Analysis of Carbon Stock Estimation in Mangroves with Climate Variability in West Java 2019-2023

Shelena Yasmin Nurghea, Arief Darmawan, Wildan Aprizal Arifin

Abstract


Mangrove ecosystems are important in carbon sequestration and climate regulation and contribute to climate change mitigation. However, carbon stock estimation is still mostly done manually, which is less efficient. This study utilizes remote sensing to investigate the correlation between mangrove carbon stocks and climate variability in West Java from 2019 to 2023. Mangrove land cover classification was performed using the Random Forest algorithm with NDVI and NDWI indices, while the relationship between carbon stock and climate factors was analyzed using linear regression. The results showed that increased precipitation was associated with higher carbon stocks (R2=0.5514), while carbon stocks had a negative correlation with 2-meter temperature (R2=0.8242) and sea surface temperature (SST) (R2=0.7111). This study enhances our understanding of mangrove-climate interactions and provides valuable insights for developing remote sensing-based climate resilience and coastal ecosystem management policies.


Keywords


2-meter Temperature; Biomass; NDVI; NDWI; Precipitation; Random Forest; Remote Sensing; SST

Full Text:

PDF

References


Y. Zhang et al., “Determining the payment for ecosystem services of mangrove forests: The approach combining ecosystem services and social-economic level and application in Shankou National Nature Reserve, Guangxi, China,” Glob. Ecol. Conserv., vol. 54, no. July, p. e03146, 2024, doi: 10.1016/j.gecco.2024.e03146.

S. Ahmed et al., “Salinity reduces site quality and mangrove forest functions. From monitoring to understanding,” Sci. Total Environ., vol. 853, no. July, p. 158662, 2022, doi: 10.1016/j.scitotenv.2022.158662.

Z. Hidayah and L. Andriyani, “Carbon Stock Analysis of Mangrove Ecosystems in Paliat Island Sumenep East Java,” IOP Conf. Ser. Earth Environ. Sci., vol. 276, no. 1, 2019, doi: 10.1088/1755-1315/276/1/012034.

D. N. Melati, “Mangrove Ecosystem and Climate Change Mitigation: a Literature Review,” J. Sains dan Teknol. Mitigation Disaster, vol. 16, no. 1, pp. 1–8, 2021, doi: 10.29122/jstmb.v16i1.4979.

G. Cuenca-Ocay, “Mangrove ecosystems’ role in climate change mitigation,” Davao Res. J., vol. 12, no. 2, pp. 72–75, 2024, doi: 10.59120/drj.v12i2.168.

A. Darmawan, N. Setyaningrum, Afifuddin, S. Arfah, and M. I. Habibie, “Is the Mangrove Restoration and Rehabilitation Program Successful in Riau Province, Indonesia?,” 2022 IEEE Asia-Pacific Conf. Geosci. Electron. Remote Sens. Technol. Underst. Interact. Land, Ocean. Atmos. Smart City Disaster Mitig. Reg. Resilience, AGERS 2022 - Proceeding, pp. 183–188, 2022, doi: 10.1109/AGERS56232.2022.10093595.

A. Suwanto, N. D. Takarina, R. H. Koestoer, and E. Frimawaty, “Diversity, biomass, covers, and ndvi of restored mangrove forests in karawang and subang coasts, west java, indonesia,” Biodiversitas, vol. 22, no. 9, pp. 4115–4122, 2021, doi: 10.13057/biodiv/d220960.

C. Kusmana, T. Hidayat, and W. F. Hikmah, “Above-Ground Biomass and Carbon Stock of Ciletuh Mangrove Forest, West Java, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 394, no. 1, 2019, doi: 10.1088/1755-1315/394/1/012005.

A. M. Bowo, I. Irianingsih, and B. N. Ruchjana, “Canonical Correlation Analysis of Global Climate Elements and Rainfall in the West Java Regions,” Desimal J. Mat., vol. 3, no. 2, pp. 143–154, 2020, doi: 10.24042/djm.v3i2.5870.

W. L. Farahdita, N. Soenardjo, and C. A. Suryono, “Drone Technology for Carbon Stock Estimation in Mangrove Area of Kemujan Island, Karimunjawa,” J. Mar. Res., vol. 10, no. 2, pp. 281–290, 2021, doi: 10.14710/jmr.v10i2.30466.

I. Ariawan et al., “Extraction of Morphometric Features the Shape of Mangrove Leaves Based on Digital Images and Classification Using the Support Vector Machine,” Karbala Int. J. Mod. Sci., vol. 10, no. 2, pp. 232–245, 2024, doi: 10.33640/2405-609X.3349.

W. A. Arifin et al., “Bibliometric Computational Mapping Analysis of Publications of Marine Information System Using Vosviewer,” J. Eng. Sci. Technol., vol. 18, no. 6, pp. 3018–3028, 2023.

Q. Bao Pham et al., “Multi-spectral remote sensing and GIS-based analysis for decadal land use land cover changes and future prediction using random forest tree and artificial neural network,” Adv. Sp. Res., vol. 74, no. 1, pp. 17–47, 2024, doi: 10.1016/j.asr.2024.03.027.

S. Saha, M. Saha, K. Mukherjee, A. Arabameri, P. T. T. Ngo, and G. C. Paul, “Predicting the deforestation probability using the binary logistic regression, random forest, ensemble rotational forest, REPTree: A case study at the Gumani River Basin, India,” Sci. Total Environ., vol. 730, p. 139197, 2020, doi: 10.1016/j.scitotenv.2020.139197.

C. Yaiprasert, “Artificial Intelligence for Para Rubber Identification Combining Five Machine Learning Methods,” Karbala Int. J. Mod. Sci., vol. 7, no. 4, pp. 257–267, 2021, doi: 10.33640/2405-609X.3154.

S. Azharia Sabitah, “Jurnal Geografi,” J. Geogr., vol. XIX, pp. 35–48, 2021.

Z. Jian, B. Ai, J. Zeng, and Y. Sun, “A Hybrid Mangrove Identification Method by Combining the Time-Frequency Threshold of the Mangrove Index With a Random Forest Binary Classifier,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 18, pp. 2077–2092, 2024, doi: 10.1109/JSTARS.2024.3494058.

M. G. Hughes, T. M. Glasby, D. J. Hanslow, G. J. West, and L. Wen, “Random Forest Classification Method for Predicting Intertidal Wetland Migration Under Sea Level Rise,” Front. Environ. Sci., vol. 10, no. July, pp. 1–14, 2022, doi: 10.3389/fenvs.2022.749950.

R. Muhammad, E. Hermawan, and S. A. Hudjimartsu, “IDENTIFYING MANGROVE LEAF HEALTH USING RANDOM FOREST CLASSIFICATION METHOD,” vol. 8, no. 5, pp. 10660–10666, 2024.

A. D. Purwanto, K. Wikantika, S. Darmawan, and A. Deliar, “Predicting the Distribution of Mangrove Forests through Random Forest Algorithm by Combining Spectral Features and DEM Data,” IOP Conf. Ser. Earth Environ. Sci., vol. 1276, no. 1, 2023, doi: 10.1088/1755-1315/1276/1/012002.

S. Farhadpour, T. A. Warner, and A. E. Maxwell, “Selecting and Interpreting Multiclass Loss and Accuracy Assessment Metrics for Classifications with Class Imbalance: Guidance and Best Practices,” Remote Sens., vol. 16, no. 3, pp. 1–22, 2024, doi: 10.3390/rs16030533.

Jubeile Mark Baladjay, Nisce Riva, Ladine Ashley Santos, Dan Michael Cortez, Criselle Centeno, and Ariel Antwaun Rolando Sison, “Performance evaluation of random forest algorithm for automating classification of mathematics question items,” World J. Adv. Res. Rev., vol. 18, no. 2, pp. 034–043, 2023, doi: 10.30574/wjarr.2023.18.2.0762.

D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, pp. 1–13, 2020, doi: 10.1186/s12864-019-6413-7.

RANTI DWIMARSA SALSABILLA, “Mangrove carbon stock estimation using sentinel-2 imagery in menjangan island and bay terima, west bali national park (2019 and 2023),” 2024.

A. Ramadhan and S. Suwadji, “Mangrove Forest Biomass Estimation Model Using Sentinel -2A Satellite Imagery in Rembang Regency, Central Java,” J. Wana Trop., vol. 13, no. 2, pp. 72–84, 2024, doi: 10.55180/jwt.v13i2.1018.

Rahman, Maryono, and O. N. Sigiro, “What Is the True Carbon Fraction Value of Mangrove Biomass?,” Malaysian J. Sci., vol. 42, no. 2, pp. 67–72, 2023, doi: 10.22452/mjs.vol42no2.10.

R. A. M. Richa Dhakal, “APPLICATION OF VEGETATION INDEXES TO ASSESS CARBON STOCK,” pp. 1–14, 2022.

Zulfajri, P. Danoedoro, and S. Heru Murti, “Land Cover/Use Classification of Landsat-8 OLI Data Using Random Forest Method,” J. Penginderaan Jauh Indones., vol. 03, no. 01, pp. 1–7, 2021, [Online]. Available: http://jurnal.mapin.or.id/index.php/jpji/issue/archive

I. Z. G. S. Papaiordanidis, C. Minakou, “ON-THE-FLY LAND COVER MAPPING USING MACHINE LEARNING WITH MULTISPECTRAL SATELLITE IMAGERY ON GOOGLE EARTH ENGINE,” vol. 2507, no. February, pp. 1–9, 2020.

M. A. Q. Miah and M. G. Moula, “Effect of NPK fertilizers on seedling growth of mangrove species,” J. Biosci. Agric. Res., vol. 20, no. 1, pp. 1687–1693, 2019, doi: 10.18801/jbar.200119.205.

H. Akram, S. Hussain, P. Mazumdar, K. O. Chua, T. E. Butt, and J. A. Harikrishna, “Mangrove Health: A Review of Functions, Threats, and Challenges Associated with Mangrove Management Practices,” Forests, vol. 14, no. 9, pp. 1–38, 2023, doi: 10.3390/f14091698.

Y. C. Frederika, Y. N. Ihsan, and I. Riyantini, “Nutrient Profile and Mangrove Vegetation Composition in,” J. Ilmu Kelaut. SPERMONDE, vol. 7, no. 1, pp. 42–51, 2021.

S. Tounsi-Hammami et al., “Optimizing tomato seedling growth with indigenous mangrove bacterial inoculants and reduced NPK fertilization,” Front. Plant Sci., vol. 15, no. March, 2024, doi: 10.3389/fpls.2024.1356545.

M. T. Costa et al., “Sediment depth and accretion shape belowground mangrove carbon stocks across a range of climatic and geologic settings,” Limnol. Oceanogr., vol. 67, no. S2, pp. S104–S117, 2022, doi: 10.1002/lno.12241.




DOI: http://dx.doi.org/10.12962/j25481479.v10i1.22694

Refbacks

  • There are currently no refbacks.


Abstracted / Indexed by:
      
  

 

 

 

 

 

P-ISSN: 2541-5972   

E-ISSN: 2548-1479

 

Lisensi Creative Commons

IJMEIR journal published by  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/