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Abstract⎯ The propulsion motor is essential to a ship's propulsion system, enabling effective maritime operations by 

converting energy into motion. The system's performance can be negatively impacted by dynamic factors such as load 

fluctuations, speed variations, and difficult marine conditions. This study presents a real-time condition monitoring system 

specifically designed for ship propulsion motors., utilizing non-invasive analysis of nonlinear acoustic signals to assess their 

performance. These signals are processed through the Short-Time Fourier Transform (STFT) to extract frequency-domain 

features that are indicative of the motor's condition. A significant advancement in this research is the optimisation of 

acoustic sensor placement, achieved through a Completely Randomised Design (CRD) approach, which has been validated 

using Tukey's test. Sensors were assessed at distances between 10 cm and 210 cm, with the most effective positioning 

identified at 110 cm. This placement achieved 100% accuracy in detecting faults such as cracks and uneven wear in motor 

bearings. This methodology effectively addresses challenges associated with nonlinear signal analysis and external noise 

interference, providing a precise, reliable, and cost-effective monitoring solution. The system improves the reliability and 

efficiency of marine propulsion motors by enabling early fault detection. This results in lower maintenance costs and 

decreased operational downtime, which is crucial for both marine and industrial applications.  
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I. INTRODUCTION1 

The propulsion motor is a fundamental component of 

a vessel's propulsion system, responsible for converting 

energy into motion to ensure operational performance. 

As the primary driver of the vessel, its proper 

functioning is essential not only for propulsion but also 

for the operation of auxiliary systems that rely on stable 

power delivery. The functionality of propulsion motors is 

influenced by various dynamic conditions, including 

load fluctuations, rotational speed variations, and 

environmental factors such as waves, currents, and wind 

[1]. These conditions create complex operational 

environments that require the motor to consistently adapt 

to varying demands, increasing the risk of wear and 

failure over time. Without effective monitoring and 

maintenance, minor issues in the propulsion motor can 

escalate into critical failures that may result in costly 

repairs or even operational downtime. These factors 

subject the propulsion motor to stresses that can 

compromise its performance and, if left undetected, lead 
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to operational failures. The potential consequences of 

propulsion motor failures extend beyond mere financial 

losses; they also pose significant risks to the safety of the 

vessel and its crew. Consequently, developing robust 

condition monitoring systems for propulsion motors is 

imperative to maintain their reliability and efficiency [2]. 

Such systems play a crucial role in ensuring the long-

term operational viability of vessels by enabling early 

fault detection and facilitating proactive maintenance 

interventions. Moreover, advancements in condition 

monitoring technology offer opportunities to enhance 

energy efficiency, reduce environmental impact, and 

optimize overall vessel performance [3]. Condition 

monitoring entails the continuous assessment of the 

motor's operational performance to enable timely 

maintenance interventions. This systematic approach 

ensures that anomalies in motor behavior are detected 

early, reducing the likelihood of unexpected failures that 

could disrupt operations. Data collected from condition 

monitoring provides predictive insights into potential 

failures, thereby mitigating risks of severe damage, 

optimizing maintenance schedules, and enhancing 

overall equipment longevity [4]. These insights allow 

operators to prioritize repairs and allocate resources 

more efficiently, minimizing downtime and enhancing 

operational productivity. Such proactive maintenance 

practices not only improve system reliability but also 

reduce costs and prevent collateral damage to 

interconnected machinery components, such as 

gearboxes and pumps, which are often impacted by 

motor failures. Monitoring can be conducted through 

periodic or continuous methods, depending on the 

operational criticality of the motor and the available 

monitoring infrastructure. Periodic monitoring involves 

scheduled inspections, which may miss early-stage 

issues, while continuous monitoring offers real-time 



International Journal of Marine Engineering Innovation and Research, Vol. 10(2), June. 2025. 359-367 

(pISSN: 2541-5972, eISSN: 2548-1479) 

360 
 

 

data, enabling immediate responses to emerging 

problems. Addressing both mechanical and electrical 

failures is critical, as each presents unique challenges. 

Common mechanical issues include shaft imbalance, 

uneven air gaps, and bearing damage, whereas electrical 

failures typically involve stator and rotor malfunctions 

[5]. Mechanical issues, such as bearing damage, not only 

affect the motor's capacity to handle loads but can also 

create secondary effects like misalignment and excessive 

vibrations that further degrade performance. Among the 

various types of failures identified, bearing failures are 

the most common, representing 41% of induction motor 

failures. This is followed by issues related to stator 

windings, which account for 37%. Rotor problems 

contribute to 10% of failures, while other sources of 

failure make up the remaining 12% [6]. Bearing damage 

can significantly impact motor performance, leading to 

elevated operating temperatures, sparking, decreased 

efficiency, and rotor shaft deformation, which manifest 

as vibrations and noise. These symptoms, if left 

unaddressed, can result in complete motor failure, 

necessitating costly repairs or replacements and 

potentially causing extended operational disruptions. By 

utilising advanced monitoring technologies, operators are 

able to proactively address these risks, thereby ensuring 

the long-term reliability and efficiency of motor systems 

[7].  

Despite these advances, several challenges persist in 

propulsion motor condition monitoring. Traditional 

linear signal analysis methods are insufficient for 

detecting early-stage faults or irregular condition 

changes in non-linear dynamic systems, such as marine 

propulsion motors. These methods struggle to capture the 

complexities of signals influenced by varying operational 

and environmental factors, limiting their effectiveness in 

dynamic maritime conditions. Moreover, invasive 

monitoring techniques often require direct interaction 

with motor elements, which complicates their application 

in dynamic environments and increases maintenance 

costs [8]. Such techniques can also introduce additional 

risks, such as potential damage to motor components 

during sensor installation or maintenance activities. 

Acoustic-based non-invasive methods, while promising, 

are hindered by overlapping noise and the complex non-

linear nature of the signals, leading to reduced diagnostic 

accuracy [9].  

Environmental noise, vibrations from other 

machinery, and variations in operational conditions can 

mask critical fault indicators, making accurate diagnosis 

challenging [10]. Additionally, the lack of standardized 

procedures for sensor placement and signal processing 

further complicates the implementation of non-invasive 

monitoring systems. These issues highlight the necessity 

for innovative strategies to improve the reliability and 

efficiency of condition monitoring systems [11]. 

Developing advanced algorithms capable of isolating 

and analyzing fault-specific signal features within noisy 

and non-linear datasets is a key research priority. 

Furthermore, optimizing sensor placement and 

leveraging real-time data processing technologies can 

significantly improve the accuracy and practicality of 

condition monitoring systems for propulsion motors 

[12]. The second phase focused on health monitoring in a 

rotor winding short circuit. Both phases utilised invasive 

techniques, which have inherent limitations, particularly 

the difficulty of installing sensors on moving motor parts 

[13]. This necessitated the development of health 

monitoring through non-invasive techniques. The health 

monitoring system was further developed by utilising 

flux signals generated during motor operation as 

monitoring data [14]. Additionally, the operational 

efficiency of the motor was investigated to assess the 

extent of energy loss when the bearing operates under 

faulty conditions [15]. Further advancements in motor 

monitoring, with an emphasis on bearings, were pursued 

using non-invasive techniques based on acoustic 

analysis, given that this method is simpler and more cost-

effective compared to others. However, challenges arise 

due to the overlapping nature of acoustic signals with 

surrounding noise, which significantly affects the 

accuracy of diagnostic results, as these acoustic signals 

are inherently non-linear [16-19]. Traditional monitoring 

technologies generally utilise linear methods, which are 

constrained in their capacity to accurately capture the 

intricate signal patterns associated with non-linear 

dynamic systems, such as marine propulsion motors. 

Nevertheless, advancements in non-linear signal analysis 

methods have made it possible to accurately depict the 

behaviour of more complex systems. 

This study introduces a novel methodology that 

addresses these limitations by leveraging non-linear 

signal processing techniques to monitor marine 

propulsion motors under dynamic conditions. The 

proposed approach emphasizes the analysis of non-linear 

acoustic signals to capture complex behaviors, offering 

improved diagnostic capabilities compared to traditional 

methods. Furthermore, this research highlights the 

critical importance of sensor placement in achieving 

accurate monitoring results. By employing Short-Time 

Fourier Transform (STFT) for feature extraction and 

utilizing statistical methods such as Completely 

Randomized Design (CRD) and the Tukey test, the study 

optimizes sensor placement to enhance diagnostic 

precision. 

A key contribution of this research is the integration 

of non-linear signal analysis with real-time 

implementation using a Raspberry Pi platform. This 

innovative approach enables efficient monitoring of 

induction motor bearings, even in challenging maritime 

environments, by addressing both signal complexity and 

noise interference. Additionally, the proposed system 

offers a cost-effective and practical solution for 

improving the reliability and operational efficiency of 

marine propulsion systems. 

 

II. METHOD 

A. System Monitoring 

The configuration of the monitoring system for the 

ship's propulsion motor, along with the development of 

an optimal sensor placement strategy, is illustrated in 

Figure 1. The monitoring system requires several 

supporting components to represent the propulsion 

motor, including the motor itself, a microphone, a 
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Raspberry Pi programmed with Python, sound sensors, 

and an LCD for presenting graphs and monitoring 

results. The focus of the research is on the bearings of 

the ship's propulsion motor, specifically monitoring the 

outer race, inner race, and ball-bearing elements. The 

placement of the sensors is a variable that significantly 

influences the accuracy of the monitoring process. The 

experimental conditions for the placement of the sound 

sensors are set at distances of 10 cm, 60 cm, 110 cm, 160 

cm, and 210 cm from the motor's body.  

The microphone, functioning as a sound sensor, 

records the operational sounds of the motor. 

Subsequently, the audio signals are processed for 

diagnosing the condition of the bearings, with the central 

processing carried out on a Raspberry Pi. The results of 

this monitoring are displayed on an LCD screen. Figure 

2 illustrates the research flow, demonstrating how the 

research objectives are achieved. Once the software and 

hardware have been developed, data collection 

commences. The initial audio data collected pertains to 

sound from the source under normal conditions, with 

variations in the placement of the sound sensor at 

specific distances, which serves as a reference signal. 

The non-linear audio signals are processed using Short-

Time Fourier Transform (STFT), enabling the extraction 

of unique signal characteristics that reflect the condition 

of the ship's drive motor components. Different sensor 

placements create opportunities for the test audio signals 

to overlap with external noise. Consequently, this 

research implements an optimal sensor placement 

strategy, employing the statistical technique of 

Completely Randomised Design (CRD). Should the 

placement of the sensors significantly influence the 

accuracy of monitoring, the next step will involve 

determining the optimal sensor placement, to 

achieve high monitoring accuracy.  

 

 

 
 

Figure. 1. Configuration of motor monitoring system. 

 

 

 
 

Figure. 2. Flowchart of motor condition monitoring with the development of optimal sensor placement strategy 

 

 

B. Ship Propulsion Motor Rotation Frequency  

Detecting damage in bearings is crucial, as any 

deterioration can adversely affect the reliability of 

induction motors. When bearings fail, they can cause the 

rotor to become misaligned with the stator, resulting in 

noise emanating from the rotor. If a bearing operates 

under damaged conditions, it generates periodic impulses 

at specific frequencies. These impulses are referred to as 

characteristic defect frequencies. Equations (1)-(3) 

provide the calculations for the frequencies of bearing 

elements, where  represents the number of balls,  

denotes the rotational speed,  indicates the ball 

diameter,   signifies the pitch diameter, and is the 

contact angle of the balls [20]. 

) (1) 

 

)  (2) 

 

        (3) 
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The frequency of the bearing is repeated across each of 

its harmonic components as the constant increases [21]. 

The periodic frequency of the bearing is denoted as  , 

while the characteristic frequency of the bearing 

elements is represented by , according to equations (1)-

(3), and constants  Consequently, the 

harmonic frequency components of the bearing elements 

can be expressed as follows : 

 

                                              (4) 

 

The repetition of treatments is employed to ensure a high 

level of accuracy. Data collection was repeated five 

times for each case and variation in sensor placement.  

The testing of the ship's propulsion motor 

components, specifically the inner, outer, and ball 

bearings, has revealed significant damage (see Figure 3). 

The deterioration of the bearings typically begins with 

minor issues, such as scratches; however, if these are not 

addressed promptly, the bearings can sustain severe 

damage. Figure 3 illustrates three distinct faults: Fault#1, 

which involves a crack in the outer race bearing; Fault#2, 

characterised by a hole in the inner race bearing; and 

Fault#3, where the ball bearing has fractured. The 

reconstruction of the ship's propulsion motor bearings 

aims to evaluate the effectiveness of the monitoring 

system in detecting such faults. Should the designed 

monitoring system successfully identify the actual 

condition of the bearings as being faulty, it will indicate 

that the monitoring results are accurate.  

 

 

 
Figure. 3.  Bearing in damaged condition as testing 

III. RESULTS AND DISCUSSION 

3.1. Non-linear signal analysis 

The monitoring system for the condition of ship 

propulsion motors in real-time, specifically addressing 

failures in the outer race, inner race, and ball bearings, 

involves the strategic placement of acoustic sensors at 

distances of 10 cm, 60 cm, 110 cm, 160 cm, and 210 cm 

from the motor body. By employing Short-Time Fourier 

Transform (STFT) analysis on the nonlinear signals, 

valuable insights regarding the condition of the motor 

bearings can be obtained. The analysis entails comparing 

the amplitude of harmonic frequencies from the test 

bearing with the amplitude of a reference sound signal. 

Figure 4 illustrates the results from the testing and 

processing of the bearing condition monitoring at a 

distance of 10 cm, with the reference signal derived from 

recordings of a healthy bearing, while the test signal 

corresponds to a bearing in a state of disrepair. The 

nonlinear characteristics of the recorded sound signal do 

not yield clear information regarding the condition of the 

ship propulsion motor, as there are no significant 

differences between the reference and test signals. This 

highlights the critical role of STFT in providing accurate 

information about the condition of the motor bearings. 

Figure 5 presents the processed signal from the STFT, 

depicted as a spectrogram that illustrates the relationship 

between time and frequency, along with colour intensity 

representing amplitude levels. An analysis of the 

spectrum is then conducted by comparing the amplitudes 

of the reference bearing against those of the test bearing, 

as shown in Figure 6. Observing the signal patterns 

allows for the determination of the bearing condition. 

Notably, the average amplitude of the test signal is 

higher than that of the reference signal. Specifically, the 

outer frequency at 91.27 Hz exceeds the reference 

amplitude of 80.19, while its periodic frequency of 

182.54 Hz reaches 66.48. Such patterns are expected to 

recur at other outer race frequencies. This spectral 

analysis indicates the presence of damage within the 

outer race bearing.  

The analysis of the inner race condition is observed at 

a frequency of 133.62 Hz, where the amplitude reaches 

66.77. At a frequency of 267.24 Hz, the amplitude 

measures 56.36. These amplitude values exceed their 

respective reference levels of 65.92 and 55.26. The 

observations were conducted across ten periodic 

frequencies for each sound signal sample. The testing 

involved varying the placement distance of the sound 

source, as this would influence the analytical results; an 

increased measurement distance raises the likelihood of 

the motor sound overlapping with non-motor sounds. 

Monitoring was repeated five times for each treatment 

condition.  

Table 1 presents the overall results of the tests 

conducted. The validity percentage obtained from the 

monitoring system indicates its capability to identify the 

actual condition of the test bearing. In this testing 

display, both the outer race and inner race are observed 

to be in a state of cracking.  
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Figure. 4.  Non-linear reference and test signals 

 

  
Figure. 5.  STFT spectrograms of reference and test signals 

 

 
Figure. 6. Monitoring system display 
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3.2. Sensor Placement Strategy 

The accuracy tabulation for monitoring the placement 

of sensors will be tested using a Completely Randomised 

Design (CRD) approach. In the normality test, a p-value 

of 0.220 was obtained, indicating that the errors or 

residuals are normally distributed, as this p-value 

exceeds 0.05. This can be observed in Figure 6. For the 

homogeneity test, a p-value of 0.458 was recorded, 

suggesting that the data variance is homogeneous, as this 

value is also greater than 0.05, as illustrated in Figure 8. 

Consequently, the validity of the data for hypothesis 

testing analysis has been established. 

 

 

 

 
 

Figure. 7.  Normality test 

 

 

 

 

 

Figure. 8. Homogeneity test 

 

The CRD test indicates that the calculated F-value 

exceeds the critical F-value of 2.76, leading to the 

acceptance of the alternative hypothesis (H1). This 

suggests that there is a significant impact on the accuracy 

of the bearing condition monitoring system based on 

sensor placement. The results of the test reveal that the 

positioning of the sensor, with varying distances, 

significantly affects monitoring accuracy. It is 

noteworthy that the bearing test indicated corrosion 

damage in the outer race and uneven wear in the inner 

race, which can be classified as non-severe damage. 

These findings reinforce the evidence that sensor 

placement significantly influences monitoring accuracy. 
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This underscores the importance of careful sensor 

placement to prevent diagnostic and prognostic errors. 

The placement of sensors in different locations will 

result in variations in sensitivity, thereby affecting the 

accuracy of the monitoring system for the condition of 

induction motor bearings. The analysis of optimal sensor 

placement strategies in this study employs the Tukey 

test, also known as the Honest Significance Difference 

(HSD) method. The Tukey test compares all pairs of 

treatment means following an analysis of variance. The 

fundamental principle of this test involves comparing the 

differences between each mean against a specific critical 

value. If the absolute difference between the means is 

greater than or equal to this critical value, it can be 

concluded that the two means differ significantly. The 

application of the Tukey test for developing an effective 

sensor placement strategy is outlined as follows :  

a. The results of the CRD test indicate a rejection of the 

hypothesis , demonstrating that the placement of 

the sensor has a significant impact on the accuracy of 

the monitoring system for the condition of the ship's 

propulsion motor bearings. 

b. Determining the Tukey value at a significance level 

of 5%.  

c. The criteria for testing involve comparing the 

absolute values of the differences in the averages of 

two groups (see Figure 9). 

d. The treatment at 110 cm (sensor placement at 110 

cm) demonstrated a significant difference compared 

to the other treatment groups and achieved the 

highest average accuracy in monitoring. 

 

 
 

Figure. 9.  Tukey Simultaneous 

 

Figure. 10.  Grouping Tukey Test 

 

TABLE 2. 

VARIANCE ANALYSIS OF PLACEMENT SENSORS  

Source of 

Diversity 

Degrees 

Free 

Sum of squares Middle 

square 

F-Value P-Value 

Treatment 4 600 150 6 0.002 

Galat 20 500 25   

Total 24 1100    

 

 

TABLE 1. 

ACCURACY OF BEARING CONDITION MONITORING IN ALL TESTS 

 Sensor 

Placement 

Repetition of monitoring accuracy tests 

1 2 3 4 5 

10 cm 95% 95% 80% 95% 90% 

60 cm 100% 100% 85% 90% 90% 

110 cm 100% 100% 100% 100% 100% 

160 cm 80% 90% 80% 90% 90% 

210 cm 95% 85% 80% 95% 75% 
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The Tukey test revealed that the accuracy of the 

bearing condition monitoring system achieved optimal 

results with the placement of the sensor at a distance of 

110 cm from the motor body. According to the Minitab 

software analysis, this sensor placement of 110 cm from 

the motor body represented the highest average 

compared to other treatments, as illustrated in Figure 10.  

Based on the analysis and calculations derived 

from the Tukey test, it was found that the bearing 

condition monitoring system, which employed sensor 

placement testing at varying distances of 10 cm, 60 cm, 

110 cm, 160 cm, and 210 cm from the motor body using 

the Short-Time Fourier Transform (STFT) method in 

real-time, demonstrated a high level of success, with 

damage detection results exceeding 70%. The average 

accuracy percentage of monitoring results for both 

unloaded and loaded motor conditions for each sensor 

placement distance was as follows: 91% at 10 cm, 93% 

at 60 cm, 100% at 110 cm, 87% at 160 cm, and 86.5% at 

210 cm. The strategy of placing the sensor at a distance 

of 110 cm from the motor body was identified as the 

optimal distance, as the monitoring system achieved an 

accuracy of 100%. 

Table 3 presents a comparison of similar studies, 

focusing on the impact of sensor placement for motor 

condition monitoring. Several researchers have 

employed multisensor approaches to gather extensive 

information, albeit without discussing optimal strategies. 

In contrast, the findings of this study contribute to the 

development of a monitoring system that is cost-

effective, straightforward, and offers promising accuracy 

in monitoring.  

 
 

TABLE 3. 

SIMILAR STUDIES 

Works Signal Measurement Signal Processing Technique Fault  

Identified 
Highlight 

Nirwan, N. W. 

[20] 

Sound signal, 

vibration 

FFT Outer race, inner 

race, ball bearing 

No 

Lucena-Junior, et 

al [22] 

Sound signal signal analysis based on chaos 

using density of maxima (SAC-

DM 

Outer race, inner 

race 

No 

Vanraj, et al, [23] Sound signal No discussion Bearing MSAF-20-

MULTIEXPANDED 

Glowacs et al, [24] Sound signal MSAF-20-MULTIEXPANDED Bearing MSAF-20-

MULTIEXPANDED 

Zhong, J.H, et all 

[25] 

Sound signal Ensemble empirical mode 

decomposition 

Bearing Placement sensor 

fixed 50cm 

Goyal et al, [26] Vibration signal FFT NC-OSP strategy 

 

- 

Proposed method Sound signal FFT Bearing in marine 

ship engine 

systems 

Strategi placement 

sensor = 110cm, 

monitoring accuracy 

= 100% 

 

IV. CONCLUSION 
This research addresses the monitoring of the bearing condition of 

ship propulsion motors through the development of an optimal sensor 

placement strategy. The monitoring system has been designed to 

operate in real-time, ensuring that diagnosis is conducted efficiently 

without significant delays. By employing the Short-Time Fourier 

Transform (STFT) approach for non-linear signals and spectrum 

analysis, it has been established that the monitoring system is capable 

of reliably detecting the condition of motor elements. The placement of 

sensors significantly impacts the accuracy of monitoring. The study 

demonstrates a decline in accuracy when sound sensors are positioned 

too far from the motor. It was found that placing the sensor at a 

distance of 110 cm from the motor body is optimal, resulting in a 

monitoring system accuracy of 100%. Such high monitoring accuracy 

is invaluable for the diagnostic and prognostic assessment of motor 

conditions, enabling the prevention of severe damage and the 

avoidance of operational downtime. 
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