Effectiveness of Mechanical and Chemical Filter Application on Water Quality, Phytoplankton, and The Emergence of Vibrio Bacteria in Intensive Shrimp Pond

Indra Febriantoro, Mohammad Fadjar, Maftuch Maftuch

Abstract


The aquaculture sector plays a crucial role in Indonesia's fisheries industry, especially with the rapid growth of Litopenaeus vannamei shrimp farming. However, intensive aquaculture systems face significant challenges, such as decreased water quality and increased Vibrio bacterial infections, which have the potential to cause diseases with high mortality rates. This study aimed to evaluate the effectiveness of mechanical and chemical filtration systems in improving pond water quality, maintaining phytoplankton balance, and suppressing pathogenic bacterial populations. This study was conducted for 30 days using a randomized group design (RAK) with three treatments, namely ponds without filtration (K), ponds with mechanical filtration (FF), and ponds with chemical filtration (FK). The results showed that chemical filtration was more effective in reducing total organic matter (TOM) and reducing Vibrio density to 1,740-1,880 CFU/mL. Meanwhile, mechanical filtration was more optimal in increasing the phytoplankton population to reach 123,000 ind/m³. The application of the filtration system was also shown to increase dissolved oxygen (DO) levels and reduce total suspended solids (TSS), thus creating more stable water conditions for shrimp. The results of this study indicate that the implementation of an appropriate filtration system can be a strategic solution in supporting the sustainability of the L. vannamei aquaculture industry in Indonesia.


Keywords


Aquaculture; chemical filtration; L. vannamei; mechanical filtration; Vibrio

Full Text:

PDF

References


K. N’Souvi, C. Sun, B. Che, and A. Vodounon, “Shrimp industry in China: overview of the trends in the production, imports and exports during the last two decades, challenges, and outlook,” Front. Sustain. Food Syst., vol. 7, no. January, pp. 1–15, 2023, doi: 10.3389/fsufs.2023.1287034.

C. M. Jolly et al., “Dynamics of aquaculture governance,” J. World Aquac. Soc., vol. 54, no. 2, pp. 427–481, Apr. 2023, doi: 10.1111/jwas.12967.

FAO, The State of World Fisheries and Aquaculture 2020, vol. 32, no. 6. 2020. doi: 10.4060/ca9229en.

M. Yusuf, F. Sukesti, N. Puspita, D. Yonata, and B. Pranata, “Innovation to Achieve Sustainable Competitive Advantage of Processed Fishery Products Sector in Central Java,” Egypt. J. Aquat. Biol. Fish., vol. 28, no. 6, pp. 519–531, 2024, doi: 10.21608/ejabf.2024.392256.

N. Tran et al., “Indonesian aquaculture futures : An analysis of fi sh supply and demand in Indonesia to 2030 and role of aquaculture using the AsiaFish model ☆,” Mar. Policy, vol. 79, no. November 2016, pp. 25–32, 2017, doi: 10.1016/j.marpol.2017.02.002.

M. Al Haziazi, S. Muthuraman, K. P. Subramanian, P. C. Sherimon, and Y. Al Husaini, “Exploring the opportunities to promote value-added products in the fisheries sector in the Sultanate of Oman,” Resmilitaris, vol. 13, no. 3, pp. 1716–1723, 2023.

M. A. I. Mondal, L. Y. Abit, A. A. M. Siddiqui, and - Abdulla-Al-Asif, Fish to finance: unraveling the economic threads of Bangladesh’s Blue Economy, vol. 10, no. 1. 2024. doi: 10.3329/ajmbr.v10i1.71034.

Mahmud, A. D. B. Sinrang, and A. N. A. Massiseng, “Prospects of Fisheries Industry Development in Indonesia Through Online Publication Media,” Int. J. Appl. Biol., vol. 5, no. 2, pp. 117–129, 2021.

KKP, Kelautan dan Perikanan dalam Angka Tahun 2018. 2018.

A. M. Nasution, R. D. Nugraheni, and N. N. Atmaja, “Traceability schemes and supply chains of tuna fisheries in Indonesian fishing ports: case study of Bitung Ocean Fishing Port and Pondok Dadap Beach Fishing Port, Indonesia,” AACL Bioflux, vol. 16, no. 4, pp. 1985–2001, 2023.

S. Suryanto et al., “The potential contribution of Indonesian fishing vessels in reducing Green House gas emission,” Aquac. Fish., vol. 4, no. August, p. 110, 2024, doi: 10.1016/j.aaf.2024.08.002.

A. Kunzmann, G. Todinanahary, F. E. Msuya, and Y. Alfiansah, “Comparative Environmental Impacts and Development Benefits of Coastal Aquaculture in Three Tropical Countries: Madagascar, Tanzania and Indonesia,” Trop. Life Sci. Res., vol. 34, no. 3, pp. 279–302, 2023, doi: 10.21315/TLSR2023.34.3.15.

A. Khumaeni, D. P. Wijayanti, H. Kurniawan, and T. Sakka, “Elemental Characterization of Indonesian Coral Skeleton Using Underwater Laser-Induced Breakdown Spectroscopy (LIBS), X-Ray Fluorescence Spectroscopy (XRF), and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES),” Anal. Lett., vol. 57, no. 7, pp. 1150–1161, 2024, doi: 10.1080/00032719.2023.2242537.

P. J. G. Henriksson, L. K. Banks, S. K. Suri, T. Y. Pratiwi, N. A. Fatan, and M. Troell, “Indonesian aquaculture futures-identifying interventions for reducing environmental impacts,” Environ. Res. Lett., vol. 14, no. 12, pp. 1–10, 2019, doi: 10.1088/1748-9326/ab4b79.

M. Asmild, V. Hukom, R. Nielsen, and M. Nielsen, “Is economies of scale driving the development in shrimp farming from Penaeus monodon to Litopenaeus vannamei? The case of Indonesia,” Aquaculture, vol. 579, no. January 2023, pp. 1–9, 2024, doi: 10.1016/j.aquaculture.2023.740178.

N. Andhini et al., “The Determining Success of Polyculture Caulerpa sp and Litopenaeus vannamei using AHP Analysis,” Int. J. Mar. Eng. Innov. Res., vol. 9, no. 4, pp. 695–701, 2024.

Y. Yu et al., “Virulence and antimicrobial resistance characteristics assessment of Vibrio isolated from shrimp (Penaeus vannamei) breeding system in south China,” Ecotoxicol. Environ. Saf., vol. 252, no. February, p. 114615, 2023, doi: 10.1016/j.ecoenv.2023.114615.

FAO, The State of World Fisheries and Aquaculture (SOFIA), FAO: Rome, 2022. 2022. [Online]. Available: https://openknowledge.fao.org/handle/20.500.14283/cc0461en

Y. T. Chang, W. T. Huang, P. L. Wu, R. Kumar, H. C. Wang, and H. P. Lu, “Low salinity stress increases the risk of Vibrio parahaemolyticus infection and gut microbiota dysbiosis in Pacific white shrimp,” BMC Microbiol., vol. 24, no. 1, pp. 1–16, 2024, doi: 10.1186/s12866-024-03407-0.

J. B. Xiong, H. N. Sha, and J. Chen, “Updated roles of the gut microbiota in exploring shrimp etiology, polymicrobial pathogens, and disease incidence,” Zool. Res., vol. 45, no. 4, pp. 910–923, 2024, doi: 10.24272/j.issn.2095-8137.2024.158.

A. Z. M. Fathallah and F. H. Husein, “Technical Analysis of Influence of Special Treatment on Water Ballast Treatment by using Active Carbon on Vessel and Environment,” Int. J. Mar. Eng. Innov. Res., vol. 1, no. 1, pp. 6–8, 2016, doi: 10.12962/j25481479.v1i1.1380.

P. Intriago et al., “Acute mortality of Penaeus vannamei larvae in farm hatcheries associated with the presence of Vibrio sp. carrying the VpPirAB toxin genes,” Aquac. Int., vol. 31, no. 6, pp. 3363–3382, 2023, doi: 10.1007/s10499-023-01129-0.

Y. Zou et al., “Determination of the infectious agent of translucent post-larva disease (Tpd) in penaeus vannamei,” Pathogens, vol. 9, no. 9, pp. 1–17, 2020, doi: 10.3390/pathogens9090741.

M. J. Zorriehzahra, “Early Mortality Syndrome (EMS) as new Emerging Threat in Shrimp Industry,” Adv. Anim. Vet. Sci., vol. 3, no. 2s, pp. 64–72, 2015, doi: 10.14737/journal.aavs/2015/3.2s.64.72.

K. M. Chau et al., “Molecular identification and characterization of probiotic bacillus species with the ability to control vibrio spp. In wild fish intestines and sponges from the vietnam sea,” Microorganisms, vol. 9, no. 9, pp. 1–16, 2021, doi: 10.3390/microorganisms9091927.

Q. Zhang, Y. Yu, Z. Luo, J. Xiang, and F. Li, “Comparison of Gene Expression Between Resistant and Susceptible Families Against VPAHPND and Identification of Biomarkers Used for Resistance Evaluation in Litopenaeus vannamei,” Front. Genet., vol. 12, no. November, pp. 1–14, 2021, doi: 10.3389/fgene.2021.772442.

Y. R. Alfiansah, C. Hassenrück, A. Kunzmann, A. Taslihan, J. Harder, and A. Gärdes, “Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities,” Front. Microbiol., vol. 9, no. OCT, pp. 1–15, 2018, doi: 10.3389/fmicb.2018.02457.

S. W. Siew et al., “Characterization of bacterial communities in prebiotics and probiotics treated shrimp farms from Kuantan,” Malays. J. Microbiol., vol. 19, no. 4, pp. 435–446, 2023, doi: 10.21161/mjm.220048.

G. N. Misol, C. Kokkari, and P. Katharios, “Biological and genomic characterization of a novel jumbo bacteriophage, Vb_VhaM_pir03 with broad host lytic activity against vibrio harveyi,” Pathogens, vol. 9, no. 12, pp. 1–38, 2020, doi: 10.3390/pathogens9121051.

S. H. Mohd Yazid, H. Mohd Daud, M. N. A. Azmai, N. Mohamad, and N. Mohd Nor, “Estimating the Economic Loss Due to Vibriosis in Net-Cage Cultured Asian Seabass (Lates calcarifer): Evidence From the East Coast of Peninsular Malaysia,” Front. Vet. Sci., vol. 8, no. October, pp. 1–11, 2021, doi: 10.3389/fvets.2021.644009.

M. Badiola, O. C. Basurko, R. Piedrahita, P. Hundley, and D. Mendiola, “Energy use in Recirculating Aquaculture Systems (RAS): A review,” Aquac. Eng., vol. 81, no. November 2017, pp. 57–70, 2018, doi: 10.1016/j.aquaeng.2018.03.003.

S. Zimmermann, A. Kiessling, and J. Zhang, “The future of intensive tilapia production and the circular bioeconomy without effluents: Biofloc technology, recirculation aquaculture systems, bio-RAS, partitioned aquaculture systems and integrated multitrophic aquaculture,” Rev. Aquac., vol. 15, no. S1, pp. 22–31, 2023, doi: 10.1111/raq.12744.

P. Rojas-Tirado, P. B. Pedersen, O. Vadstein, and L. F. Pedersen, “Changes in microbial water quality in RAS following altered feed loading,” Aquac. Eng., vol. 81, no. February, pp. 80–88, 2018, doi: 10.1016/j.aquaeng.2018.03.002.

G. Suantika et al., “Development of a zero water discharge (ZWD)—Recirculating aquaculture system (RAS) hybrid system for super intensive white shrimp (Litopenaeus vannamei) culture under low salinity conditions and its industrial trial in commercial shrimp urban farming in Gresik, East Java, Indonesia,” Aquac. Eng., vol. 82, no. April, pp. 12–24, 2018, doi: 10.1016/j.aquaeng.2018.04.002.

A. Estim, S. Saufie, and S. Mustafa, “Water quality remediation using aquaponics sub-systems as biological and mechanical filters in aquaculture,” J. Water Process Eng., vol. 30, no. October 2016, p. 100566, 2019, doi: 10.1016/j.jwpe.2018.02.001.

M. Badiola, O. C. Basurko, R. Piedrahita, P. Hundley, and D. Mendiola, “Energy use in Recirculating Aquaculture Systems (RAS): A review,” Aquac. Eng., vol. 81, no. 1, pp. 57–70, 2018, doi: 10.1016/j.aquaeng.2018.03.003.

S. M. Pinho et al., “FLOCponics: The integration of biofloc technology with plant production,” Rev. Aquac., vol. 14, no. 2, pp. 647–675, 2022, doi: 10.1111/raq.12617.

T. M. Huggins, A. Haeger, J. C. Biffinger, and Z. J. Ren, “Granular biochar compared with activated carbon for wastewater treatment and resource recovery,” Water Res., vol. 94, no. 1, pp. 225–232, 2016, doi: 10.1016/j.watres.2016.02.059.

N. Moona et al., “Temperature-dependent mechanisms of DOM removal by biological activated carbon filters,” Environ. Sci. Water Res. Technol., vol. 5, no. 12, pp. 2232–2241, 2019, doi: 10.1039/c9ew00620f.

E. Szatyłowicz and I. Skoczko, “Magnetic field usage supported filtration through different filter materials,” Water (Switzerland), vol. 11, no. 8, pp. 1–13, 2019, doi: 10.3390/w11081584.

R. S. Khalis, Margareta, Hasbullah, E. Suarso, S. Fitriana, and U. Farisa, “Development of Sasirangan Liquid Waste Treatment System Using Ozonization Method Using Composite Ceramic Filter Media Based on Water Chestnut (Eleocharis Dulcis),” J. Phys. Its Appl., vol. 6, no. 1, pp. 31–37, 2023.

I. Michael-Kordatou et al., “Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications,” Water Res., vol. 77, no. 1, pp. 213–248, 2015, doi: 10.1016/j.watres.2015.03.011.

R. Xiao et al., “A review on the research status and development trend of equipment in water treatment processes of recirculating aquaculture systems,” Rev. Aquac., vol. 11, no. 3, pp. 863–895, 2019, doi: 10.1111/raq.12270.

F. G. Engel, A. M. Lewandowska, S. L. Eggers, and B. Matthiessen, “Manipulation of non-random species loss in natural phytoplankton: Qualitative and quantitative evaluation of different approaches,” Front. Mar. Sci., vol. 4, no. SEP, pp. 1–12, 2017, doi: 10.3389/fmars.2017.00317.

Z. N. Inayah, M. Musa, D. Arfiati, and R. K. Pratiwi, “Community structure of plankton in Whiteleg shrimp, Litopenaeus vannamei (Boone, 1931), pond ecosystem,” Biodiversitas, vol. 24, no. 7, pp. 4008–4016, 2023, doi: 10.13057/biodiv/d240738.

S. Sumini and R. Kusdarwati, “The Discovery of Vibrio harveyi on Litopenaeus vannamei Infected White Feces Disease in Situbondo, East Java,” J. Perikan. Univ. Gadjah Mada, vol. 22, no. 1, pp. 1–9, 2020, doi: 10.22146/jfs.47791.

M. I. Kurniawinata, S. Sukenda, D. Wahjuningrum, W. Widanarni, and D. Hidayatullah, “White faeces disease and abundance of bacteria and phytoplankton in intensive pacific white shrimp farming,” Aquac. Res., vol. 52, no. 11, pp. 5730–5738, 2021, doi: 10.1111/are.15449.

A. Asmarany, S. Jayanti, and N. U. Mahbubah, “The abundance of Vibrio sp. bacteria on liptopenaeus vannamei grow out-pond in CV. Lautan Sumber Rejeki Banyuwangi,” IOP Conf. Ser. Earth Environ. Sci., vol. 1036, no. 1, pp. 1–7, 2022, doi: 10.1088/1755-1315/1036/1/012096.

J. Yuan et al., “Shrimp shapes a resistance trait against vibriosis by memorizing the colonization resistance of intestinal microbiota,” PLoS Pathog., vol. 20, no. 7 July, pp. 1–26, 2024, doi: 10.1371/journal.ppat.1012321.

A. Rahmawati, F. E. Supriatin, S. Andayani, M. N. Mubarok, and A. Rahman, “Fish Growth Performance in RAS Pond Using Hydrocyclone Mechanical Filter,” J. Penelit. Pendidik. IPA, vol. 10, no. 4, pp. 2129–2135, 2024, doi: 10.29303/jppipa.v10i4.6149.

G. M. F. Almeida, K. Mäkelä, E. Laanto, J. Pulkkinen, J. Vielma, and L. R. Sundberg, “The fate of bacteriophages in recirculating aquaculture systems (RAS)—towards developing phage therapy for RAS,” Antibiotics, vol. 8, no. 4, pp. 1–9, 2019, doi: 10.3390/antibiotics8040192.

M. A. Tawfik, M. A. Salem, and R. I. Zaki, “Performance investigation of a novel design of vertical micro-screen drum filter for a recirculating aquaculture system (RAS),” Aquac. Int., vol. 31, no. 4, pp. 2297–2322, 2023, doi: 10.1007/s10499-023-01085-9




DOI: http://dx.doi.org/10.12962/j25481479.v10i1.22609

Refbacks

  • There are currently no refbacks.


Abstracted / Indexed by:
      
  

 

 

 

 

 

P-ISSN: 2541-5972   

E-ISSN: 2548-1479

 

Lisensi Creative Commons

IJMEIR journal published by  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/