterioration of the bearings typically begins with
minor issues, such as scratches; however, if these are not
addressed promptly, the bearings can sustain severe
damage. Figure 3 illustrates three distinct faults: Fault#1,
which involves a crack in the outer race bearing; Fault#2,
characterised by a hole in the inner race bearing; and
Fault#3, where the ball bearing has fractured. The
reconstruction of the ship's propulsion motor bearings
aims to evaluate the effectiveness of the monitoring
system in detecting such faults. Should the designed
monitoring system successfully identify the actual
condition of the bearings as being faulty, it will indicate
that the monitoring results are accurate.

Fault#1

Fault#2

Fault#3

Figure. 3. Bearing in damaged condition as testing

I11. RESULTS AND DISCUSSION

3.1. Non-linear signal analysis

The monitoring system for the condition of ship
propulsion motors in real-time, specifically addressing
failures in the outer race, inner race, and ball bearings,
involves the strategic placement of acoustic sensors at
distances of 10 cm, 60 cm, 110 cm, 160 cm, and 210 cm
from the motor body. By employing Short-Time Fourier
Transform (STFT) analysis on the nonlinear signals,
valuable insights regarding the condition of the motor
bearings can be obtained. The analysis entails comparing
the amplitude of harmonic frequencies from the test
bearing with the amplitude of a reference sound signal.
Figure 4 illustrates the results from the testing and
processing of the bearing condition monitoring at a
distance of 10 cm, with the reference signal derived from
recordings of a healthy bearing, while the test signal
corresponds to a bearing in a state of disrepair. The
nonlinear characteristics of the recorded sound signal do
not yield clear information regarding the condition of the
ship propulsion motor, as there are no significant
differences between the reference and test signals. This
highlights the critical role of STFT in providing accurate
information about the condition of the motor bearings.
Figure 5 presents the processed signal from the STFT,
depicted as a spectrogram that illustrates the relationship
between time and frequency, along with colour intensity
representing amplitude levels. An analysis of the
spectrum is then conducted by comparing the amplitudes
of the reference bearing against those of the test bearing,

as shown in Figure 6. Observing the signal patterns
allows for the determination of the bearing condition.
Notably, the average amplitude of the test signal is
higher than that of the reference signal. Specifically, the
outer frequency at 91.27 Hz exceeds the reference
amplitude of 80.19, while its periodic frequency of
182.54 Hz reaches 66.48. Such patterns are expected to
recur at other outer race frequencies. This spectral
analysis indicates the presence of damage within the
outer race bearing.

The analysis of the inner race condition is observed at
a frequency of 133.62 Hz, where the amplitude reaches
66.77. At a frequency of 267.24 Hz, the amplitude
measures 56.36. These amplitude values exceed their
respective reference levels of 65.92 and 55.26. The
observations were conducted across ten periodic
frequencies for each sound signal sample. The testing
involved varying the placement distance of the sound
source, as this would influence the analytical results; an
increased measurement distance raises the likelihood of
the motor sound overlapping with non-motor sounds.
Monitoring was repeated five times for each treatment
condition.

Table 1 presents the overall results of the tests
conducted. The validity percentage obtained from the
monitoring system indicates its capability to identify the
actual condition of the test bearing. In this testing
display, both the outer race and inner race are observed
to be in a state of cracking.
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3.2. Sensor Placement Strategy

The accuracy tabulation for monitoring the placement
of sensors will be tested using a Completely Randomised
Design (CRD) approach. In the normality test, a p-value
of 0.220 was obtained, indicating that the errors or
residuals are normally distributed, as this p-value
exceeds 0.05. This can be observed in Figure 6. For the
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homogeneity test, a p-value of 0.458 was recorded,
suggesting that the data variance is homogeneous, as this
value is also greater than 0.05, as illustrated in Figure 8.
Consequently, the validity of the data for hypothesis
testing analysis has been established.
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Figure. 8. Homogeneity test
The CRD test indicates that the calculated F-value  significantly affects monitoring accuracy. It is

exceeds the critical F-value of 2.76, leading to the
acceptance of the alternative hypothesis (H1). This
suggests that there is a significant impact on the accuracy
of the bearing condition monitoring system based on
sensor placement. The results of the test reveal that the
positioning of the sensor, with varying distances,

noteworthy that the bearing test indicated corrosion
damage in the outer race and uneven wear in the inner
race, which can be classified as non-severe damage.
These findings reinforce the evidence that sensor
placement significantly influences monitoring accuracy.
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This underscores the importance of careful sensor
placement to prevent diagnostic and prognostic errors.
The placement of sensors in different locations will
result in variations in sensitivity, thereby affecting the
accuracy of the monitoring system for the condition of
induction motor bearings. The analysis of optimal sensor
placement strategies in this study employs the Tukey
test, also known as the Honest Significance Difference
(HSD) method. The Tukey test compares all pairs of
treatment means following an analysis of variance. The
fundamental principle of this test involves comparing the
differences between each mean against a specific critical
value. If the absolute difference between the means is
greater than or equal to this critical value, it can be
concluded that the two means differ significantly. The
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application of the Tukey test for developing an effective
sensor placement strategy is outlined as follows :
a. The results of the CRD test indicate a rejection of the

hypothesis Hy, demonstrating that the placement of
the sensor has a significant impact on the accuracy of
the monitoring system for the condition of the ship's
propulsion motor bearings.

b. Determining the Tukey value at a significance level
of 5%.

c. The criteria for testing involve comparing the
absolute values of the differences in the averages of
two groups (see Figure 9).

d. The treatment at 110 cm (sensor placement at 110
cm) demonstrated a significant difference compared
to the other treatment groups and achieved the
highest average accuracy in monitoring.

TABLE 1.
ACCURACY OF BEARING CONDITION MONITORING IN ALL TESTS

Repetition of monitoring accuracy tests

Sensor

Placement 1 2 3 4 5
10cm 95% 95% 80% 95% 90%
60 cm 100% 100% 85% 90% 90%
110cm 100% 100% 100% 100% 100%
160 cm 80% 90% 80% 90% 90%
210 cm 95% 85% 80% 95% 75%
TABLE 2.
VARIANCE ANALYSIS OF PLACEMENT SENSORS
Source of Degrees Sum of squares Middle F-Value P-Value
Diversity Free square
Treatment 4 600 150 6 0.002
Galat 20 500 25
Total 24 1100
Tukey Simultaneous Tests for Differences of Means
Difference SE of Adjusted
Difference of Levels of Means Difference 95% Cl T-Value  P-Value
110CM -10CM 9.00 3.16 (-0.46, 18.46) 285 0.067
160 CM - 10 CM -4.00 3.16 (-13.46, 5.46) -1.26 0.715
210CM - 10CM -4.50 316 (-13.95 4.96) -1.42 0.621
60 CM - 10 CM 2.00 3.16 (-7.46, 11.46) 0.63 0.968
160 CM - 110 CM -13.00 3.16 (-2248, -3.54) -4.11 0.004
210CM - 110 CM -13.50 3.16 (-22.96, -4.04) -4.27 0.003
60 CM - 110 CM -7.00 3.16 (-16.46, 2.46) -2.21 0.213
210CM - 160 CM -0.50 3.16 (-9.96, 8.96) -0.16 1.000
60 CM - 160 CM 6.00 316 (-3.46,15.46) 1.90 0350
60 CM - 210 CM 6.50 3.16 (-2.96, 15.96) 2.06 0.277

Individual confidence level = 55.28%

Figure. 9. Tukey Simultaneous

Grouping Information Using the Tukey Method and 95% Confidence

Distance N Mean Grouping

110 CM 5 1000 A

60 CM 5 93.000 A B
10 CM 5 9100 A B
160 CM 5 8700 B
210 CM 5 8630 B

Means that do not share a letter are significantly different.

Figure. 10. Grouping Tukey Test
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The Tukey test revealed that the accuracy of the
bearing condition monitoring system achieved optimal
results with the placement of the sensor at a distance of
110 cm from the motor body. According to the Minitab
software analysis, this sensor placement of 110 cm from
the motor body represented the highest average
compared to other treatments, as illustrated in Figure 10.

Based on the analysis and calculations derived
from the Tukey test, it was found that the bearing
condition monitoring system, which employed sensor
placement testing at varying distances of 10 cm, 60 cm,
110 cm, 160 cm, and 210 cm from the motor body using
the Short-Time Fourier Transform (STFT) method in
real-time, demonstrated a high level of success, with
damage detection results exceeding 70%. The average
accuracy percentage of monitoring results for both
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unloaded and loaded motor conditions for each sensor
placement distance was as follows: 91% at 10 cm, 93%
at 60 cm, 100% at 110 cm, 87% at 160 cm, and 86.5% at
210 cm. The strategy of placing the sensor at a distance
of 110 cm from the motor body was identified as the
optimal distance, as the monitoring system achieved an
accuracy of 100%.

Table 3 presents a comparison of similar studies,
focusing on the impact of sensor placement for motor
condition  monitoring.  Several researchers have
employed multisensor approaches to gather extensive
information, albeit without discussing optimal strategies.
In contrast, the findings of this study contribute to the
development of a monitoring system that is cost-
effective, straightforward, and offers promising accuracy
in monitoring.

TABLE 3.
SIMILAR STUDIES
Works Signal Measurement Signal Processing Technique Fault Highlight
Identified
Nirwan, N. W. Sound signal, FFT Outer race, inner No
[20] vibration race, ball bearing
Lucena-Junior, et Sound signal signal analysis based on chaos Outer race, inner No
al [22] using density of maxima (SAC- race
DM
Vanraj, et al, [23] Sound signal No discussion Bearing MSAF-20-
MULTIEXPANDED
Glowacs et al, [24] Sound signal MSAF-20-MULTIEXPANDED Bearing MSAF-20-
MULTIEXPANDED
Zhong, J.H, et all Sound signal Ensemble empirical mode Bearing Placement sensor
[25] decomposition fixed 50cm
Goyal et al, [26] Vibration signal FFT NC-OSP strategy -
Proposed method Sound signal FFT Bearing in marine Strategi placement
ship engine sensor = 110cm,
systems monitoring accuracy
=100%
IVV. CONCLUSION REFERENCES
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