Sea Surface Temperature and Sea Level Rise Impact on Coastal Dynamics in Makassar, South Sulawesi, Indonesia

Nurbaeti Nurbaeti, Asep Saepuloh, Busthan Azikin, Rima Rachmayani

Abstract


Makassar City in South Sulawesi (Indonesia) is located at a low elevation of about 0-25 meters, while the coastal area is only 1-5 meters above sea level and is composed of alluvial deposits. The western boundary is directly adjacent to the Makassar Strait. These conditions make Makassar City highly vulnerable to the impacts of ocean dynamics and coastline changes caused by erosion or sedimentation, posing significant threats to infrastructure and livelihoods. This study aims to quantify sea-level changes that potentially cause coastal disasters in Makassar by detecting temporal variations in sea surface temperature (SST) and coastline changes. This study utilized remote sensing technology from AQUA MODIS, Landsat 7 ETM+, and Landsat 8 OLI/TIRS. The in-situ sea temperature measurements were conducted using a conductivity-temperature-depth (CTD) hydrographic device. In addition, the coastline verification was performed using a traverse of a global positioning system (GPS) device. Image processing was done using the SST extraction and band ratio methods to detect sea surface temperatures and coastlines, respectively. According to the AQUA MODIS data,  the maximum SST increased from 28.84°C to 30.69°C from 2004 to 2024 with the highest temperature occured in 2024. The increase of SST agreed to the increase of sea level and coastlines. The evidence of the coastline changes presented by sedimentation and erosion is about 3.47 hectares and 32.89 hectares, respectively. The geological factors that play a role in coastal sedimentation and erosion originate from river sedimentation supply and increased sea level.


Keywords


SST; Landsat; coastline; sea-level rise; remote sensing; hazard mitigation

Full Text:

PDF

References


R. Martyr-Koller, A. Thomas, C.-F. Schleussner, A. Nauels, and T. Lissner, “Loss and damage implications of sea-level rise on Small Island Developing States,” Current Opinion in Environmental Sustainability, vol. 50, pp. 245–259, Jun. 2021, doi: 10.1016/j.cosust.2021.05.001.

J. H. Nienhuis and J. Lorenzo‐Trueba, “Can Barrier Islands Survive Sea‐Level Rise? Quantifying the Relative Role of Tidal Inlets and Overwash Deposition,” Geophysical Research Letters, vol. 46, no. 24, pp. 14613–14621, Dec. 2019, doi: 10.1029/2019GL085524.

BPPT, “Sea Level Rise,” BPPT. [Online]. Available: www.bppt.go.id.

BMKG, “Laporan BMKG Region IV.” [Online]. Available: https://www.bmkg.go.id/

A. R. Bando, A. Susilo, and A. Tamsil, “Identifying Potential Flood Caused by Sea Level Rise at Northern Coastal Regions of Makassar City,” Australian Journal of Basic and Applied Sciences, 2017.

C. Timang, B. Koddeng, and Y. K. D. Sutopo, “Zonasi Kawasan Pesisir Makassar Berbasis Mitigasi Bencana,” Jurnal Wilayah dan Kota Maritim, pp. 1–12, 2013.

P. Vellinga and S. P. Leatherman, “Sea level rise, consequences and policies,” Climatic Change, vol. 15, no. 1–2, pp. 175–189, Oct. 1989, doi: 10.1007/BF00138851.

D. J. Rasmussen et al., “Coastal flood implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature stabilization targets in the 21st and 22nd century,” Environ. Res. Lett., vol. 13, no. 3, p. 034040, Mar. 2018, doi: 10.1088/1748-9326/aaac87.

A. Cazenave and G. L. Cozannet, “Sea level rise and its coastal impacts,” Earth’s Future, vol. 2, no. 2, pp. 15–34, Feb. 2014, doi: 10.1002/2013EF000188.

M. S. Hossain et al., “Automatic shoreline extraction and change detection: A study on the southeast coast of Bangladesh,” Marine Geology, vol. 441, p. 106628, Nov. 2021, doi: 10.1016/j.margeo.2021.106628.

V. Klemas, “Remote Sensing Techniques for Studying Coastal Ecosystems: An Overview,” Journal of Coastal Research, vol. 27, no. 1, p. 2, Jan. 2011, doi: 10.2112/JCOASTRES-D-10-00103.1.

P. J. Minnett, R. H. Evans, E. J. Kearns, and O. B. Brown, “Sea-surface temperature measured by the Moderate Resolution Imaging Spectroradiometer (MODIS),” in IEEE International Geoscience and Remote Sensing Symposium, Toronto, Ont., Canada: IEEE, 2002, pp. 1177–1179. doi: 10.1109/IGARSS.2002.1025872.

K. A. Kilpatrick et al., “A decade of sea surface temperature from MODIS,” Remote Sensing of Environment, vol. 165, pp. 27–41, Aug. 2015, doi: 10.1016/j.rse.2015.04.023.

A. A. Alesheikh, A. Ghorbanali, and N. Nouri, “Coastline change detection using remote sensing,” Int. J. Environ. Sci. Technol., vol. 4, no. 1, pp. 61–66, Dec. 2007, doi: 10.1007/BF03325962.

M. Arief and G. Winarso, “Study of Coastline Change Using Landsat Satellite Data in Kendal Regency,” vol. 8, 2011.

S. A. Harahap, N. P. Purba, and M. L. Syamsuddin, “Trend of Coastline Change for Twenty Years (1994-2014) in Cirebon, Indonesia,” 2019.

T. Hariyanto and M. Mustain, “Identification of Coastal Line Change in Surabaya East Coast Using Remote Sensing Image Data,” Journal of Basic and Applied Scientific Research, vol. 1, no. 7, pp. 579–582, 2011.

M.-A. Lee et al., “Validation of JAXA/MODIS Sea Surface Temperature in Water around Taiwan Using the Terra and Aqua Satellites,” Terr. Atmos. Ocean. Sci., vol. 21, no. 4, p. 727, 2010, doi: 10.3319/TAO.2009.09.07.01(Oc).

O. Suprapto and S. A. Harahap, “Analysis of Physical Vulnerability of Beaches on The South Coast of Garut, West Java,” no. 2, 2016.

R. Sukamto and S. Supriatna, “Peta Geologi Lembar Ujungpandang, Benteng Dan Sinjai, Sulawesi,” Pusat Penelitian dan Pengembangan Geologi, Bandung, 1982.

D. Helder et al., “Observations and Recommendations for the Calibration of Landsat 8 OLI and Sentinel 2 MSI for Improved Data Interoperability,” Remote Sensing, vol. 10, no. 9, p. 1340, Aug. 2018, doi: 10.3390/rs10091340.

Shunlin Liang et al., “Atmospheric correction of Landsat ETM+ land surface imagery. II. Validation and applications,” IEEE Trans. Geosci. Remote Sensing, vol. 40, no. 12, pp. 2736–2746, Dec. 2002, doi: 10.1109/TGRS.2002.807579.

E. Vermote, C. Justice, M. Claverie, and B. Franch, “Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product,” Remote Sensing of Environment, vol. 185, pp. 46–56, Nov. 2016, doi: 10.1016/j.rse.2016.04.008.

A. Thaler, K. Sturdivant, R. Neches, and J. Levenson, “The OpenCTD: A Low-Cost, Open-Source CTD for Collecting Baseline Oceanographic Data in Coastal Waters,” oceanog, 2024, doi: 10.5670/oceanog.2024.602.

S. Tubalawony, D. E. Kalay, W. G. Hukubun, and R. D. Hukubun, “Distribusi Spasial Suhu dan Salinitas di Perairan Selat Haruku,” JSAI, vol. 7, no. 1, pp. 13–22, Feb. 2023, doi: 10.46252/jsai-fpik-unipa.2023.Vol.7.No.1.213.

H. Uchida et al., “Deep Ocean Temperature Measurement with an Uncertainty of 0.7 mK,” Journal of Atmospheric and Oceanic Technology, vol. 32, no. 11, pp. 2199–2210, Nov. 2015, doi: 10.1175/JTECH-D-15-0013.1.

S. Xiao, M. Zhang, C. Liu, C. Jiang, X. Wang, and F. Yang, “CTD Sensors for Ocean Investigation Including State of Art and Commercially Available,” Sensors, vol. 23, no. 2, p. 586, Jan. 2023, doi: 10.3390/s23020586.

K. Topouzelis, S. Varnava, and A. Georgiou, “Seasonal and Spatial Variability of SST Using MODIS Data: the Case Study of Aegean Sea,” International Journal of Remote Sensing Applications, vol. 5, no. 0, p. 25, 2015, doi: 10.14355/ijrsa.2015.05.003.

S. Wouthuyzen et al., “Ocean color as a proxy to predict sea surface salinity in the Banda Sea,” IOP Conf. Ser.: Earth Environ. Sci., vol. 618, no. 1, p. 012037, Dec. 2020, doi: 10.1088/1755-1315/618/1/012037.

S. Daqamseh, A. Al-Fugara, B. Pradhan, A. Al-Oraiqat, and M. Habib, “MODIS Derived Sea Surface Salinity, Temperature, and Chlorophyll-a Data for Potential Fish Zone Mapping: West Red Sea Coastal Areas, Saudi Arabia,” Sensors, vol. 19, no. 9, p. 2069, May 2019, doi: 10.3390/s19092069.

A. Cruz-Retana et al., “Assessment of Regression Models for Surface Water Quality Modeling via Remote Sensing of a Water Body in the Mexican Highlands,” Water, vol. 15, no. 21, p. 3828, Nov. 2023, doi: 10.3390/w15213828.

K. Rokni, A. Ahmad, A. Selamat, and S. Hazini, “Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery,” Remote Sensing, vol. 6, no. 5, pp. 4173–4189, May 2014, doi: 10.3390/rs6054173.

H. Xu, “Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery,” International Journal of Remote Sensing, vol. 27, no. 14, pp. 3025–3033, Jul. 2006, doi: 10.1080/01431160600589179.

L. Ji, L. Zhang, and B. Wylie, “Analysis of Dynamic Thresholds for the Normalized Difference Water Index,” photogramm eng remote sensing, vol. 75, no. 11, pp. 1307–1317, Nov. 2009, doi: 10.14358/PERS.75.11.1307.

G. S. Santecchia, G. N. Revollo Sarmiento, S. A. Genchi, A. J. Vitale, and C. A. Delrieux, “Assessment of Landsat-8 and Sentinel-2 Water Indices: A Case Study in the Southwest of the Buenos Aires Province (Argentina),” J. Imaging, vol. 9, no. 9, p. 186, Sep. 2023, doi: 10.3390/jimaging9090186.

V. A. Tuan, L. T. T. Hang, and N. H. Quang, “Monitoring Urban Surface Water Bodies Changes Using MNDWI Estimated From Pan-sharpened Optical Satellite Images,” Geospatial information for a smarter life and environmental resilience, 2019.

L. Chang, L. Cheng, C. Huang, S. Qin, C. Fu, and S. Li, “Extracting Urban Water Bodies from Landsat Imagery Based on mNDWI and HSV Transformation,” Remote Sensing, vol. 14, no. 22, p. 5785, Nov. 2022, doi: 10.3390/rs14225785.

D. Sun, H. Wen, D. Wang, and J. Xu, “A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm,” Geomorphology, vol. 362, p. 107201, Aug. 2020, doi: 10.1016/j.geomorph.2020.107201.

M. V. Herbei, L. O. Dragomir, and S. Oncia, “Using Satellite Images Landsat TM for Calculating Normalized Difference Indexes for The Landscape of Parâng Mountains,” no. 13, 2012.

Y. Zhang, C. Yiyun, D. Qing, and P. Jiang, “Study on Urban Heat Island Effect Based on Normalized Difference Vegetated Index:A Case Study of Wuhan City,” Procedia Environmental Sciences, vol. 13, pp. 574–581, 2012, doi: 10.1016/j.proenv.2012.01.048.

S. Sagar, D. Roberts, B. Bala, and L. Lymburner, “Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations,” Remote Sensing of Environment, vol. 195, pp. 153–169, Jun. 2017, doi: 10.1016/j.rse.2017.04.009.

S. Levitus, J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, “Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems,” Geophysical Research Letters, vol. 36, no. 7, p. 2008GL037155, Apr. 2009, doi: 10.1029/2008GL037155.

S. G. Purkey and G. C. Johnson, “Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets*,” Journal of Climate, vol. 23, no. 23, pp. 6336–6351, Dec. 2010, doi: 10.1175/2010JCLI3682.1.

A. Hidayat, “Analisis Pengembangan Kawasan Pesisir Berbasis Mitigasi Sea Level Rise (Kenaikan Muka Air Laut) Studi Kasus Kawasan Kota Lama Makassar,” Jurnal Lingkungan Binaan Indonesia, vol. 1, no. 1, pp. 87–99, 2012.

IPCC, The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change, 1st ed. Cambridge University Press, 2022. doi: 10.1017/9781009157964.

M. A. Marfai, “Impact of Sea Level Rise to Coastal Ecology: A Case Study on The Northern Part of Java Island, Indonesia,” Quaestiones Geographicae, vol. 33, no. 1, pp. 107–114, Mar. 2014, doi: 10.2478/quageo-2014-0008.

B. Sasmito, “ANALISIS PERUBAHAN GARIS PANTAI AKIBAT KENAIKAN MUKA AIR LAUT PANTAI KABUPATEN DEMAK,” ELIPSOIDA, vol. 3, no. 02, pp. 178–184, Dec. 2020, doi: 10.14710/elipsoida.2020.9204.

K. Darwish, “Integrated Coastal Zone Management (ICZM) Using Satellite Remote Sensing and GIS Technology,” in New Advancements in Geomorphological Research, J. Das and S. Halder, Eds., in Geography of the Physical Environment. , Cham: Springer Nature Switzerland, 2024, pp. 355–381. doi: 10.1007/978-3-031-64163-3_21.

A. Hzami, E. Heggy, O. Amrouni, G. Mahé, M. Maanan, and S. Abdeljaouad, “Alarming coastal vulnerability of the deltaic and sandy beaches of North Africa,” Sci Rep, vol. 11, no. 1, p. 2320, Jan. 2021, doi: 10.1038/s41598-020-77926-x.

R. Weisse et al., “Sea level dynamics and coastal erosion in the Baltic Sea region,” Earth Syst. Dynam., vol. 12, no. 3, pp. 871–898, Aug. 2021, doi: 10.5194/esd-12-871-2021.

M. N. Abdullah, A. Munir, and S. A. Lyas, “Land-use based GIS-modelling for sedimentation reduction at Bili-Bili Dam, Indonesia,” International Association of Hydrological Sciences, vol. 279, 2003.

A. S. Soma, Wahyuni, and Musdalifah, “Prediction of erosion and sedimentation rates using SWAT (soil and water assessment tool) method in Malino Sub Watershed Jeneberang Watershed,” IOP Conf. Ser.: Earth Environ. Sci., vol. 886, no. 1, p. 012103, Nov. 2021, doi: 10.1088/1755-1315/886/1/012103.

P. T. Pasapan, M. Y. Wahid, A. Saleng, and S. S. Nur, “Conservation of the Mount Bawakaraeng Water Resources Area as a Form of Water Resources Management Through Sustainable and Environmentally Sound Development Strategies,” jlsdgr, vol. 4, no. 2, p. e01795, Sep. 2024, doi: 10.47172/2965-730X.SDGsReview.v4.n02.pe01795.

A. R. Suleman, H. Yusuf, and H. A. Hasanuddin, “Study of Sediment Distribution for Handling Sedimentation In Jeneberang Estuary Makassar South Sulawesi Province,” vol. 11, no. 7, 2016.

N. A. Aziz, Yonvitner, S. Hariyadi, S. B. Agus, and I. W. Nurjaya, “Sedimentation Profile in Coastal Water Jakarta Bay: Profil Sedimentasi Perairan Pesisir Teluk Jakarta,” JPPT, vol. 6, no. 1, pp. 35–44, Jan. 2023, doi: 10.29244/jppt.v6i1.43452.

M. Berkun and E. Aras, “River sediment transport and coastal erosion in the southeastern Black Sea rivers / Transport riečnych sedimentov a erózia pobrežia riek krajiny v juhovýchodnej časti čierneho mora,” Journal of Hydrology and Hydromechanics, vol. 60, no. 4, pp. 299–308, Dec. 2012, doi: 10.2478/v10098-012-0026-z.

S. Ikeda, K. Osawa, and Y. Akamatsu, “Sediment and nutrients transport in watershed and their impact on coastal environment,” Proc. Jpn. Acad., Ser. B, vol. 85, no. 9, pp. 374–390, 2009, doi: 10.2183/pjab.85.374.

J. C. Restrepo et al., “Sediment Transport and Geomorphological Change in a High-Discharge Tropical Delta (Magdalena River, Colombia): Insights from a Period of Intense Change and Human Intervention (1990–2010),” Journal of Coastal Research, vol. 319, pp. 575–589, May 2016, doi: 10.2112/JCOASTRES-D-14-00263.1.




DOI: http://dx.doi.org/10.12962/j25481479.v10i1.22327

Refbacks

  • There are currently no refbacks.


Abstracted / Indexed by:
      
  

 

 

 

 

 

P-ISSN: 2541-5972   

E-ISSN: 2548-1479

 

Lisensi Creative Commons

IJMEIR journal published by  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/