Economizer Analysis on Thermal Oil Heating Process

Economizer analysis on thermal oil process means to prove is done because there are differences data between the maker's data with the shop test data of the main engine. The following table will show the technical data of economizer, thermal oil fluid, and shop trial record of main engine used.

Technical Dat	Thermal Oil Fluid Specification						
Туре		Aalborg EXV632 46		Type	=	Then	minol 66
		48.3 900DD		Composition		Hydrogenated	
Quantity	=	23,7	m ³ /h	Composition		Terphenyl	
T _{inlet}	=	140	°C	Kinematic Vis. (40°C)	П	29,64	cSt
T _{Outlet}	=	180	°C				
Flow Resistance	П	17,5	m.l.c	Density (15°C)	=	1011	kg/m ³
Diameter Without		1664	mm	Flash Point Fire Point	=	170	°C
Insulation		1004	111111		=	216	°C
Weight (Empty)	=	6200	kg	Total Acidity	=	<0,02	mgKOH/g
Liquid Contents	=	1190	Litres	Pour Point	=	-32	°C

Shop Trial Record of Main Engine on MT. Parigi										
Engine Load	Engine Output	Exh. Gas T/C Inlet	Exh. Gas T/C Outlet	Specific Heat of Exh. Gas	Exhaust Gas Amount					
(%)	(kW)	(°C)	(°C)	(kJ/kgK)	(kg/h)					
75%	3330	365	225	1,030	21670					
85%	3774	380	225	1,030	26862					
100%	4440	420	240	1,033	35757					

Engine load 85 (%)

•	Capacity:	500 kW
•	Exhaust gas quantity:	33.300 kg/h
•	Exhaust gas temperature before heater	248 °C
•	Exhaust gas temperature after heater	197 °C
•	Pressure drop exhaust gasses	1.232 Pa.
Eı	ngine load 100 (%)	
•	Capacity:	619 kW
•	Exhaust gas quantity:	37.200kg/h
•	Exhaust gas temperature before heater	265 °C
•		
	Pressure drop exhaust gasses	1.545 Pa.

Therefore, the analysis will be done in order to find out the outlet temperature of exhaust gas from the economizer, at 75%, 85%, and 100% MCR of the main engine.

Analysis on 75% Load of Main Engine

Heat of thermal oil fluid will be kept constant. The heat value of thermal oil fluid is as following.

$$Q_{TO} = m_{TO} \times Cp_{TO} \times \Delta T_{TO}$$
$$= 483,162 \text{ kW}$$

Then, find out the outlet temperature of exhaust gas from the economizer.

$$Q_{TO}$$
 = Q_{EG}
 T_{EGout} = 420,196 K
= 147,046 $^{\circ}C$

Based on calculation above, it is known that the outlet temperature of exhaust gas from the economizer at 75% load of main engine is 151,72 °C.

Analysis on 85% Load of Main Engine

Heat of thermal oil fluid will be kept constant. The heat value of thermal oil fluid is as following.

$$Q_{TO} = m_{TO} \times Cp_{TO} \times \Delta T_{TO}$$
$$= 483,162 \text{ kW}$$

Then, find out the outlet temperature of exhaust gas from the economizer.

$$Q_{TO}$$
 = Q_{EG}
 T_{EGout} = 435,264 K
= 162,114 $^{\circ}C$

Based on calculation above, it is known that the outlet temperature of exhaust gas from the economizer at 85% load of main engine is 166,5 °C.

Analysis on 100% Load of Main Engine

Heat of thermal oil fluid will be kept constant. The heat value of thermal oil fluid is as following.

$$Q_{TO} = m_{TO} \times Cp_{TO} \times \Delta T_{TO}$$
$$= 483,162 \text{ kW}$$

Then, find out the outlet temperature of exhaust gas from the economizer.

Based on calculation above, it is known that the outlet temperature of exhaust gas from the economizer at 85% load of main engine is 196,3 °C.