Implementation of Waypoint Navigation and Computer Vision for Monitoring Markers on a Quadcopter Based on ROS (Robot Operating System)

Setyawan Ajie Sukarno, Hendy Rudiansyah, Ahsan Basyar

Abstract


Indonesia shares borders with Papua New Guinea, Malaysia, and Timor Leste, where border markers often face displacement or disputes due to challenging and inaccessible terrain. This research develops a waypoint navigation system on a quadcopter, integrating computer vision to enhance the detection and monitoring of border markers. The system leverages the Robot Operating System (ROS) as middleware for seamless integration and control, while a camera detects ArUco markers placed on boundary markers. Image processing, implemented using OpenCV integrated with ROS, facilitates efficient data conversion. The quadcopter autonomously navigates to target coordinates based on marker detection, with an average percentage error of 3.3% for the X-axis and 2.5% for the Y-axis. Tests showed the system could detect a 40x40 cm marker from a height of 5 meters up to a distance of 14 meters, with an average position error of 3.75%. The communication range was effective up to 150 meters before timing out. Despite the computational limitations of the Raspberry Pi hardware, the system demonstrated efficiency, scalability, and ease of deployment. Future research will focus on hardware enhancements, the exploration of advanced image processing methodologies, improved camera resolutions, and the extension of communication networks to support deployment in national boundary monitoring operations.

Keywords


Border Marker; Surveillance; Quadcopter; Waypoint Navigation; Computer vision; ArUco Marker; ROS (Robot Operating System)

Full Text:

PDF

References


J. Agnew, “Borders on the mind: re-framing border thinking,” Ethics Glob. Polit., vol. 1, no. 4, pp. 175–191, 2008, doi: 10.3402/egp.v1i4.1892.

Mangku, D. G. S., Yuliartini, N. P. R., Mercury, S. M., & Darayani, N. M. C. (2022). The Role of the National Agency for Border Management in Maintaining the Territorial Sovereignty in the Land Bord between Indonesia and Timor Leste. Proceeding of 1st Ahmad Dahlan International Conference on Law and Social Justice, 120–131.

S. Ruhana and T. A. Karim, “Indonesia vs. Malaysia: The Battle for Border Territory Resolved”, ILDiSEA, vol. 3, no. 1, pp. 1-32, Jan. 2024.

R. I. H. Abushahma, M. A. M. Ali, N. A. A. Rahman, and O. I. Al-Sanjary, “Comparative Features of Unmanned Aerial Vehicle (UAV) for Border Protection of Libya: A Review,” in 2019 IEEE 15th Int. Colloquium on Signal Processing & Its Applications (CSPA), Penang, Malaysia, Mar. 2019, pp. 114–119. IEEE, doi: 10.1109/CSPA.2019.8695991.

L. Natrayan, S. Kaliappan, and S. Pundir, “Control and monitoring of a quadcopter in border areas using embedded system,” in Proc. Fourth Int. Conf. Smart Electronics and Communication (ICOSEC-2023), 2023, pp. 91–94. IEEE, doi: 10.1109/ICOSEC58147.2023.10276196.

Y. Mekdad, A. Aris, L. Babun, A. El Fergougui, M. Conti, R. Lazzeretti, and A. S. Uluagac, “A survey on security and privacy issues of UAVs,” Computer Networks, vol. 224, 109626, 2023. doi: 10.1016/j.comnet.2023.109626.

P. Anggraeni, H. Khoirunnisa, M. N. Rizal, and M. F. Alfadhila, “Implementation of WiFi Communication on Multi UAV for Leader-Follower Trajectory based on ROS,” in 2023 Int. Conf. Artificial Intelligence in Information and Communication (ICAIIC), Bali, Indonesia: IEEE, Feb. 2023, pp. 697–702. doi: 10.1109/ICAIIC57133.2023.10067024.

R. K. Megalingam, D. V. Prithvi, N. C. S. Kumar, and V. Egumadiri, “Drone stability simulation using ROS and Gazebo,” in Lecture Notes in Networks and Systems, vol. 1, pp. 131–143, 2021. doi: 10.1007/978-981-16-2164-2_11.

H. Khoirunnisa, F. S. Adi, A. Mulyadewi, S. A. Sukarno, Y. Erdani, and P. Anggraeni, “Implementation of IR Lock on Poledrone (Polman Drone Education) for Precision Landing with ROS,” in 2023 IEEE 15th Int. Conf. Computational Intelligence and Communication Networks (CICN), Dec. 2023, pp. 584–590. IEEE.

I. Amiri, A. Shariffuddin, N. Kamel, M. Rahman, M. Bakar, M. B. Mhd Noor, S. Razalli, N. Buniyamin, and M. Khyasudeen, “The development of a GPS-based autonomous quadcopter for precision landing on a moving platform,” Int. J. Vehicle Autonomous Systems, vol. 1, no. 1, pp. 1–18, 2021. doi: 10.1504/IJVAS.2021.10055418.

M. Nugraha, A. Utomo, A. Taufik, R. Tandioga, and R. Syam, “Development of Quadcopter for Tracking Object Using Image Processing,” in IOP Conf. Series: Materials Science and Engineering, vol. 619, pp. 012004, 2019. doi: 10.1088/1757-899X/619/1/012004.

A. Priambodo, F. Arifin, A. Nasuha, M. Muslikhin, and A. Winursito, “A Vision and GPS Based System for Autonomous Precision Vertical Landing of UAV Quadcopter,” J. Phys.: Conf. Ser., vol. 2406, 012004, 2022. doi: 10.1088/1742-6596/2406/1/012004.

L. Tan, X. Lv, X. Lian, and G. Wang, “YOLOv4_Drone: UAV image target detection based on an improved YOLOv4 algorithm,” Computers & Electrical Engineering, vol. 93, 107261, 2021. doi: 10.1016/j.compeleceng.2021.107261.

I. Lebedev, A. Erashov, and A. Shabanova, “Accurate Autonomous UAV Landing Using Vision-Based Detection of ArUco-Marker,” in Interactive Collaborative Robotics. ICR 2020. Lecture Notes in Computer Science, vol. 12336, A. Ronzhin, G. Rigoll, and R. Meshcheryakov, Eds. Cham: Springer, 2020, pp. 279–291. doi: 10.1007/978-3-030-60337-3_18.

M. Aly, “Leveraging Aruco Fiducial Marker System for Bridge Displacement Estimation Using Unmanned Aerial Vehicles,” 2023.

R. Perez-Segui, P. Arias-Perez, J. Melero-Deza, M. Fernández-Cortizas, D. Pérez-Saura, and P. Campoy, “Bridging the Gap between Simulation and Real Autonomous UAV Flights in Industrial Applications,” Aerospace, vol. 10, no. 1, 2023.

H. Qays, B. Jumaa, and A. Salman, “Design and Implementation of Autonomous Quadcopter using SITL Simulator,” Iraqi J. Comput., Commun., Control, and Syst. Eng., vol. 10, 2020. doi: 10.33103/uot.ijccce.20.1.1.

M. H. Li and R. Dayansya, “Trajectory analysis of quadcopter UAV using software in the loop simulation,” in IET Int. Conf. Engineering Technologies and Applications (ICETA 2023), Yunlin, Taiwan, 2023, pp. 200–201. doi: 10.1049/icp.2023.3339.

CMa, Y. Zhou and Z. Li, "A New Simulation Environment Based on Airsim, ROS, and PX4 for Quadcopter Aircrafts," 2020 6th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 2020, pp. 486-490, doi: 10.1109/ICCAR49639.2020.9108103.

Lestari, D., Sujito, Sendari, S., Faiz, M. R., Wang, H. Y., & Prasanta, M. R. (2022). Quadcopter Design with Waypoint Mission Using PID Control System. Proceedings - 11th Electrical Power, Electronics, Communications, Control, and Informatics Seminar, EECCIS 2022, 287–291. https://doi.org/10.1109/EECCIS54468.2022.9902907

C. Ma, Y. Zhou, and Z. Li, “A New Simulation Environment Based on Airsim, ROS, and PX4 for Quadcopter Aircrafts,” in 2020 6th Int. Conf. Control, Automation and Robotics (ICCAR), 2020, pp. 486–490.

N. Nair, K. Sareth, R. Bhavani, and A. Mohan, “Simulation and Stabilization of a Custom-Made Quadcopter in Gazebo Using ArduPilot and QGroundControl,” in Advances in Robotics and Automation, vol. 1, pp. 205–217, 2022. doi: 10.1007/978-981-19-0836-1_15.

R. Kumar and S. Jayashankar, "Radar and Camera Sensor Fusion with ROS for Autonomous Driving," 2019 Fifth International Conference on Image Information Processing (ICIIP), Shimla, India, 2019, pp. 568-573, doi: 10.1109/ICIIP47207.2019.8985782.

K. Dang Nguyen and T. -T. Nguyen, "Vision-Based Software-in-the-Loop-Simulation for Unmanned Aerial Vehicles Using Gazebo and PX4 Open Source," 2019 International Conference on System Science and Engineering (ICSSE), Dong Hoi, Vietnam, 2019, pp. 429-432, doi: 10.1109/ICSSE.2019.8823322.

S. Gatesichapakorn, J. Takamatsu and M. Ruchanurucks, "ROS based Autonomous Mobile Robot Navigation using 2D LiDAR and RGB-D Camera," 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, 2019, pp. 151-154, doi: 10.1109/ICA-SYMP.2019.8645984.

A. Mulyanto, R. I. Borman, P. Prasetyawana, and A. Sumarudin, “2d Lidar and Camera Fusion for Object Detection and Object Distance Measurement of ADAS using Robotic Operating System (ROS),” Int. J. Informatics Vis., vol. 4, no. 4, pp. 231–236, 2020, doi: 10.30630/joiv.4.4.466.




DOI: http://dx.doi.org/10.12962/j25481479.v10i1.22098

Refbacks

  • There are currently no refbacks.


Abstracted / Indexed by:
      
  

 

 

 

 

 

P-ISSN: 2541-5972   

E-ISSN: 2548-1479

 

Lisensi Creative Commons

IJMEIR journal published by  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/