Advancing Fucoxanthin Production from Microalgae: A Bibliometric Analysis of Research Trends and Innovations
Abstract
Keywords
Full Text:
PDFReferences
X. Liu, Y. Hong, Y. Liu, “Cultivation of Chlorella sp. HQ in inland saline-alkaline water under different light qualities,” Front Environ Sci Eng, Vol. 16, no. 4, Pp. 45, Apr. 2022, doi: 10.1007/s11783-021-1479-2.
S. A. Ahmed, P. Mendonca, R. Elhag, K. F. A. Soliman, “Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, Angiogenesis Inhibition, and Autophagy Modulation,” Int J Mol Sci, Vol. 23, No. 24, Pp. 16091, Dec. 2022, doi: 10.3390/ijms232416091.
F. M. Abdoul-Latif, A. Ainane, I. H. Aboubaker, A. M. Ali, H. Mohamed, P. P. Jutur, T. Ainane., “Unlocking the Green Gold: Exploring the Cancer Treatment and the Other Therapeutic Potential of Fucoxanthin Derivatives from Microalgae,” Pharmaceuticals, Vol. 17, No. 7, Pp. 960, Jul. 2024, doi: 10.3390/ph17070960.
Y.-L. Dai, Y.-F. Jiang, Y.-A. Lu, J.-B. Yu, M.-C. Kang, Y.-J. Jeon, “Fucoxanthin-rich fraction from Sargassum fusiformis alleviates particulate matter-induced inflammation in vitro and in vivo,” Toxicol Rep, Vol. 8, Pp. 349–358, 2021, doi: 10.1016/j.toxrep.2021.02.005.
Y. K. Leong, C.-Y. Chen, S. Varjani, J.-S. Chang, “Producing fucoxanthin from algae – Recent advances in cultivation strategies and downstream processing,” Bioresour Technol, Vol. 344, Pp. 126170, Jan. 2022, doi: 10.1016/j.biortech.2021.126170.
A. Kanamoto, Y. Kato, E. Yoshida, T. Hasunuma, A. Kondo, “Development of a Method for Fucoxanthin Production Using the Haptophyte Marine Microalga Pavlova sp. OPMS 30543,” Marine Biotechnology, Vol. 23, No. 2, Pp. 331–341, Apr. 2021, doi: 10.1007/s10126-021-10028-5.
H. Won, E. Ro, S. Seo, B.-H. Kim, E. Jin, “Isolation and cultivation of freshwater diatom Nitzschia palea HY1 for increasing biomass and fucoxanthin production,” Algae, Vol. 38, No. 3, Pp. 191–202, Sep. 2023, doi: 10.4490/algae.2023.38.9.3.
B. A. Guler, I. Deniz, Z. Demirel, O. Yesil-Celiktas, E. Imamoglu, “A novel subcritical fucoxanthin extraction with a biorefinery approach,” Biochem Eng J, Vol. 153, Pp. 107403, Jan. 2020, doi: 10.1016/j.bej.2019.107403.
K. Seth, A. Kumar, R. P. Rastogi, M. Meena, V. Vinayak, Harish, “Bioprospecting of fucoxanthin from diatoms — Challenges and perspectives,” Algal Res, Vol. 60, Pp. 102475, Dec. 2021, doi: 10.1016/j.algal.2021.102475.
Y. S. Khaw, F. M. Yusoff, H. T. Tan, N. A. I. N. Mazli, M. F. Nazarudin, N. A. Shaharuddin, A. R. Omar, K. Takahashi, “Fucoxanthin Production of Microalgae under Different Culture Factors: A Systematic Review,” Mar Drugs, Vol. 20, No. 10, Pp. 592, Sep. 2022, doi: 10.3390/md20100592.
S. M. Kim, Y. Jung, O. Kwon, K. H. Cha, B. Um, D. Chung, C. Pan, “A Potential Commercial Source of Fucoxanthin Extracted from the Microalga Phaeodactylum tricornutum,” Appl Biochem Biotechnol, Vol. 166, No. 7, Pp. 1843–1855, Apr. 2012, doi: 10.1007/s12010-012-9602-2.
S. M. Kim, S.-W. Kang, O.-N. Kwon, D. Chung, C.-H. Pan, “Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: Characterization of extraction for commercial application,” J Korean Soc Appl Biol Chem, Vol. 55, No. 4, Pp. 477–483, Aug. 2012, doi: 10.1007/s13765-012-2108-3.
K. S. Khoo, C. W. Ooi, K. W. Chew, S. C. Foo, P. L. Show, “Bioprocessing of Chaetoceros calcitrans for the recovery of fucoxanthin using CO2-based alkyl carbamate ionic liquids,” Bioresour Technol, Vol. 322, Pp. 124520, Feb. 2021, doi: 10.1016/j.biortech.2020.124520.
V. Pasquet, J. Cherouvrier, F. Farhat, V. Thiery, J. Piot, J. Berard, R. Kaas, B. Serive, T. Patrice, J. Cadoret, L. Picot, “Study on the microalgal pigments extraction process: Performance of microwave assisted extraction,” Process Biochemistry, Vol. 46, No. 1, Pp. 59–67, Jan. 2011, doi: 10.1016/j.procbio.2010.07.009.
R. N. Dewi, M. M. A. Nur, R. P. Astuti, W. Andriyanto, F. C. A. Panjaitan, D. Febrianti, I. G. A. Budiadnyani, S. P. S. D. Utari, P. N. Samanta, M. L. Perceka, “Bioremediation of seafood processing wastewater by microalgae: Nutrient removal, and biomass, lipid and protein enhancement,” Environmental Engineering Research, Vol. 29, No. 6, Pp. 230673–0, Apr. 2024, doi: 10.4491/eer.2023.673.
S. Mohamadnia, O. Tavakoli, M. A. Faramarzi, “Enhancing production of fucoxanthin by the optimization of culture media of the microalga Tisochrysis lutea,” Aquaculture, Vol. 533, Pp. 736074, Feb. 2021, doi: 10.1016/j.aquaculture.2020.736074.
A.-H. Lee, S. Hong, I. Park, S. Yoon, Y. Kim, J. Kim, S. Yang, “Validation of Fucoxanthin from Microalgae Phaeodactylum tricornutum for the Detection of Amyloid Burden in Transgenic Mouse Models of Alzheimer’s Disease,” Applied Sciences, Vol. 11, No. 13, Pp. 5878, Jun. 2021, doi: 10.3390/app11135878.
H. Sun, S. Yang, W. Zhao, Q. Kong, C. Zhu, X. Fu, F. Zhang, Z. Liu, Y. Zhan, H. Mou, Y. He, “Fucoxanthin from marine microalgae: A promising bioactive compound for industrial production and food application,” Crit Rev Food Sci Nutr, Vol. 63, No. 26, Pp. 7996–8012, Oct. 2023, doi: 10.1080/10408398.2022.2054932.
C. Lourenço-Lopes, M. Fraga-Corral, C. Jiemenz-Lopez, M. Carpena, A. G. Pereira, P. Garcia-Oliveira, M. A. Prieto, J. Simal-Gandara, “Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries,” Trends Food Sci Technol, Vol. 117, Pp. 163–181, Nov. 2021, doi: 10.1016/j.tifs.2021.03.012.
M. M. A. Nur, R. H. Desta, R. Keane, M. Pratama, A. N. Affrida, , “Cultivating Microalgae with Biophotovoltaic to Produce Bioelectricity: A Bibliometric Analysis,” International Journal of Marine Engineering Innovation and Research, vol. 9, no. 4, Dec. 2024, doi: 10.12962/j25481479.v9i4.21771.
J. Su et al., “Fucoxanthin, a Marine Xanthophyll Isolated From Conticribra weissflogii ND-8: Preventive Anti-Inflammatory Effect in a Mouse Model of Sepsis,” Front Pharmacol, vol. 10, Aug. 2019, doi: 10.3389/fphar.2019.00906.
H. Pereira et al., “Fucoxanthin production from Tisochrysis lutea and Phaeodactylum tricornutum at industrial scale,” Algal Res, vol. 56, p. 102322, Jun. 2021, doi: 10.1016/j.algal.2021.102322.
X. Qiang et al., “The Complex of Phycobiliproteins, Fucoxanthin, and Krill Oil Ameliorates Obesity through Modulation of Lipid Metabolism and Antioxidants in Obese Rats,” Nutrients, vol. 14, no. 22, p. 4815, Nov. 2022, doi: 10.3390/nu14224815.
M.-B. Kim, H. Kang, Y. Li, Y.-K. Park, and J.-Y. Lee, “Fucoxanthin inhibits lipopolysaccharide-induced inflammation and oxidative stress by activating nuclear factor E2-related factor 2 via the phosphatidylinositol 3-kinase/AKT pathway in macrophages,” Eur J Nutr, vol. 60, no. 6, pp. 3315–3324, Sep. 2021, doi: 10.1007/s00394-021-02509-z.
A. Rodríguez-Luna et al., “Fucoxanthin-Containing Cream Prevents Epidermal Hyperplasia and UVB-Induced Skin Erythema in Mice,” Mar Drugs, vol. 16, no. 10, p. 378, Oct. 2018, doi: 10.3390/md16100378.
S. C. Foo et al., “Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents,” J Biotechnol, vol. 241, pp. 175–183, Jan. 2017, doi: 10.1016/j.jbiotec.2016.11.026.
F. Derwenskus, S. Weickert, I. Lewandowski, U. Schmid-Staiger, and T. Hirth, “Economic evaluation of up- and downstream scenarios for the co-production of fucoxanthin and eicosapentaenoic acid with P. tricornutum using flat-panel airlift photobioreactors with artificial light,” Algal Res, vol. 51, p. 102078, Oct. 2020, doi: 10.1016/j.algal.2020.102078.
E. B. Medina Perez, M. C. Ruiz-Domìnguez, J. E. Morales, and P. Cerezal Mezquita, “Fucoxanthin from marine microalga Isochrysis galbana: optimization of extraction methods with organic solvents,” Dyna (Medellin), vol. 86, no. 210, pp. 174–178, Jul. 2019, doi: 10.15446/dyna.v86n210.72932.
P. Sun et al., “A novel strategy for isolation and purification of fucoxanthinol and fucoxanthin from the diatom Nitzschia laevis,” Food Chem, vol. 277, pp. 566–572, Mar. 2019, doi: 10.1016/j.foodchem.2018.10.133.
D. D. McClure, A. Luiz, B. Gerber, G. W. Barton, and J. M. Kavanagh, “An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum,” Algal Res, vol. 29, pp. 41–48, Jan. 2018, doi: 10.1016/j.algal.2017.11.015.
C. Wang, X. Chen, Y. Nakamura, C. Yu, and H. Qi, “Fucoxanthin activities motivate its nano/micro-encapsulation for food or nutraceutical application: a review,” Food Funct, vol. 11, no. 11, pp. 9338–9358, 2020, doi: 10.1039/D0FO02176H.
T. K. Marella and A. Tiwari, “Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin,” Bioresour Technol, vol. 307, p. 123245, Jul. 2020, doi: 10.1016/j.biortech.2020.123245.
C.-H. Lin, Y.-F. Chang, S. J. Prasetya, F.-Y. Yu, S.-Y. Lai, and M.-Y. Wang, “An integrated process for enhanced production and purification of fucoxanthin and sulfated polysaccharides in diatom Hyalosynedra toxoneides cultures,” J Taiwan Inst Chem Eng, vol. 155, p. 105308, Feb. 2024, doi: 10.1016/j.jtice.2023.105308.
V. Fernandes and B. S. Mamatha, “Fucoxanthin, a Functional Food Ingredient: Challenges in Bioavailability,” Curr Nutr Rep, vol. 12, no. 4, pp. 567–580, Aug. 2023, doi: 10.1007/s13668-023-00492-x.
R. Li et al., “Encapsulation and delivery systems based on natural biological macromolecules: Focusing on nutrients in infant formula,” Trends Food Sci Technol, p. 104974, Mar. 2025, doi: 10.1016/j.tifs.2025.104974.
Y. Nishida et al., “Astaxanthin: Past, Present, and Future,” Mar Drugs, vol. 21, no. 10, p. 514, Sep. 2023, doi: 10.3390/md21100514.
R. R. Narala et al., “Comparison of Microalgae Cultivation in Photobioreactor, Open Raceway Pond, and a Two-Stage Hybrid System,” Front Energy Res, vol. 4, Aug. 2016, doi: 10.3389/fenrg.2016.00029.
F. Ma et al., “Optimizing Fucoxanthin production in Chaetoceros sp. Using conditioned wastewater and tailored culture conditions,” Journal of Water Process Engineering, vol. 72, p. 107450, Apr. 2025, doi: 10.1016/j.jwpe.2025.107450.
P. Reynolds-Brandão et al., “Integration of spectroscopic techniques and machine learning for optimizing Phaeodactylum tricornutum cell and fucoxanthin productivity,” Bioresour Technol, vol. 418, p. 131988, Feb. 2025, doi: 10.1016/j.biortech.2024.131988.
Q. Song, C. Liu, R. Xu, and L. Cai, “Enhancement of fucoxanthin accumulation in Phaeodactylum tricornutum by light quality and intensity shift strategy,” Chemical Engineering Journal, vol. 505, p. 159388, Feb. 2025, doi: 10.1016/j.cej.2025.159388.
X.-W. Fan et al., “Optimizing tomato waste hydrolysate for enhanced fucoxanthin biosynthesis in mixotrophic cultivation of Isochrysis galbana,” Bioresour Technol, vol. 413, p. 131453, Dec. 2024, doi: 10.1016/j.biortech.2024.131453.
S. M. An et al., “Development of a cost-effective medium suitable for the growth and fucoxanthin production of the microalgae Odontella aurita using jeju lava seawater and agricultural fertilizers,” Biomass Bioenergy, vol. 188, p. 107310, Sep. 2024, doi: 10.1016/j.biombioe.2024.107310.
M. K. M. Lane, E. B. Gilcher, M. M. Ahrens-Víquez, R. S. Pontious, N. E. Wyrtzen, and J. B. Zimmerman, “Elucidating supercritical fluid extraction of fucoxanthin from algae to enable the integrated biorefinery,” Bioresour Technol, vol. 406, p. 131036, Aug. 2024, doi: 10.1016/j.biortech.2024.131036.
S. Wu, W. Gu, S. Jia, X. Xie, L. Wang, and G. Wang, “Optimizing fucoxanthin production from Phaeodactylum tricornutum: Impact of harvesting methods on culture medium reusability,” Algal Res, vol. 74, p. 103150, Jul. 2023, doi: 10.1016/j.algal.2023.103150.
E. Yoshida, Y. Kato, A. Kanamoto, A. Kondo, and T. Hasunuma, “Metabolomic analysis of the effect of nitrogen on fucoxanthin synthesis by the haptophyte Pavlova gyrans,” Algal Res, vol. 72, p. 103144, May 2023, doi: 10.1016/j.algal.2023.103144.
D. Xu, J. Chow, C. C. Weber, M. A. Packer, S. Baroutian, and K. Shahbaz, “Evaluation of deep eutectic solvents for the extraction of fucoxanthin from the alga Tisochrysis lutea – COSMO-RS screening and experimental validation,” J Environ Chem Eng, vol. 10, no. 5, p. 108370, Oct. 2022, doi: 10.1016/j.jece.2022.108370.
H. Zhang, P. Gong, Q. Cai, C. Zhang, and B. Gao, “Maximizing fucoxanthin production in Odontella aurita by optimizing the ratio of red and blue light-emitting diodes in an auto-controlled internally illuminated photobioreactor,” Bioresour Technol, vol. 344, p. 126260, Jan. 2022, doi: 10.1016/j.biortech.2021.126260.
Z. Wu et al., “Evaluation of nitrogen source, concentration and feeding mode for co-production of fucoxanthin and fatty acids in Phaeodactylum tricornutum,” Algal Res, vol. 63, p. 102655, Apr. 2022, doi: 10.1016/j.algal.2022.102655.
S. C. Foo, N. M. H. Khong, and F. Md. Yusoff, “Physicochemical, microstructure and antioxidant properties of microalgae-derived fucoxanthin rich microcapsules,” Algal Res, vol. 51, p. 102061, Oct. 2020, doi: 10.1016/j.algal.2020.102061.
M. Petrushkina et al., “Fucoxanthin production by heterokont microalgae,” Algal Res, vol. 24, pp. 387–393, Jun. 2017, doi: 10.1016/j.algal.2017.03.016.
T. Ishika, N. R. Moheimani, P. A. Bahri, D. W. Laird, S. Blair, and D. Parlevliet, “Halo-adapted microalgae for fucoxanthin production: Effect of incremental increase in salinity,” Algal Res, vol. 28, pp. 66–73, Dec. 2017, doi: 10.1016/j.algal.2017.10.002.
W.-L. Guo et al., “Fucoxanthin promotes the conversion efficiency of alpha-linolenic acid in feeding to docosahexaenoic acid in quail egg yolk,” Food Chem, vol. 472, p. 142915, Apr. 2025, doi: 10.1016/j.foodchem.2025.142915.
K. Sasaki et al., “Effects of Fucoxanthin Addition to Ground Chicken Breast Meat on Lipid and Colour Stability during Chilled Storage, before and after Cooking,” Asian-Australas J Anim Sci, vol. 21, no. 7, pp. 1067–1072, Jul. 2008, doi: 10.5713/ajas.2008.70670.
D. Li et al., “Fabricating hydrophilic fatty acid-protein particles to encapsulate fucoxanthin: Fatty acid screening, structural characterization, and thermal stability analysis,” Food Chem, vol. 382, p. 132311, Jul. 2022, doi: 10.1016/j.foodchem.2022.132311.
M. T. Nuñez de González, R. Attaie, A. Mora-Gutierrez, S. Woldesenbet, and Y. Jung, “Stability of Fucoxanthin in Pasteurized Skim and Whole Goat Milk,” Foods, vol. 10, no. 7, p. 1647, Jul. 2021, doi: 10.3390/foods10071647.
Z. Zahrah, M. N. G. Amin, and M. A. Alamsjah, “The effect of fucoxanthin as coloring agent on the quality of Shrimp Paste,” IOP Conf Ser Earth Environ Sci, vol. 441, no. 1, p. 012079, Feb. 2020, doi: 10.1088/1755-1315/441/1/012079.
I.-K. Mok, J. K. Lee, J. H. Kim, C.-H. Pan, and S. M. Kim, “Fucoxanthin bioavailability from fucoxanthin-fortified milk: In vivo and in vitro study,” Food Chem, vol. 258, pp. 79–86, Aug. 2018, doi: 10.1016/j.foodchem.2018.03.047.
D. Nuraini, Moch. A. Alamsjah, and E. Saputra, “Application of Fucoxanthin Pigment Extract from Sargassum sp. on the Physical Quality of Blusher Preparation,” Journal of Marine and Coastal Science, vol. 10, no. 2, p. 74, Jun. 2021, doi: 10.20473/jmcs.v10i2.27659.
R. S. N. Tavares et al., “Fucoxanthin for Topical Administration, a Phototoxic vs. Photoprotective Potential in a Tiered Strategy Assessed by In Vitro Methods,” Antioxidants, vol. 9, no. 4, p. 328, Apr. 2020, doi: 10.3390/antiox9040328.
S.-J. Heo et al., “Anti-inflammatory effect of fucoxanthin derivatives isolated from Sargassum siliquastrum in lipopolysaccharide-stimulated RAW 264.7 macrophage,” Food and Chemical Toxicology, vol. 50, no. 9, pp. 3336–3342, Sep. 2012, doi: 10.1016/j.fct.2012.06.025.
Y. Li, M.-B. Kim, Y.-K. Park, and J.-Y. Lee, “Fucoxanthin metabolites exert anti-fibrogenic and antioxidant effects in hepatic stellate cells,” J Agric Food Res, vol. 6, p. 100245, Dec. 2021, doi: 10.1016/j.jafr.2021.100245.
K. Takahashi et al., “Anticancer effects of fucoxanthin and fucoxanthinol on colorectal cancer cell lines and colorectal cancer tissues,” Oncol Lett, vol. 10, no. 3, pp. 1463–1467, Sep. 2015, doi: 10.3892/ol.2015.3380.
J.-I. Kang et al., “Promotion Effect of Apo-9′-fucoxanthinone from <i>Sargassum muticum</i> on Hair Growth <i>via</i> the Activation of Wnt/β-Catenin and VEGF-R2,” Biol Pharm Bull, vol. 39, no. 8, pp. 1273–1283, 2016, doi: 10.1248/bpb.b16-00024.
DOI: http://dx.doi.org/10.12962%2Fj25481479.v10i2.22791
Refbacks
- There are currently no refbacks.
![]() | ![]() | ![]() | ![]() |
| ![]() | ![]() |
|
|
|
|
|
P-ISSN: 2541-5972
E-ISSN: 2548-1479
IJMEIR journal published by Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/