Analysis of Blade Profile Effects on Performance of Wells Turbine as Wave Energy Converter using CFD Method
Abstract
An oscillating water column (OWC) is a type of power generation device that converts ocean wave energy into electrical energy. The motion of ocean waves forces air through the OWC column and drives a rotor connected to a generator to produce electricity. The Wells turbine is a typical kind of rotor for OWC system. The performance of the Wells turbine can be influence by various factor, such as its geometry. Over the time, various research have been conducted to enhance the Wells turbine design. This study aims to analyze the impact of blade profiles on an 8-bladed Wells turbine’s performance using the Computational Fluid Dynamics (CFD) method. A full-domain with multiple reference frame (MRF) approach is applied to represent the rotating flow of the turbine. The flow is solved using Reynold Average Navier-Stokes (RANS) solver accompanied by shear stress transport turbulunce model to capture the boundary layer near the wall. In this study, some blade profiles including NACA 0012, NACA 0015, and NACA 0018, with chord lengths of 100 mm, 125 mm, and 150 mm, are examined. The results of this study reveal that the NACA 0018 blade profile with a 150 mm chord length improves the torque coefficient by 36.28% and the power coefficient by 1.04% compared to other configurations.
Keywords
Full Text:
PDFReferences
R. Pelc and R. M. Fujita, “Renewable energy from the ocean,” Mar. Policy, vol. 26, no. 6, pp. 471–479, Nov. 2002, doi: 10.1016/S0308-597X(02)00045-3.
A. Clément et al., “Wave energy in Europe: current status and perspectives,” Renew. Sustain. Energy Rev., vol. 6, no. 5, pp. 405–431, Oct. 2002, doi: 10.1016/S1364-0321(02)00009-6.
F. Opoku, M. N. Uddin, and M. Atkinson, “A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach,” Renew. Sustain. Energy Rev., vol. 174, p. 113124, Mar. 2023, doi: 10.1016/j.rser.2022.113124.
A. F. O. Falcão and J. C. C. Henriques, “Oscillating-water-column wave energy converters and air turbines: A review,” Renew. Energy, vol. 85, pp. 1391–1424, Jan. 2016, doi: 10.1016/j.renene.2015.07.086.
M. N. Uddin, F. Opoku, and M. Atkinson, “Investigation of a Modified Wells Turbine for Wave Energy Extraction,” Energies, vol. 17, no. 15, p. 3638, Jul. 2024, doi: 10.3390/en17153638.
T. Kim, T. Setoguchi, Y. Kinoue, and K. Kaneko, “Effects of blade geometry on performance of wells turbine for wave power conversion,” J. Therm. Sci., vol. 10, no. 4, pp. 293–300, Oct. 2001, doi: 10.1007/s11630-001-0035-4.
M. Takao, A. Thakker, R. Abdulhadi, and T. Setoguchi, “Effect of blade profile on the performance of a large-scale Wells turbine for wave-energy conversion,” Int. J. Sustain. Energy, vol. 25, no. 1, pp. 53–61, Mar. 2006, doi: 10.1080/14786450600593295.
P. M. Kumar and A. Samad, “Effect of Blade Profiles on the performance of Bidirectional Wave Energy Turbine,” MATEC Web Conf., vol. 172, p. 06002, 2018, doi: 10.1051/matecconf/201817206002.
M. Takao, K. Takasaki, S. Okuhara, and T. Setoguchi, “Wells turbine for wave energy conversion - improvement of stall characteristics by the use of 3-dimensional blades -,” J. Fluid Sci. Technol., vol. 9, no. 3, pp. JFST0052–JFST0052, 2014, doi: 10.1299/jfst.2014jfst0052.
Y. Cui, Z. Liu, X. Zhang, and C. Xu, “Review of CFD studies on axial-flow self-rectifying turbines for OWC wave energy conversion,” Ocean Eng., vol. 175, pp. 80–102, Mar. 2019, doi: 10.1016/j.oceaneng.2019.01.040.
Y. Cui and B.-S. Hyun, “Numerical study on Wells turbine with penetrating blade tip treatments for wave energy conversion,” Int. J. Nav. Archit. Ocean Eng., vol. 8, no. 5, pp. 456–465, Sep. 2016, doi: 10.1016/j.ijnaoe.2016.05.009.
P. Halder, S. H. Rhee, and A. Samad, “Numerical optimization of Wells turbine for wave energy extraction,” Int. J. Nav. Archit. Ocean Eng., vol. 9, no. 1, pp. 11–24, Jan. 2017, doi: 10.1016/j.ijnaoe.2016.06.008.
N. Abdul Settar, S. Sarip, and H. M. Kaidi, “Computational Fluid Dynamics Model of Wells Turbine for Oscillating Water Column System: A Review,” J. Phys. Conf. Ser., vol. 2053, no. 1, p. 012013, Oct. 2021, doi: 10.1088/1742-6596/2053/1/012013.
Z. G. Gunawan and Sutardi, “Comparative Numerical Study of Conventional and Hydraulic Wells Turbine for Ocean-Wave Energy Conversion,” BIO Web Conf., vol. 89, p. 10001, 2024, doi: 10.1051/bioconf/20248910001.
A. T. M. Kotb, M. A. A. Nawar, Y. A. Attai, and M. H. Mohamed, “Performance optimization of a modified Wells turbine for wave energy conversion,” Ocean Eng., vol. 280, p. 114849, Jul. 2023, doi: 10.1016/j.oceaneng.2023.114849.
A. T. M. Kotb, M. A. A. Nawar, Y. A. Attai, and M. H. Mohamed, “Smart optimization algorithms to enhance an axial turbine performance for wave energy conversion,” Ocean Eng., vol. 291, p. 116446, Jan. 2024, doi: 10.1016/j.oceaneng.2023.116446.
A. T. M. Kotb, M. A. A. Nawar, Y. A. Attai, and M. H. Mohamed, “Impact of tapered leading-edge micro-cylinder on the performance of wells turbine for wave energy conversion: CFD-optimization algorithms coupling study,” Energy, vol. 293, p. 130648, Apr. 2024, doi: 10.1016/j.energy.2024.130648.
M. N. Uddin, M. Atkinson, and F. Opoku, “CFD Investigation of a Hybrid Wells Turbine with Passive Flow Control,” Energies, vol. 16, no. 9, p. 3851, Apr. 2023, doi: 10.3390/en16093851.
R. Wang, Y. Cui, Z. Liu, B. Li, and Y. Zhang, “Numerical study on unsteady performance of a Wells turbine under irregular wave conditions,” Renew. Energy, vol. 225, p. 120255, May 2024, doi: 10.1016/j.renene.2024.120255.
M. Torresi, M. Stefanizzi, L. Gurnari, P. G. F. Filianoti, and S. M. Camporeale, “Experimental characterization of the unsteady performance behavior of a Wells turbine operating at high flow rate coefficients,” E3S Web Conf., vol. 197, p. 08009, 2020, doi: 10.1051/e3sconf/202019708009.
F. Licheri, T. Ghisu, F. Cambuli, and P. Puddu, “Experimental Analysis of the Three Dimensional Flow in a Wells Turbine Rotor,” Int. J. Turbomach. Propuls. Power, vol. 8, no. 3, p. 21, Jul. 2023, doi: 10.3390/ijtpp8030021.
A. S. Alkhalifa, M. N. Uddin, and M. Atkinson, “Aerodynamic Performance Analysis of Trailing Edge Serrations on a Wells Turbine,” Energies, vol. 15, no. 23, p. 9075, Nov. 2022, doi: 10.3390/en15239075.
B. E. Launder and D. B. Spalding, “THE NUMERICAL COMPUTATION OF TURBULENT FLOWS,” in Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, Elsevier, 1983, pp. 96–116. doi: 10.1016/B978-0-08-030937-8.50016-7.
F. R. Menter, “Improved two-equation k-omega turbulence models for aerodynamic flows,” 1992.
A. Hellsten, “Some improvements in Menter’s k-omega SST turbulence model,” in 29th AIAA, Fluid Dynamics Conference, Albuquerque,NM,U.S.A.: American Institute of Aeronautics and Astronautics, Jun. 1998. doi: 10.2514/6.1998-2554.
A. T. M. Kotb, M. A. A. Nawar, Y. A. Attai, and M. H. Mohamed, “Performance enhancement of a Wells turbine using CFD-optimization algorithms coupling,” Energy, vol. 282, p. 128962, Nov. 2023, doi: 10.1016/j.energy.2023.128962
DOI: http://dx.doi.org/10.12962/j25481479.v9i4.21956
Refbacks
- There are currently no refbacks.
| |||
|
|
|
|
P-ISSN: 2541-5972
E-ISSN: 2548-1479
IJMEIR journal published by Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/