How To Measure Knocking Intensity In Dual-Fuel Internal Combustion Engines : A Review
Abstract
Internal combustion engines (ICE), especially diesel engines, require additional (secondary) fuel to improve their gas emissions. The selection of hydrogen as a secondary fuel in a diesel dual fuel (DDF) system is meaningful because it does not contain carbon to support exhaust gas decarbonization. Hydrogen also has a high calorific value, which can be a threat of knocking in the engine during operation. Early detection of knocking can prevent further damage to the piston and cylinder. Experts apply pressure and frequency calculations to measure the intensity of knocking. The results obtained in a homogeneous charge compression ignition (HCCI) engine were that slight knocking occurred at a hydrogen-air ratio above 0.3, and heavy knocking rose at a hydrogen-air ratio of 0.45.
Keywords
Full Text:
PDFReferences
M. D. Altinkurt, M. Merts, M. Tunér, and A. Turkcan, “Effects of split diesel injection strategies on combustion, knocking, cyclic variations and emissions of a natural gas-diesel dual fuel medium speed engine,” Fuel, vol. 347, Sep. 2023, doi: 10.1016/j.fuel.2023.128517.
X. Zhao, R. Liu, H. Wang, Z. Zheng, and M. Yao, “Effects of charge motion on knocking combustion under boosted high load condition of a medium-duty gasoline engine,” Fuel, vol. 326, Oct. 2022, doi: 10.1016/j.fuel.2022.125040.
B. Liang et al., “Effects of chamber geometry, hydrogen ratio and EGR ratio on the combustion process and knocking characters of a HCNG engine at the stoichiometric condition,” Applications in Energy and Combustion Science, vol. 15, Sep. 2023, doi: 10.1016/j.jaecs.2023.100189.
H. Meng, C. Ji, J. Yang, K. Chang, G. Xin, and S. Wang, “Experimental understanding of the relationship between combustion/flow/flame velocity and knock in a hydrogen-fueled Wankel rotary engine,” Energy, vol. 258, Nov. 2022, doi: 10.1016/j.energy.2022.124828.
F. yu Lai, B. gang Sun, X. Wang, D. sheng Zhang, Q. he Luo, and L. zhi Bao, “Research on the inducing factors and characteristics of knock combustion in a DI hydrogen internal combustion engine in the process of improving performance and thermal efficiency,” Int J Hydrogen Energy, vol. 48, no. 20, pp. 7488–7498, Mar. 2023, doi: 10.1016/j.ijhydene.2022.11.091.
S. Abubakar et al., “Hydrogen-fuelled internal combustion engines - Bibliometric analysis on research trends, hotspots, and challenges,” Apr. 03, 2024, Elsevier Ltd. doi: 10.1016/j.ijhydene.2024.02.280.
M. U. Manzoor, M. R. Yosri, M. Talei, F. Poursadegh, Y. Yang, and M. Brear, “Normal and knocking combustion of hydrogen: A numerical study,” Fuel, vol. 344, Jul. 2023, doi: 10.1016/j.fuel.2023.128093.
L. Chen, H. Wei, C. Chen, D. Feng, L. Zhou, and J. Pan, “Numerical investigations on the effects of turbulence intensity on knocking combustion in a downsized gasoline engine,” Energy, vol. 166, pp. 318–325, Jan. 2019, doi: 10.1016/j.energy.2018.10.058.
L. Chen, J. Pan, H. Wei, L. Zhou, and J. Hua, “Numerical analysis of knocking characteristics and heat release under different turbulence intensities in a gasoline engine,” Appl Therm Eng, vol. 159, Aug. 2019, doi: 10.1016/j.applthermaleng.2019.113879.
J. C. P. Jones and J. Frey, “Closed loop knock intensity characteristics of a classical knock control system,” in IFAC-PapersOnLine, Sep. 2015, pp. 167–173. doi: 10.1016/j.ifacol.2015.10.024.
J. Pan, H. Wei, G. Shu, and R. Chen, “Effect of pressure wave disturbance on auto-ignition mode transition and knocking intensity under enclosed conditions,” Combust Flame, vol. 185, pp. 63–74, 2017, doi: 10.1016/j.combustflame.2017.07.004.
G. DONG, J. Tian, L. LI, Z. WU, and X. NI, “Study on the ion current formating process under engine knocking conditions,” Combust Flame, vol. 241, Jul. 2022, doi: 10.1016/j.combustflame.2022.112069.
H. Xu et al., “Experimental and numerical investigation on effects of pre-ignition positions on knock intensity of hydrogen fuel,” Int J Hydrogen Energy, vol. 46, no. 52, pp. 26631–26645, Jul. 2021, doi: 10.1016/j.ijhydene.2021.05.154.
X. Shen and T. Shen, “Knock Limit Controller based on Exponential Moving Average of Knock Intensity,” in IFAC-PapersOnLine, Elsevier B.V., 2016, pp. 691–695. doi: 10.1016/j.ifacol.2016.08.100.
M. B. Luong, S. Desai, F. E. Hernández Pérez, R. Sankaran, B. Johansson, and H. G. Im, “A statistical analysis of developing knock intensity in a mixture with temperature inhomogeneitiesR,” Proceedings of the Combustion Institute, vol. 38, no. 4, pp. 5781–5789, 2021, doi: 10.1016/j.proci.2020.05.044.
D. Iman Santoso, A. Setiyawan, and B. Sudarmanta, “Possibility of hydrogen gas as the main fuel for diesel engines: A review.”
A. Hoth and C. P. Kolodziej, “Effects of knock intensity measurement technique and fuel chemical composition on the research octane number (RON) of FACE gasolines: Part 1 – Lambda and knock characterization,” Fuel, vol. 304, p. 120722, Nov. 2021, doi: 10.1016/j.fuel.2021.120722.
Y. Wu, L. Liu, B. Liu, E. Cao, and Q. Xiong, “Investigation of rapid flame front controlled knock combustion and its suppression in natural gas dual-fuel marine engine,” Energy, vol. 279, p. 128078, Sep. 2023, doi: 10.1016/j.energy.2023.128078.
T. Li, T. Yin, and B. Wang, “A phenomenological model of knock intensity in spark-ignition engines,” Energy Convers Manag, vol. 148, pp. 1233–1247, Sep. 2017, doi: 10.1016/j.enconman.2017.06.078.
S. Liu, Z. Lin, H. Zhang, N. Lei, Y. Qi, and Z. Wang, “Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio,” Energy, vol. 262, p. 125458, Jan. 2023, doi: 10.1016/j.energy.2022.125458.
Q. Tang et al., “Study of engine knocking combustion using simultaneous high-speed shadowgraph and natural flame luminosity imaging,” Appl Therm Eng, vol. 235, p. 121440, Nov. 2023, doi: 10.1016/j.applthermaleng.2023.121440.
J. Zhang et al., “Prediction of knock intensity and validation in an optical SI engine,” Combust Flame, vol. 254, p. 112854, Aug. 2023, doi: 10.1016/j.combustflame.2023.112854.
W. Zhang, Y. Wang, W. Long, H. Tian, and P. Dong, “Numerical investigation on knock intensity, combustion, and emissions of a heavy-duty natural gas engine with different hydrogen mixing strategies,” Int J Hydrogen Energy, vol. 62, pp. 551–561, Apr. 2024, doi: 10.1016/j.ijhydene.2024.03.122.
Y. Wang et al., “Numerical investigation on combustion regulation for a stoichiometric heavy-duty natural gas engine with hydrogen addition considering knock limitation,” Int J Hydrogen Energy, vol. 48, no. 48, pp. 18498–18513, Jun. 2023, doi: 10.1016/j.ijhydene.2023.01.299.
P. K. Vishnoi, P. S. Gautam, and V. K. Gupta, “The impact on combustion knock in CI engine fueled with methanol-diesel-n-pentanol ternary blends,” Mater Today Proc, vol. 52, pp. 1062–1067, 2022, doi: 10.1016/j.matpr.2021.10.491.
S. Erdoğan, M. K. Balki, and C. Sayin, “The effect on the knock intensity of high viscosity biodiesel use in a DI diesel engine,” Fuel, vol. 253, pp. 1162–1167, Oct. 2019, doi: 10.1016/j.fuel.2019.05.114.
W. Suijs, S. Broekaert, T. De Cuyper, and S. Verhelst, “The sensitivity of pressure-based knock threshold values to alternative fuels: A comparison of methanol vs. gasoline,” Fuel, vol. 362, p. 130850, Apr. 2024, doi: 10.1016/j.fuel.2023.130850.
A. Shere and K. A. Subramanian, “Experimental investigation on effects of equivalence ratio on combustion with knock, performance, and emission characteristics of dimethyl ether fueled CRDI compression ignition engine under homogeneous charge compression ignition mode,” Fuel, vol. 322, p. 124048, Aug. 2022, doi: 10.1016/j.fuel.2022.124048.
A. Shere and K. A. Subramanian, “Effects of hydrogen and EGR on energy efficiency improvement with ultra low emissions in a common rail direct injection compression ignition engine fueled with dimethyl ether (DME) under HCCI mode,” Int J Hydrogen Energy, vol. 52, pp. 1447–1474, Jan. 2024, doi: 10.1016/j.ijhydene.2023.08.009.
C. H. Byun, J. T. Lee, and O. C. Kwon, “An experimental study on the self-ignition and knocking characteristics for hydrogen-fueled homogeneous compression charge ignition engines,” Fuel, vol. 351, p. 128970, Nov. 2023, doi: 10.1016/j.fuel.2023.128970.
X. Shen, Y. Zhang, and T. Shen, “Cylinder pressure resonant frequency cyclic estimation-based knock intensity metric in combustion engines,” Appl Therm Eng, vol. 158, p. 113756, Jul. 2019, doi: 10.1016/j.applthermaleng.2019.113756.
Y. Ye, W. Gao, Y. Li, P. Zhang, and X. Cao, “Numerical study of the effect of injection timing on the knock combustion in a direct-injection hydrogen engine,” Int J Hydrogen Energy, vol. 45, no. 51, pp. 27904–27919, Oct. 2020, doi: 10.1016/j.ijhydene.2020.07.117.
A. Hoth and C. P. Kolodziej, “Effects of knock intensity measurement technique and fuel chemical composition on the research octane number (RON) of FACE gasolines: Part 2 – Effects of spark timing,” Fuel, vol. 342, p. 127694, Jun. 2023, doi: 10.1016/j.fuel.2023.127694.
Q. Duan, X. Yin, X. Wang, H. Kou, and K. Zeng, “Experimental study of knock combustion and direct injection on knock suppression in a high compression ratio methanol engine,” Fuel, vol. 311, p. 122505, Mar. 2022, doi: 10.1016/j.fuel.2021.122505.
H. Feng et al., “Numerical simulation on the effects of n-butanol combined with intake dilution on engine knock,” Energy, vol. 271, p. 126918, May 2023, doi: 10.1016/j.energy.2023.126918.
C. Hong, C. Ji, S. Wang, G. Xin, Y. Qiang, and J. Yang, “Progressive strategies to avoid and exploit knock limit for optimal performance and stoichiometric operation of a DI hydrogen engine with high CR at WOT conditions,” Fuel, vol. 357, p. 129849, Feb. 2024, doi: 10.1016/j.fuel.2023.129849.
Y. Li, W. Gao, P. Zhang, Z. Fu, and X. Cao, “Influence of the equivalence ratio on the knock and performance of a hydrogen direct injection internal combustion engine under different compression ratios,” Int J Hydrogen Energy, vol. 46, no. 21, pp. 11982–11993, Mar. 2021, doi: 10.1016/j.ijhydene.2021.01.031.
H. Meng et al., “Analyzing characteristics of knock in a hydrogen-fueled Wankel rotary engine,” Energy, vol. 250, p. 123828, Jul. 2022, doi: 10.1016/j.energy.2022.123828.
H. Meng, C. Ji, J. Yang, K. Chang, G. Xin, and S. Wang, “A knock study of hydrogen-fueled Wankel rotary engine,” Fuel, vol. 321, p. 124121, Aug. 2022, doi: 10.1016/j.fuel.2022.124121.
H. Meng, C. Ji, J. Yang, G. Xin, and S. Wang, “Statistically discussing impacts of knock type on the heat release process in hydrogen-fueled Wankel rotary engine,” Int J Hydrogen Energy, vol. 48, no. 21, pp. 7927–7937, Mar. 2023, doi: 10.1016/j.ijhydene.2022.11.259.
H. Meng et al., “Analyzing the effects of cooled EGR on the knock of hydrogen-fueled Wankel rotary engine,” Int J Hydrogen Energy, vol. 47, no. 77, pp. 33094–33104, Sep. 2022, doi: 10.1016/j.ijhydene.2022.07.185.
E. Takahashi, Y. Nagano, T. Kitagawa, M. Nishioka, T. Nakamura, and M. Nakano, “Demonstration of knock intensity mitigation through dielectric barrier discharge reformation in an RCEM,” Combust Flame, vol. 216, pp. 185–193, Jun. 2020, doi: 10.1016/j.combustflame.2020.02.020.
X. Wu, K. Liu, Q. Liu, J. Fu, and J. Liu, “Effects of direct water injection timings on knock suppression, combustion, and emission performance of high compression ratio hydrogen-enriched natural gas engine,” Energy Convers Manag, vol. 250, p. 114887, Dec. 2021, doi: 10.1016/j.enconman.2021.114887.
K. Xing, W. Guan, X. Guo, Y. Wang, Z. Tu, and H. Huang, “Potential of high compression ratio combined with knock suppression strategy for improving thermal efficiency of spark ignition stoichiometric natural gas engine,” Energy Convers Manag, vol. 276, p. 116544, Jan. 2023, doi: 10.1016/j.enconman.2022.116544.
K. Luo, Y. Huang, Y. Li, Y. Tao, and Z. Hu, “Effects of high pressure and high-low pressure EGR strategies on the knock tendency, combustion, and performance of a stoichiometric operation natural gas engine,” Fuel, vol. 348, p. 128530, Sep. 2023, doi: 10.1016/j.fuel.2023.128530.
H. Shi, Q. Tang, K. Uddeen, B. Johansson, J. Turner, and G. Magnotti, “Effects of multiple spark ignition on engine knock under different compression ratio and fuel octane number conditions,” Fuel, vol. 310, p. 122471, Feb. 2022, doi: 10.1016/j.fuel.2021.122471.
Z. Liu, F. Liu, H. Wei, and L. Zhou, “Effects of ammonia addition on knock suppression and performance optimization of kerosene engine with a passive pre-chamber,” Fuel, vol. 353, p. 129189, Dec. 2023, doi: 10.1016/j.fuel.2023.129189.
R. Zhang, W. Liu, Q. Zhang, Y. Qi, and Z. Wang, “Auto-ignition and knocking combustion characteristics of iso-octane-ammonia fuel blends in a rapid compression machine,” Fuel, vol. 352, p. 129088, Nov. 2023, doi: 10.1016/j.fuel.2023.129088.
X. Zhen, Z. Tian, Y. Wang, M. Xu, D. Liu, and X. Li, “Knock analysis of bio-butanol in TISI engine based on chemical reaction kinetics,” Energy, vol. 239, p. 122190, Jan. 2022, doi: 10.1016/j.energy.2021.122190.
R. Zou, J. Liu, and N. Wang, “Effect of recess shape on combustion performance and knocking characteristics for a downsized gasoline rotary engine,” Appl Therm Eng, vol. 214, p. 118758, Sep. 2022, doi: 10.1016/j.applthermaleng.2022.118758.
C. H. Byun, J. T. Lee, and O. C. Kwon, “An experimental study on the self-ignition and knocking characteristics for hydrogen-fueled homogeneous compression charge ignition engines,” Fuel, vol. 351, p. 128970, Nov. 2023, doi: 10.1016/j.fuel.2023.128970.
J. Erzy Fiolka, “Publications ESTIMATION OF KNOCK INTENSITY IN SPARK-IGNITION ENGINES BY USING WAVELET TRANSFORM.”
X. Dou, M. R. Yosri, M. Talei, and Y. Yang, “Impact of wall heat transfer modelling in large-eddy simulation of hydrogen knocking combustion,” Int J Hydrogen Energy, vol. 62, pp. 405–417, Apr. 2024, doi: 10.1016/j.ijhydene.2024.03.076.
Z. Liu, Z. Zhang, S. Rao, and Z. Zheng, “Study of water injection on suppressing knock in a high compression ratio and supercharged hybrid gasoline engine,” Energy, vol. 287, Jan. 2024, doi: 10.1016/j.energy.2023.129702.
W. Liu, Y. Qi, R. Zhang, Q. Zhang, and Z. Wang, “Investigation on end-gas auto-ignition and knock characteristics of iso-octane over wide thermodynamic conditions under jet ignition using a rapid compression machine,” Fuel, vol. 313, Apr. 2022, doi: 10.1016/j.fuel.2021.122665.
M. M. Ettefagh, M. H. Sadeghi, M. Rezaee, R. Khoshbakhti, and R. Akbarpour, “Application of a new parametric model-based filter to knock intensity measurement,” Measurement (Lond), vol. 43, no. 3, pp. 353–362, Apr. 2010, doi: 10.1016/j.measurement.2009.11.008.
X. Shen and T. Shen, “Real-time statistical learning-based stochastic knock limit control for spark-ignition engines,” Appl Therm Eng, vol. 127, pp. 1518–1529, 2017, doi: 10.1016/j.applthermaleng.2017.08.150.
W. Suijs, R. De Graeve, and S. Verhelst, “An exploratory study of knock intensity in a large-bore heavy-duty methanol engine,” Energy Convers Manag, vol. 302, p. 118089, Feb. 2024, doi: 10.1016/j.enconman.2024.118089.
DOI: http://dx.doi.org/10.12962/j25481479.v10i1.22641
Refbacks
- There are currently no refbacks.
![]() | ![]() | ![]() | ![]() |
| ![]() | ![]() |
|
|
|
|
|
P-ISSN: 2541-5972
E-ISSN: 2548-1479
IJMEIR journal published by Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/