Performance and Emission Analysis of Four-Stroke Diesel Engine Single Cylinder on Toroidal Piston Modification with B30 Fuel

Adhi Iswantoro, I Made Ariana, Bagus Gigih Luqmananto, M. Furqon Maulana, Semin Semin

Abstract


Improvement of the performance of the diesel engine can be done by expanding the combustion chamber. One of the objectives of this research is to obtain optimal piston performance by modifying the piston crown to be 1mm deeper than the standard piston using B30 fuel. This research is also proof of previous research with a simulation that concluded that the performance of a diesel engine using a modified toroidal combustion chamber (TCC) +1mm piston has better performance than a standard piston. This research will analyze the comparison of the performance of a diesel engine using a standard piston and a modified piston on the diesel engine, using an experimental method with B30 biodiesel fuel with engine speed (RPM) variation of 1900 and 2100, also the dummy loads used are 1000, 2000, 3000, and 4000 Watts (W). From the results of the performance tests, it is concluded that the standard piston produces better performance than the modified piston with a very small difference in value in terms of torque, power, and SFOC. The level of NOx emissions produced by the standard RPM 1900 with 1000 W load is 1,483 g/KWh, at a load of 2000 W is 1,011 g/KWh, at a load of 3000 W is 1.375 g/KWh, at a load of 4000 W is 2,372 g/KWh, for standard piston RPM 2100 NOx emission levels produced at 1000 W load is 1,902 g/KWh, at 2000 W load is 1,450 g/KWh, at 3000 W load is 1.368 g/KWh, at 4000 W load is 1,066 g/KWh. The level of NOx emissions produced using a modified piston at 1900 RPM at 1000 W load is 1.865 g/KWh, at 2000 W load is 1.326 g/KWh, at 3000 W load is 1,250 g/KWh, at 4000 W load is 0.857 g/KWh, for RPM 2100 uses a modified piston at a 1000 W load is 1,970 g/KWh, at a 2000 W load is 1,583 g/KWh, at a 3000 W load is 1,465 g/KWh, at a 4000 W load is 1,226 g/KWh. NOx emission levels using standard pistons at RPM 1900 with B30 fuel tend to be smaller at low loads and larger at high loads compared to modified pistons, while NOx emission levels using standard pistons at RPM 2100 fueled by B30 are smaller than using a modified piston.

Keywords


diesel engine; emission; performance; piston; toroidal

Full Text:

PDF

References


Soenarta, N. and Furuhama S, Dr. (2002). Motor Serba Guna, PT. Pradnya Paramita, Jakarta.

Hillier, V. A. W. (2012). Hillier’s Fundamentals of Motor Vehicle Technology. Cheltenham. The Institute of The Motor Industry.

Pemerintah Indonesia. (2015). Peraturan Menteri No. 12 tahun 2015 tentang penggunaan biodiesel pada sector industry di Indonesia. Lembaran RI tahun 2015. Kementerian Energi dan Sumber Daya Mineral

Septiawan, H. (n.d.). Analisa Tegangan Piston Akibat Pengurangan Tebal Piston Head pada Konversi Mesin Diesel Menjadi Mesin Bahan Bakar Gas..

Leksono, V. H. (2020). Analisa Pengaruh Piston Modifikasi Terhadap Performa Mesin Diesel Satu Silinder Empat Langkah Berbasis Simulasi Menggunakan Bahan Bakar B30. Institut Teknologi Sepuluh Nopember, [5] Heywood, J. B. (2018). Internal combustion engine fundamentals: McGraw-Hill Education

Ezeoye, I. S., & Orangian, M. (2019). Design and Optimisation of Marine Two-Stroke Diesel Engine Piston. International Journal of Marine Engineering Innovation and Research, Vol. 4(1).

Dayang. (n.d.). Pengaruh Perubahan Compression Ratio pada Unjuk Kerja Motor Diesel dengan Bahan Bakar Gas

Daryanto. (1984). Contoh Perhitungan dan Perencanaan Motor Diesel 4 Langkah. Tarsito, Bandung.

Rozaqi, F. (September 2012). Perbaikan dan Modifikasi Mesin Diesel 1 Silinder untuk Engine Test Komposisi Bahan Bakar B0, B5, B10, dan B15. Fakultas Teknik Program Studi Diploma III Teknik Mesin

Setiawan, P. B. (2018). Analisa Pengaruh Diameter Piston, Bahan Bakar, dan Bentuk Kubah Piston pada Motor Empat Langkah Terhadap Konsumsi Bahan Bakar. Simki-Techsain Vol.02 No.01 Tahun 2018 ISSN : 2599-3011 Universitas Nusantara PGRI Kediri.

Sakthisaravanasenthil, K., Senthilkumar, S., & Sivakumar, G. (2017). A Study on Effect of Piston Bowl Shape on Engine Performance and Emission Characteristics of a Diesel Engine. School of Mechanical and Construction Engineering, Vel Tech University.

Ghosh, A. (2016). Combustion Chambers in CI Engines: A Review. SRM University (408).

Putra Nurliansyah, Bugis Husin, Ranto, 2013. Pengaruh Jenis Bahan Bakar dan Variasi Rasio Kompresi pada Sepeda Motor Suzuki Shogun FL 125 SP Tahun 2007. Jurnal Prodi. Pendidikan Teknik Mesin, Jurusan Pendidikan Teknik Kejuruan, FKIP, UNS Kampus UNS Pabelan JL. Ahmad Yani 200, Surakarta.

Ganji, P. R., Singh, R. N., Raju, V. K., & Rao, S. S. (2018). Design of Piston Bowl Geometry for Better Combustion in Direct-Injection Compression Ignition Engine. Sadhana (2018) 43:92.

International Maritime Organization IMO 1998, Annex VI MARPOL 77/78 Regulation for the Prevention of Air Pollution from Ship and NOx Technical Code. London.




DOI: http://dx.doi.org/10.12962/j25481479.v7i4.13891

Refbacks

  • There are currently no refbacks.


Abstracted / Indexed by:
      
  

 

 

 

 

 

P-ISSN: 2541-5972   

E-ISSN: 2548-1479

 

Lisensi Creative Commons

IJMEIR journal published by  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/