Granulator Performance for Urea Granule Quality: A Study on Material Balance and Recycle Seed Ratio

Jefri Pandu Hidayat, Muhammad Azi Kusuma, Nita Ariestiana Putri, Asful Hariyadi

Abstract


Granulation is a critical process in quality of urea fertilizer, particularly their size distribution, significantly affects the product's performance and marketability. Urea synthesis begins with the reaction between ammonia and carbon dioxide, where ammonium carbamate is decomposed to produce urea by granulation process. This research aims evaluate the performance of granulator on urea granule size product quality based on material balance and recycle seed ratio (RSR). The granulator performance in the urea granulation process was evaluated for a production capacity of 3,500 tons/day. The methodology involves data collection from operational records in six days respectively, followed by mass balance analysis and product quality evaluation based on particle size distribution. The analysis revealed a significant deviation between design and actual data. Specifically, the design mass balance indicated a total inlet of 236,726 kg/h and a total outlet of 230,575 kg/h, resulting in a mass deficit of 6,151 kg/h attributed to dust formation and water evaporation. The measured on-size product yield was approximately 98.50% at the outlet, with the desired particle size range of 2–4.75 mm. These findings provide critical insights for process optimization and resource management in urea granulation, emphasizing the need for precise operational control to minimize material losses and ensure product quality compliance with specifications.


Keywords


granulator; mass balance; optimization; quality; recycle seed

Full Text:

PDF

References


S. Sheng, “Analysis of particle growth time in TEC urea granulator,” 2015.

D. E. Bertin, I. M. Cotabarren, V. Bucalá, and J. Piña, “Analysis of the product granulometry, temperature and mass flow of an industrial multichamber fluidized bed urea granulator,” Powder Technol., vol. 206, pp. 122–131, 2011, doi: 10.1016/j.powtec.2010.06.016.

S. A. Yunizar, J. P. Hidayat, and R. A. Aghata, “Biostev: Pemanfaatan ampas tebu menjadi biofertilizer, bioetanol, biogas dengan metode fermentasi portable menuju sustainable energy,” in SEMNAS RETRO 2024, Samarinda: Universitas Mulawarman, 2024, pp. 108–115.

T. Engineering, “Large scale urea granulation plants based on TEC Technology,” Japan, 2001.

C. Neugebauer, E. Diez, A. Bück, S. Palis, S. Heinrich, and A. Kienle, “On the dynamics and control of continuous fluidized bed layering granulation with screen-mill-cycle,” Powder Technol., vol. 354, pp. 765–778, 2019, doi: 10.1016/j.powtec.2019.05.030.

D. Monaco, G. K. Reynolds, P. Tajarobi, J. D. Litster, and A. D. Salman, “Modelling the effect of L/S ratio and granule moisture content on the compaction properties in continuous manufacturing,” Int. J. Pharm., vol. 633, p. 122624, 2023, doi: 10.1016/j.ijpharm.2023.122624.

R. L. Kok, A. F. Van Der Merwe, G. Van Schoor, and K. R. Uren, “Statistical modelling of an ammonium nitrate fluidised bed granulator for inference measurement,” in IFAC-PapersOnLine, Elsevier Ltd, 2019, pp. 135–140. doi: 10.1016/j.ifacol.2019.09.177.

N. K. G. Sekyi, A. Kelly, and N. Rahmanian, “Comparative analysis of granule properties in continuous granulators,” Powder Technol., vol. 425, p. 118557, 2023, doi: 10.1016/j.powtec.2023.118557.

D. Caccavo, G. Lamberti, and A. A. Barba, “Analysis and simulation of wet-granulation processes,” J. Taiwan Inst. Chem. Eng., vol. 159, p. 105455, 2024, doi: 10.1016/j.jtice.2024.105455.

R. M. Felder, R. W. Rousseau, and L. G. Bullard, Elementary principles of chemical processes, 4th ed., vol. 4. United States of America: John Wiley & Sons, Inc., 2016.

D. M. Himmelblau and J. B. Riggs, Basic principles and calculations in chemical engineering, 8th ed. Pearson Education, 2012.

M. A. Behjani, N. Rahmanian, N. F. bt A. Ghani, and A. Hassanpour, “An investigation on process of seeded granulation in a continuous drum granulator using DEM,” Powder Technol., vol. 28, no. 10, pp. 2456–2464, 2017, doi: 10.1016/j.apt.2017.02.011.

G. Kaur, M. Singh, T. Matsoukas, J. Kumar, T. De Beer, and I. Nopens, “Two-compartment modeling and dynamics of top-sprayed fluidized bed granulator,” Appl. Math. Model., vol. 68, pp. 267–280, 2019, doi: 10.1016/j.apm.2018.11.028.

N. Bala et al., “Mechanistic modeling of twin screw wet granulation for pharmaceutical formulations: Calibration, sensitivity analysis, and model-driven workflow,” Int. J. Pharm., vol. 659, p. 124246, 2024, doi: 10.1016/j.ijpharm.2024.124246.

I. Munu et al., “Using in-line measurement and statistical analyses to predict tablet properties compressed using a Styl ’ One compaction simulator : A high shear wet granulation study,” Int. J. Pharm., vol. 669, p. 125098, 2025, doi: 10.1016/j.ijpharm.2024.125098.

M. A. P. Kusuma, F. M. L. Sagala, T. D. Kusworo, and S. D. Laksono, “Performance evaluation of rotary dryer and granulator in NPK steam granulation plant production department of IIB PT Petrokimia Gresik,” J. Glob. Ilm., vol. 1, no. 5, pp. 287–302, 2024, doi: 10.55324/jgi.v1i5.44.

S. Palis, C. Dreyschultze, C. Neugebauer, and A. Kienle, “Auto-tuning control systems for improved operation of continuous fluidized bed spray granulation processes with external product classification,” Procedia Eng., vol. 102, pp. 133–141, 2015, doi: 10.1016/j.proeng.2015.01.115.

P. Devlis, “Performance qualification protocol for rapid mixer granulator,” 2022.

S. Uniyal, L. P. Gandarillas, M. Michrafy, D. Oulahna, and A. Michrafy, “Analysis of densification mechanisms of dry granulated materials,” Adv. Powder Technol., vol. 31, no. 1, pp. 351–358, 2020, doi: 10.1016/j.apt.2019.10.027.

A. Kumar et al., “Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation,” Eur. J. Pharm. Sci., vol. 90, pp. 25–37, 2015, doi: 10.1016/j.ejps.2015.12.021.

L. Vesjolaja, B. Glemmestad, and B. Lie, “Dynamic model for simulating transient behaviour of rotary drum granulation loop,” Model. Identif. Control, vol. 41, no. 2, pp. 65–77, 2020, doi: 10.4173/MIC.2020.2.3.

J. Qiao, Y. Sha, Z. Meng, and J. Liu, “Performance analysis of boiling drying granulator cutting spraying assisted wind field,” in Journal of Physics: Conference Series, 2023, p. 012033. doi: 10.1088/1742-6596/2610/1/012033.

S. S. Farahani, A. Rajabipour, A. Keyhani, and M. Sharifi, “Energy use and economic analysis of NPK-15:8:15 fertilizer granulation process in Iran,” J. Saudi Soc. Agric. Sci., vol. 16, pp. 265–269, 2017, doi: 10.1016/j.jssas.2015.09.001.

M. Mariani et al., “Spray drying granulation of potassium sodium niobate (KNN) for binder jetting: feedstock preparation and influence on sintered material properties,” Open Ceram., vol. 21, p. 100743, 2025, doi: 10.1016/j.oceram.2025.100743.

P. Thapa, D. H. Choi, M. S. Kim, and S. H. Jeong, “Effects of granulation process variables on the physical properties of dosage forms by combination of experimental design and principal component analysis,” Asian J. Pharm. Sci., vol. 14, pp. 287–304, 2019, doi: 10.1016/j.ajps.2018.08.006.

H. A. Abdulhussain and M. R. Thompson, “Examining particle size growth in twin screw granulation up to steady state with acoustic emissions,” Powder Technol., vol. 448, p. 120294, 2024, doi: 10.1016/j.powtec.2024.120294.




DOI: http://dx.doi.org/10.12962/j25481479.v10i1.22562

Refbacks

  • There are currently no refbacks.


Abstracted / Indexed by:
      
  

 

 

 

 

 

P-ISSN: 2541-5972   

E-ISSN: 2548-1479

 

Lisensi Creative Commons

IJMEIR journal published by  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/