Corrosion Detection on Ship Hull Using ROV Based on Convolutional Neural Network
Abstract
Keywords
Full Text:
PDFReferences
T.Karyono, Budinto, & R.G. Pamungkas, “Analisis Teknik Pencegahan Korosi Pada Lambung Kapal dengan Variasi Sistem Pencegahan ICCP Dibandingkan dengan SACP”, Jurnal Pendidikan Profesional, vol. 6 no.1, pp. 7–17, 2017.
S. Salim, “Pencegahan Korosi Kapal Dengan Metode Pengecatan”, Majalah Ilmiah Bahari Jogja, vol. 17 no. 2, pp. 93–99, 2019. https://doi.org/10.33489/mibj.v17i2.213
A.Nazar, “Prototype Sistem Sorting Packaging Rokok dengan Metode Convolution Neural Network”, 2018.
S.Yammen & P. Muneesawang, “An Advanced Vision System for the Automatic Inspection of Corrosions on Pole Tips in Hard Disk Drives”, IEEE Trans. Components. Packag. Manuf. Technol., vol. 4, pp. 1523–1533, 2014.
L. Liu, E. Tan, X.J., Yin, Y. Zhen, & Z. Q. Cai, “Deep learning for Coating Condition Assessment with Active perception”, in Proceedings of the 2019 3rd High-Performance Computing and Cluster Technologies Conference 75–80, ACM, 2019.
F. Bonnin-Pascual & A. Ortiz, “Corrosion Detection for Automated Visual Inspection” in Developments in Corrosion Protection 619–632, InTech, 2014.
J. Jiang, Z.Wang, H. Guo, & J. Cheng, “Multiresolution Analysis Driven Corrosion Detection on Metal Surface” in 2011 International Conference on Multimedia and Signal Processing 85–88, IEEE, 2011.
L.Petricca, T. Moss, G. Figueroa & S. Broen, “Corrosion Detection Using A.I.: A Comparison of Standard Computer Vision Techniques and Deep Learning Model”, in Computer Science & Information Technology (CS & IT) 91–99 (Academy & Industry Research Collaboration Center (AIRCC), 2016.
I.Katsamenis, E.Protopapadakis, A.Doulamis, N. Doulamis, & A.Voulodimos, “Pixel-Level Corrosion Detection on Metal Constructions by Fusion of Deep Learning Semantic and Contour Segmentation”, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) pp.160–169, 2020.
W. Nash, T. Drummond & N. Birbilis, “Deep Learning AI for Corrosion Detection”, in CORROSION (ed. NACE International), 2019.
W. Nash, T. Drummond & N. Birbilis, “A review of deep learning in the study of materials degradation”, npj Mater. Degrad. 2, 37 2018.
W. Nash, L. Holloway, T. Drummond & N. Birbilis, “Artificial Intelligence Assisted Condition Assessment”, Corros. Mater. February, pp. 80–83, 2018.
Y.Widiarti, Suwadi, Wirawan, “Experimental Measurement of Time-reversal-OFDM Technique for Underwater Acoustic Communication in the Presence of Gaussian Noise”, In Proc. 2019 International Conference on Information and Communications Technology (ICOIACT), pp. 297–301, Yogjakarta, Indonesia
Y.Widiarti, Wirawan, and Suwadi, “Joint time-reversal precoding and spatial diversity technique for acoustic communication in shallow water environment”, International Journal of Intelligent Engineering and Systems. Vol.13, No. 1, pp 237-247.
A. Zein, “Pendeteksian Kantuk Secara Real Time Menggunakan Pustaka Opencv dan Dlib Python”, Sainstech: Jurnal Penelitian Dan Pengkajian Sains Dan Teknologi, vol. 28 No. 2, pp. 22–26. 2018. https://doi.org/10.37277/stch.v28i2.238
S. Setyawan, “Software Perancangan Campuran ( Mix Design ) Beton Dengan Bahasa Pemograman Python Berbasis Gui ( Graphical User Interface )”, U.M. Surakarta, 2017.
DOI: http://dx.doi.org/10.12962/j25481479.v9i1.17235
Refbacks
- There are currently no refbacks.
| |||
|
|
|
|
P-ISSN: 2541-5972
E-ISSN: 2548-1479
IJMEIR journal published by Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/