Strength Analysis with Variation of Construction Transverse Watertight Bulkhead On Ship Container 8842 DWT Using Finite Element Method

Amalia Ika Wulandari, Suardi Suardi, Alamsyah Alamsyah, Aknul Ciptiandi

Abstract


Abstract - Container ship are commonly employed in a variety of countries, particularly in archipelagic countries like Indonesia. It is a construction that is very important to consider when building a transverse watertight bulkhead ship because it serves as a compartment divider when the ship has a leak and also as a transverse strength of the ship. The purpose of this research is to see if various construction modifications of a transverse watertight bulkhead can bear the working load. The finite element method was employed in this study. Five different constructions of the transverse watertight bulkhead were used in this analysis. The highest stress value in the corrugated watertight bulkhead is 252.44 MPa, with a maximum deformation of 7.6433 mm, whereas the maximum stress value in the transverse plane watertight bulkhead with "angle stiffener" is 330.71 MPa, with a maximum deformation of 12,072 mm. on transverse plane watertight bulkhead with “Tee stiffener” The maximum voltage value of 301.56 MPa and value maximum deformation of 11,025 mm, on transverse plane watertight bulkhead with “bulb stiffener” maximum stress value of 331.98 MPa and value of maximum deformation of 13,421 mm, on transverse plane watertight bulkhead with “flat stiffener” maximum stress value is 484.94 MPa and value of maximum deformation of 16.13mm. According to the safety factor calculation, corrugated watertight bulkheads, transverse plane watertight bulkheads with "Angle stiffener," transverse plane watertight bulkheads with "TEE stiffener," and transverse plane watertight bulkheads with "Bulb stiffener" are all considered safe.


Keywords


Container ; Transverse watertight bulkhead ; Finite element method ; Stress ; Deformation

Full Text:

PDF

References


T. Maihuru, “KEKUATAN STRUKTUR KONSTRUKSI KAPAL AKIBAT PENAMBAHAN PANJANG Thomas Mairuhu *),” Kekuatan Strukt. Konstr. Kapal Akibat Penambahan Panjang, vol. II, 2011.

B. Plan et al., “Jurnal Teknik BKI,” 2015.

I. P. Mulyatno and I. Amanda, “ANALISA KEKUATAN KONSTRUKSI TRANSVERSE BULKHEAD RUANG MUAT NO . I PADA 18500 DWT DRY CARGO VESSEL BERBASIS,” no. I, pp. 16–22.

T. Ur, C. S. R. B. Carriers, I. P. Requirement, I. Societies, and I. Societies, “Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Non-CSR Bulk Carriers Considering Hold Flooding S18,” vol. 18, no. July, pp. 1–18, 2020.

J. P. Sinaga, I. P. Mulyatno, and W. Amiruddin, “ANALISA KEKUATAN VARIASI SISTEM KONSTRUKSI TRANSVERSE WATERTIGHT BULKHEAD PADA MULTI-PURPOSE CARGO / CONTAINER VESSEL 12000 DWT DENGAN METODE ELEMEN HINGGA,” vol. 3, no. 3.

S. Application, “Evaluation of Scantlings of the Transverse Watertight Corrugated Bulkhead between Cargo Holds Nos . 1 and 2 , with Cargo Hold No . 1 Flooded , for Existing Bulk Carriers,” vol. 19, no. 29, pp. 1–23, 2004.

C. Andrei, C. Stanca, N. Acomi, C. Dumitrache, and C. Ancuta, “Damage stability analysis in particular flooding situations of a multipurpose cargo ship Damage stability analysis in particular flooding situations of a multipurpose cargo ship,” 2018, doi: 10.1088/1757-899X/400/8/082001.

T. Ur, C. S. R. B. Carriers, G. The, I. P. Requirement, and I. Societies, “Evaluation of Allowable Hold Loading for Non- CSR Bulk Carriers Considering Hold Flooding S20,” vol. 20, no. 29, pp. 1–7, 2014.

A. R. Prabowo, D. M. Bae, J. H. Cho, and J. M. Sohn, “Analysis of structural crashworthiness and estimating safety limit accounting for ship collisions on strait territory,” Lat. Am. J. Solids Struct., vol. 14, no. 8, pp. 1594–1613, 2017, doi: 10.1590/1679-78253942.

M. Z. Muis Alie, G. Sitepu, and S. I. Latumahina, “The Assessment of the Ultimate Hull Girder Strength of RO-RO Ship after Damages,” IOP Conf. Ser. Earth Environ. Sci., vol. 135, no. 1, pp. 913–919, 2018, doi: 10.1088/1755-1315/135/1/012004.

O. M. Tumurang, S. O. Dapas, and R. S. Windah, “ANALISIS TATA LETAK STIFFENER TERHADAP TEKUK LOKAL BAJA,” vol. 4, no. 7, pp. 405–413, 2016.

M. M. Tsukamoto, L. Y. Cheng, H. Kobayakawa, T. Okada, and C. A. Bellezi, “A numerical study of the effects of bottom and sidewall stiffeners on sloshing behavior considering roll resonant motion,” Mar. Struct., vol. 72, no. August 2019, p. 102742, 2020, doi: 10.1016/j.marstruc.2020.102742.

L. Damanik, I. P. Mulyatno, and B. Arswendo, “Kajian Teknik Kekuatan Konstruksi Kapal Tugboat 2 X 800 Hp Dengan Metode Elemen Hingga,” J. Tek. Perkapalan, vol. 4, no. 1, pp. 113–122, 2016.

H. Ullah, M. Hussain, N. Abbas, H. Ahmad, M. Amer, and M. Noman, “Numerical investigation of modal and fatigue performance of a horizontal axis tidal current turbine using fluid–structure interaction,” J. Ocean Eng. Sci., vol. 4, no. 4, pp. 328–337, 2019, doi: 10.1016/j.joes.2019.05.008.

G. Revision, T. Ur, C. S. R. B. Carriers, I. P. Requirement, I. Societies, and I. Societies, “Longitudinal Strength of Hull Girder in Flooded Condition for Non-CSR Bulk Carriers S17,” vol. 17, no. July, pp. 10–11, 2020.




DOI: http://dx.doi.org/10.12962/j25481479.v8i2.14490

Refbacks

  • There are currently no refbacks.


Abstracted / Indexed by:
      
  

 

 

 

 

 

P-ISSN: 2541-5972   

E-ISSN: 2548-1479

 

Lisensi Creative Commons

IJMEIR journal published by  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/