Deep Learning for Tidal Flood Prediction in West Pandeglang Waters, Banten

Nevin Adel Ramaputra, Asep Sandra Budiman, Willdan Aprizal Arifin

Abstract


Tidal flooding poses a significant threat to coastal areas, exacerbated by rising sea levels. In West Pandeglang Waters, Banten, frequent tidal floods impact communities, necessitating accurate prediction models for effective disaster mitigation. This study aims to develop a deep learning-based tidal flood prediction model using Keras and TensorFlow. The model incorporates oceanic and atmospheric variables, including sea surface height, wave characteristics, wind components, and precipitation data from 2003 to 2023. To address data imbalance, Synthetic Minority Over-sampling Technique (SMOTE) and MinMax scaling were applied, ensuring balanced class distribution. The model was trained and evaluated using a dataset comprising 11,808 samples, achieving an accuracy of 86% and an area under the curve (AUC) of 0.93. These results indicate a strong capability to differentiate between flood and non-flood conditions. The study demonstrates the effectiveness of deep learning in predicting tidal floods, providing valuable insights for early warning systems and coastal management in flood-prone regions.


Keywords


Coastal Flooding; KERAS TensorFlow; MinMax Scaller; Sea Level Rise; SMOTE Resampling

Full Text:

PDF

References


A. T. Devlin, D. A. Jay, S. A. Talke, E. D. Zaron, J. Pan, and H. Lin, “Coupling of sea level and tidal range changes, with implications for future water levels,” Sci Rep, vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-17056-z.

A. M. Irawan et al., “Comparison between averaged and localised subsidence measurements for coastal floods projection in 2050 Semarang, Indonesia,” Urban Clim, vol. 35, Jan. 2021, doi: 10.1016/j.uclim.2020.100760.

S. C. Hsiao et al., “Impact assessment of sea level rise-induced high tide flooding and socioeconomic losses in a highly vulnerable coastal region,” J Hydrol Reg Stud, vol. 55, Oct. 2024, doi: 10.1016/j.ejrh.2024.101921.

D. A. Putri, R. E. Arhatin, and J. L. Gaol, “Spatial Distribution of Tidal Flood in the Coastal Areas of Pandeglang Regency, Banten Using Landsat 8 OLI Imagery,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2023. doi: 10.1088/1755-1315/1251/1/012014.

W. L. Farahdita and H. S. R. Siagian, “Analysis of the area affected by the tsunami in Pandeglang, Banten: A case study of the Sunda Strait Tsunami,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Feb. 2020. doi: 10.1088/1755-1315/429/1/012052.

K. T. Antwi-Agyakwa, M. K. Afenyo, and D. B. Angnuureng, “Know to Predict, Forecast to Warn: A Review of Flood Risk Prediction Tools,” Feb. 01, 2023, MDPI. doi: 10.3390/w15030427.

M. K. Mudunuru, K. Son, P. Jiang, G. Hammond, and X. Chen, “Scalable deep learning for watershed model calibration,” Front Earth Sci (Lausanne), vol. 10, Nov. 2022, doi: 10.3389/feart.2022.1026479.

S. Miau and W. H. Hung, “River flooding forecasting and anomaly detection based on deep learning,” IEEE Access, vol. 8, pp. 198384–198402, 2020, doi: 10.1109/ACCESS.2020.3034875.

H. Sun, X. Zhang, X. Ruan, H. Jiang, and W. Shou, “Mapping Compound Flooding Risks for Urban Resilience in Coastal Zones: A Comprehensive Methodological Review,” Jan. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs16020350.

D. Dablain, B. Krawczyk, and N. V. Chawla, “DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data,” IEEE Trans Neural Netw Learn Syst, vol. 34, no. 9, pp. 6390–6404, Sep. 2023, doi: 10.1109/TNNLS.2021.3136503.

H. Pratiwi et al., “Sigmoid Activation Function in Selecting the Best Model of Artificial Neural Networks,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2020. doi: 10.1088/1742-6596/1471/1/012010.

E. Rendón, R. Alejo, C. Castorena, F. J. Isidro-Ortega, and E. E. Granda-Gutiérrez, “Data sampling methods to dealwith the big data multi-class imbalance problem,” Applied Sciences (Switzerland), vol. 10, no. 4, Feb. 2020, doi: 10.3390/app10041276.

M. S. Kraiem, F. Sánchez-Hernández, and M. N. Moreno-García, “Selecting the suitable resampling strategy for imbalanced data classification regarding dataset properties. An approach based on association models,” Applied Sciences (Switzerland), vol. 11, no. 18, Sep. 2021, doi: 10.3390/app11188546.

A. K. Azlim Khan and N. H. Ahamed Hassain Malim, “Comparative Studies on Resampling Techniques in Machine Learning and Deep Learning Models for Drug-Target Interaction Prediction,” Feb. 01, 2023, MDPI. doi: 10.3390/molecules28041663.

R. Walsh and M. Tardy, “A Comparison of Techniques for Class Imbalance in Deep Learning Classification of Breast Cancer,” Diagnostics, vol. 13, no. 1, Jan. 2023, doi: 10.3390/diagnostics13010067.

J. Lumban-Gaol et al., “Sea Level Rise, Land Subsidence, and Flood Disaster Vulnerability Assessment: A Case Study in Medan City, Indonesia,” Remote Sens (Basel), vol. 16, no. 5, Mar. 2024, doi: 10.3390/rs16050865.

K. Triana and A. J. Wahyudi, “Sea level rise in Indonesia: The drivers and the combined impacts from land subsidence,” ASEAN Journal on Science and Technology for Development, vol. 37, no. 3, pp. 115–121, Dec. 2020, doi: 10.29037/AJSTD.627.

N. Razali, S. Ismail, and A. Mustapha, “Machine learning approach for flood risks prediction,” IAES International Journal of Artificial Intelligence, vol. 9, no. 1, pp. 73–80, 2020, doi: 10.11591/ijai.v9.i1.pp73-80.

F. E. K. Ghomsi, B. Nyberg, R. P. Raj, A. Bonaduce, B. J. Abiodun, and O. M. Johannessen, “Sea level rise and coastal flooding risks in the Gulf of Guinea,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-80748-w.

S. Li et al., “Contributions of Different Sea-Level Processes to High-Tide Flooding Along the U.S. Coastline,” J Geophys Res Oceans, vol. 127, no. 7, Jul. 2022, doi: 10.1029/2021JC018276.

J. Challis, D. Idier, G. Wöppelmann, and G. André, “Atmospheric Wind and Pressure-Driven Changes in Tidal Characteristics over the Northwestern European Shelf,” J Mar Sci Eng, vol. 11, no. 9, Sep. 2023, doi: 10.3390/jmse11091701.

K. A. Serafin, P. Ruggiero, P. L. Barnard, and H. F. Stockdon, “The influence of shelf bathymetry and beach topography on extreme total water levels: Linking large-scale changes of the wave climate to local coastal hazards,” Coastal Engineering, vol. 150, pp. 1–17, Aug. 2019, doi: 10.1016/j.coastaleng.2019.03.012.

A. Ito, K. Saito, R. Ueno, and N. Homma, “Imbalanced Data Problems in Deep Learning-Based Side-Channel Attacks: Analysis and Solution,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 3790–3802, 2021, doi: 10.1109/TIFS.2021.3092050.

W. Aprizal Arifin, I. Ariawan, A. Armelita Rosalia, and N. Tufailah, “Data scaling performance on various machine learning algorithms to identify abalone sex,” Jurnal Teknologi dan Sistem Komputer, vol. 10, no. 1, pp. 26–31, 2022, doi: 10.14710/jtsiskom.2022.14105.

R. Singhla, P. Singh, R. Madaan, and S. Panda, “Image Classification Using Tensor Flow,” in Proceedings - International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021, Institute of Electrical and Electronics Engineers Inc., Mar. 2021, pp. 398–401. doi: 10.1109/ICAIS50930.2021.9395939.




DOI: http://dx.doi.org/10.12962/j25481479.v10i1.22615

Refbacks

  • There are currently no refbacks.


Abstracted / Indexed by:
      
  

 

 

 

 

 

P-ISSN: 2541-5972   

E-ISSN: 2548-1479

 

Lisensi Creative Commons

IJMEIR journal published by  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/