Development of an Optronic Aiming System for Target Tracking on the S60 57mm Cannon Weapon Control System Using a Camera

Nelif Andriyan, cahya kusuma

Abstract


The development of technological science towards the defense of a country is growing rapidly. The country needs increasingly advanced defense technology but is constrained by an increasingly large budget due to dependence on producing countries. The state provides opportunities for technocrats to carry out research that can later create a defense technology that is inexpensive and does not burden the state budget. The artificial S60 57mm cannon is one of the cannons that functions as an air attack deterrent. The operating system of this weapon is still manual. This research will design and prototype an automatic Weapon Control System on the S60 57mm gun. In this development using the Atmega 8 microcontroller is the controller and interface for transferring data from the camera (Optronic) to the servo motor. The result of the camera position (optronics) will be followed in real-time by the gun barrel. In designing a target tracking control system automatically using the proportional control method. The results of testing the ability of the servo motor as a camera driver to follow targets or moving objects with a maximum angular speed of 15.5 degrees/second at a speed of 0.3 seconds, the average frame rate of the camera are 60 fps. c. Based on testing the servo motor using the Atmega8 microcontroller support, the reading of the angle direction of the servo motor is displayed in the Delphi software. Based on the test results, there is a difference between mathematical calculations and measurements using an arc ruler. With mathematical calculations, there is a difference with a value of 1.06 degrees per 1 degree.

Keywords


Bluetooth hc-05; Camera; Kontroler Proposional; Mikrokontroler ATmega8; Optronic

Full Text:

PDF

References


A. Hartanto et al., Kebijakan Alutsista republik Indonesia, vol. 4, no. 1. Lembaga Ilmu Pengetahuan Indonesia, 2013.

A. Yani, J. Mahroza, and R. Gunawan, “Ability of Air Defense Artillery Unit in Protecting National Vital,” Strateg. Pertahanan Udar., vol. 5, no. 1, pp. 23–44, 2019.

K. G. As’ad, R. Setiawan, and M. Rameli, “Designing a Firing Control System on S-60 57mm Cannon,” Elkha, vol. 13, no. 2, p. 90, 2021, doi: 10.26418/elkha.v13i2.47343.

A. H. Cordesman and M. Kleiber, “Chinese Military Modernization and Force Development,” Washington. Cent. Strategy. Int. Stud., vol. 1, no. 202, 2006.

M. Dupont and M. Dupont, “Glove-based gesture recognition for real-time outdoors robot control,” 2017.

M. Demirhan and C. Premachandra, “Development of an Automated Camera-Based Drone Landing System,” IEEE Access, vol. 8, pp. 202111–202121, 2020, doi: 10.1109/ACCESS.2020.3034948.

M. Kraft, P. Aszkowski, D. Pieczyński, and M. Fularz, “Low-cost thermal camera-based counting occupancy meter facilitating energy saving in smart buildings,” Energies, vol. 14, no. 15, 2021, doi: 10.3390/en14154542.

T. Muhammad, Y. Guo, Y. Wu, W. Yao, and A. Zeeshan, “CCD camera-based ball balancer system with fuzzy PD control in varying light conditions,” Proc. 2019 IEEE 16th Int. Conf. Networking, Sens. Control. ICNSC 2019, pp. 305–310, 2019, doi: 10.1109/ICNSC.2019.8743305.

Y. Xu et al., “A depth camera–based, task-specific virtual reality rehabilitation game for patients with stroke: Pilot usability study,” JMIR Serious Games, vol. 9, no. 1, pp. 1–12, 2021, doi: 10.2196/20916.

A. Multiplexer, “ﻲﻤﻗﺮﻟا ﻲﻠﺛﺎﻤﺘﻟا ﻞﯾﻮﺤﺘﻟا ﻲﺘﯿﻠﻤﻋ ﻲﻓ ( ﺐﻠﻘﻟا تاﻮﺻأ ) ﺔﯾﻮﯿﺤﻟا تارﺎﺷﻺﻟ ﻞﯾﻮﺤﺘﻟا ﺔﻗد بﺎﺴﺣ ﺔﯿﺑﻮﺳﺎﺣ ةﺎﻛﺎﺤﻣ ماﺪﺨﺘﺳﺎﺑ ATmega 8 ﻢﻜﺤﺘﻟا تﺎﺠﻟﺎﻌﻣ ﻲﻓ ﻲﻠﺛﺎﻤﺘﻟا ﻲﻤﻗﺮﻟاو,” vol. 26, pp. 105–112, 2019.

T. P. Tunggal, A. W. Apriandi, J. E. Poetro, E. T. Helmy, and F. Waseel, “Prototype of hand dryer with ultraviolet light using ATMega8,” J. Robot. Control, vol. 1, no. 1, pp. 7–10, 2020, doi: 10.18196/jrc.1102.

Jumari, N. Supriyanto, H. Aditesna, and S. Widodo, “Construction of digital survey meter model smd-03 using atmega 8 microcontroller,” J. Phys. Conf. Ser., vol. 1436, no. 1, p. 012065, 2020, doi: 10.1088/1742-6596/1436/1/012065.

A. Latif and P. Megantoro, “The Prototype of Automatic Water Sprinkle with Soil Moisture Sensor Based on ATMega 8535,” J. Phys. Conf. Ser., vol. 1464, no. 1, pp. 0–6, 2020, doi: 10.1088/1742-6596/1464/1/012035.

M. Yakob et al., “Development of measuring instrument based on microcontroller for physics laboratory,” J. Phys. Conf. Ser., vol. 1521, no. 2, pp. 0–6, 2020, doi: 10.1088/1742-6596/1521/2/022028.

P. J. Kennedy, “Proportional, Integral, and Derivative Controller Design Part 1,” pp. 1–40, [Online]. Available: www.SunCam.com

A. Rawat and M. F. Azeem, “Performance Analysis of Brushless DC Motor Using Modified Queen Bee Evolution Based Genetic Algorithm Tuned PI Controller under Different Speed Conditions,” Adv. Res., vol. 21, no. 2, pp. 1–10, 2020, doi: 10.9734/air/2020/v21i230183.

A. Margalith and H. W. Mergler, “Optimum Setting for Proportional Controller,” IEEE Trans. Ind. Electron., vol. IE-29, no. 2, pp. 165–175, 1982, doi: 10.1109/TIE.1982.356657.

C. F. D. Saragih, F. M. T. R. Kinasih, C. MacHbub, P. H. Rusmin, and A. S. Rohman, “Visual Servo Application Using Model Predictive Control (MPC) Method on Pan-tilt Camera Platform,” Proc. 2019 6th Int. Conf. Instrumentation, Control. Autom. ICA 2019, no. August, pp. 1–7, 2019, doi: 10.1109/ICA.2019.8916673.

S. R. Yosafat, C. Machbub, and E. M. I. Hidayat, “Design and implementation of Pan-Tilt control for face tracking,” 2017 7th IEEE Int. Conf. Syst. Eng. Technol. ICSET 2017 - Proc., no. October, pp. 217–222, 2017, doi: 10.1109/ICSEngT.2017.8123449.

C. Chen, S. Chen, G. Hu, B. Chen, P. Chen, and K. Su, “An auto-landing strategy based on pan-tilt based visual servoing for unmanned aerial vehicle in GNSS-denied environments,” Aerosp. Sci. Technol., vol. 116, p. 106891, 2021, doi: 10.1016/j.ast.2021.106891.

S. Hu, K. Shimasaki, M. Jiang, T. Senoo, and I. Ishii, “A Simultaneous Multi-Object Zooming System Using an Ultrafast Pan-Tilt Camera,” IEEE Sens. J., vol. 21, no. 7, pp. 9436–9448, 2021, doi: 10.1109/JSEN.2021.3054425.

M. Jiang, K. Shimasaki, S. Hu, T. Senoo, and I. Ishii, “A 500-Fps Pan-Tilt Tracking System with Deep-Learning-Based Object Detection,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 691–698, 2021, doi: 10.1109/LRA.2020.3048653.

D. Vansteenwegen, K. Ruddick, A. Cattrijsse, Q. Vanhellemont, and M. Beck, “The pan-and-tilt hyperspectral radiometer system (PANTHYR) for autonomous satellite validation measurements-Prototype design and testing,” Remote Sens., vol. 11, no. 11, 2019, doi: 10.3390/rs11111360.

K. Kurihara, S. Hoshino, K. Yamane, and Y. Nakamura, “Optical motion capture system with pan-tilt camera tracking and realtime data processing,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2, no. May, pp. 1241–1248, 2002, doi: 10.1109/robot.2002.1014713.




DOI: http://dx.doi.org/10.12962/j25481479.v8i1.15993

Refbacks

  • There are currently no refbacks.


Abstracted / Indexed by:
      
  

 

 

 

 

 

P-ISSN: 2541-5972   

E-ISSN: 2548-1479

 

Lisensi Creative Commons

IJMEIR journal published by  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/