Assessment of Safe Loading Conditions for the SPCB Deck Crane Using Hydrostatic and GZ Curve Analysis
Abstract
This study comprehensively assesses safe loading conditions for the Self-Propelled Crane Barge (SPCB) Deck Crane by integrating detailed hydrostatic calculations with righting-arm (GZ) curve analysis. At the designated summer draft of 2.75 m, baseline parameters—displacement (1 716 t), centre of buoyancy (KB = 0.765 m), transverse metacentre (KM = 2.780 m), and metacentric height (GM = 1.23 m)—were established from the vessel’s stability booklet. Four loading scenarios (lightship, full ballast, crane at maximum outreach, and cargo distribution) were defined, with updated displacement and vertical centre of gravity (KG) values used to recompute hydrostatic parameters (BM, KM, free-surface corrections) and generate full GZ curves. Intact-stability criteria (GM ≥ 0.15 m, area under GZ curve ≥ 0.08 m·rad, angle of vanishing stability ≥ 25°, and GZmax ≥ 0.25 m) were evaluated for each case. Results indicate that the ballast condition yields the highest stiffness (GM ≈ 1.50 m) and energy absorption (AUC ≈ 1.15 m·rad). The crane-outreach scenario represents the narrowest margin (GM ≈ 0.90 m, AUC ≈ 0.60 m·rad). A safe-loading envelope was developed, showing permissible crane loads of up to 100 t at 10 m outreach and limiting lifts beyond 20 m to 50 t or less. Mitigation measures—ballast management, outreach/load restrictions, optimized cargo stowage, and real-time monitoring—are recommended to ensure regulatory compliance and operational safety.
Keywords
Full Text:
PDFReferences
M. Faiz, Murdjito, R. W. Prastianto, E. B. Djatmiko, S. Nugroho, and Y. B. Hadasa, ‘Intact stability analysis of crane barge due to loading orientation effect during heavy lifting operation’, IOP Conf Ser Earth Environ Sci, vol. 1298, no. 1, p. 012020, Feb. 2024, doi: 10.1088/1755 1315/1298/1/012020.
K. Belyaev, A. Garbaruk, V. Golubkov, and M. Strelets, ‘Prediction of effect of small local surface irregularities on natural transition to turbulence based on Global Stability Analysis’, Int J Heat Fluid Flow, vol. 107, p. 109358, Jul. 2024, doi: 10.1016/j.ijheatfluidflow.2024.109358.
R. Zhang et al., ‘Numerical investigation on the effects of heel on the aerodynamic performance of wing sails’, Ocean Engineering, vol. 305, p. 117897, Aug. 2024, doi: 10.1016/j.oceaneng.2024.117897.
M. Zhai, T. Yang, N. Sun, and Y. Fang, ‘Observer-based adaptive fuzzy control of underactuated offshore cranes for cargo stabilization with respect to ship decks’, Mech Mach Theory, vol. 175, p. 104927, Sep. 2022, doi: 10.1016/j.mechmachtheory.2022.104927.
T. Yang, N. Sun, H. Chen, and Y. Fang, ‘Neural Network-Based Adaptive Antiswing Control of an Underactuated Ship-Mounted Crane With Roll Motions and Input Dead Zones’, IEEE Trans Neural Netw Learn Syst, vol. 31, no. 3, pp. 901–914, Mar. 2020, doi: 10.1109/TNNLS.2019.2910580.
G. P. Utomo, H. T. Wibowo, and M. A. Budiyanto, 'Stability analysis of fast ship design using flat surface hull at the fully loaded fuel tank condition', 2021, p. 030010. doi: 10.1063/5.0063472.
D. F. de C. e Silva, F. G. T. de Menezes, D. Schmidt, and P. C. de Mello, ‘Slamming Effects on FPSO Balconies: Numerical and Experimental Analysis of Alternative Configurations for Impact Attenuation’, in Volume 5: Ocean Engineering, American Society of Mechanical Engineers, Jun. 2023. doi: 10.1115/OMAE2023-105066.
X. Li, Z. Yang, P. Guo, and J. Cheng, ‘An Intelligent Transient Stability Assessment Framework With Continual Learning Ability’, IEEE Trans Industr Inform, vol. 17, no. 12, pp. 8131–8141, Dec. 2021, doi: 10.1109/TII.2021.3064052.
S. Fang et al., ‘Experimental study on human evacuation onboard passenger ships considering heeling angle and opposite directions’, Ocean Engineering, vol. 308, p. 118256, Sep. 2024, doi: 10.1016/j.oceaneng.2024.118256.
Q. Liu, R. Zhang, S. Sun, and J. Zhang, ‘Aerodynamic Load Variation and Wind-Induced Vibration Analysis of Tower Cranes Under Full Wind Angles’, The International Journal of Acoustics and Vibration, vol. 29, no. 2, pp. 101–115, Jun. 2024, doi: 10.20855/ijav.2024.29.22016.
E. Buzilă and M. Greti-Manea, ‘Stability for a parallelepipedal crane using auto-ship soft-ware’, Analele Universităţii ‘Dunărea de Jos’ din Galaţi. Fascicula XI, Construcţii navale/ Annals of ‘Dunărea de Jos’ of Galati, Fascicle XI, Shipbuilding, vol. 47, pp. 123–134, Dec. 2024, doi: 10.35219/AnnUgalShipBuilding/2024.47.15.
M. Faiz, Murdjito, R. W. Prastianto, E. B. Djatmiko, S. Nugroho, and Y. B. Hadasa, ‘Intact stability analysis of crane barge due to loading orientation effect during heavy lifting operation’, IOP Conf Ser Earth Environ Sci, vol. 1298, no. 1, p. 012020, Feb. 2024, doi: 10.1088/1755-1315/1298/1/012020.
A. Rybicka et al., ‘The Impact of a Simplified Hydrostatic Bypass Flow Technique on Error Detection during Surgical Limb Revascularization’, J Clin Med, vol. 9, no. 4, p. 1079, Apr. 2020, doi: 10.3390/jcm9041079.
U. Abbas, S. Khalid, Z. Riaz, A. Zubair, and H. Khalid, ‘Development of a Large Angle Stability Tool For The Ships and Boats’, in 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), IEEE, Jan. 2021, pp. 873–880. doi: 10.1109/IBCAST51254.2021.9393237.
E. Miletić, L. Radić, S. Letinić, and A. Turk, ‘Seaworthiness and Stability Analysis of a Pontoon for Holiday House’, Journal of Maritime & Transportation Science, vol. Special edition 4, no. 4, pp. 305–321, Jun. 2022, doi: 10.18048/2022.04.22.
A. Lamei, S. Li, M. Hayatdavoodi, and H. R. Riggs, ‘Wave-Current Interaction With Floating Objects With Square and Circular Waterplane Areas’, in Volume 5: Ocean Engineering, American Society of Mechanical Engineers, Jun. 2023. doi: 10.1115/OMAE2023-105065.
L. Wang, S. Liao, S. Wang, B. Jia, J. Yin, and R. Li, ‘Real-time prediction of metacentric height of ro-ro passenger ships in Qiongzhou strait based on improved RBF neural network’, Ocean Engineering, vol. 312, p. 119067, Nov. 2024, doi: 10.1016/j.oceaneng.2024.119067.
S. Song, D. Kim, and S. Dai, ‘CFD investigation into the effect of GM variations on ship manoeuvring characteristics’, Ocean Engineering, vol. 291, p. 116472, Jan. 2024, doi: 10.1016/j.oceaneng.2023.116472.
N. Petacco and P. Gualeni, ‘IMO Second Generation Intact Stability Criteria: General Overview and Focus on Operational Measures’, J Mar Sci Eng, vol. 8, no. 7, p. 494, Jul. 2020, doi: 10.3390/jmse8070494.
U. Abbas, S. Khalid, Z. Riaz, A. Zubair, and H. Khalid, ‘Development of a Large Angle Stability Tool For The Ships and Boats’, in 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), IEEE, Jan. 2021, pp. 873–880. doi: 10.1109/IBCAST51254.2021.9393237.
Q. Zhou, Y. Liu, Y. Xie, and X. Zhang, ‘ANALYSIS ON ANTI-OVERTURNING STABILITY OF A TRUCK CRANE BASED ON ZERO MOMENT POINT THEORY’, Dyna (Medellin), vol. 97, no. 3, pp. 281–287, May 2022, doi: 10.6036/10484.
A. N. Himaya et al., ‘Effect of the loading conditions on the maneuverability of a container ship’, Ocean Engineering, vol. 247, p. 109964, Mar. 2022, doi: 10.1016/j.oceaneng.2021.109964.
A. D. E. Anggriani, S. Baso, L. Bochary, Rosmani, and M. Hasbullah, ‘Intact Stability Analysis of a Container Ship Due to Containers Stowage on Deck’, IOP Conf Ser Earth Environ Sci, vol. 972, no. 1, p. 012047, Jan. 2022, doi: 10.1088/1755 1315/972/1/012047.
Y. Jiang, M. Wang, J. Bai, Y. Sun, and J. Li, ‘Effects of outrigger configuration on trimaran stability in longitudinal waves’, Ocean Engineering, vol. 280, p. 114500, Jul. 2023, doi: 10.1016/j.oceaneng.2023.114500.
G. Xing, Y. Ma, S. Chen, F. Wang, J. Zhang, and Y. Xing, ‘The effects of radius and longitudinal slope of extra-long freeway spiral tunnels on driving behavior: A practical engineering design case’, Tunnelling and Underground Space Technology, vol. 152, p. 105967, Oct. 2024, doi: 10.1016/j.tust.2024.105967.
Z. Cai, M. T. Herath, L. P. Djukic, D. C. Rodgers, and G. M. K. Pearce, ‘Prediction of fluid surge in partially-filled clean-bore and transverse baffled tanks of multiple designs under the United Nations Model Regulations’, Ocean Engineering, vol. 267, p. 113310, Jan. 2023, doi: 10.1016/j.oceaneng.2022.113310.
DOI: http://dx.doi.org/10.12962%2Fj25481479.v10i2.22862
Refbacks
- There are currently no refbacks.
![]() | ![]() | ![]() | ![]() |
| ![]() | ![]() |
|
|
|
|
|
P-ISSN: 2541-5972
E-ISSN: 2548-1479
IJMEIR journal published by Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/