Fluid Flow Analysis of Stern Hull MV. Kelola Mina Makmur 150 GT Based Engine Propeller and Hull Matching Using Actuator Disk Propeller Method
Abstract
The results of the simulation used a propeller disk actuator method that models the propeller effect without modeling a real propeller. Direct optimization will be calculated using the CFD method of each variation of the clearance propeller configuration indicating that the amount of propulsion efficiency produced is very dependent on the clearance propeller. The most optimal propulsion efficiency occurs at a distance of 0.738 m from the steering shaft with a Dprop = 0.88, KT = 0.22, KQ = 0.028, and J = 0.40 besides having an advance velocity visualized with a Va = 10.6 knots which has a 50% propulsion efficiency, which the value will decrease according to the reduction in distance propeller. The less efficiency of the propulsion produced in the clearance propeller between -0.162 - 0.438 m from the steering shaft. This is because the slope angle between the entry of water and the longitudinal axis of the ship's hull on the stern exceeds the required conditions.
Keywords
Full Text:
PDFReferences
U. D. Kemenristek, Seri Desain Kapal Trdisional Pantai Utara Jawa, Jakarta: Kemenristek, 2014.
I. Dwitara, "Analisa Aliran dan Tekanan pada Perubahan Bentuk Skeg Kapal Tongkang dengan Pendekatan CFD," JURNAL TEKNIK POMITS, p. 2, 2013.
M. Ridwan and S. , "Parameter Desain Propeller Kapal," Teknik Perkapalan Undip, p. 2, 2008.
I. M. Ariana, Tahanan dan Propulsi Kapal, Surabaya: Jurusan Teknik Sistem Perkapalan-ITS, 2009.
S. A. Harvald, Tahanan dan Propulsi Kapal, Surabaya: Airlangga University Press, 1992.
A. Sahid and N. Siswantoro, Desain II Propeller dan Sistem Perporosan, Surabaya, 2017.
Y. Hidayat, B. T. Musriyadi and A. , Analisa Aliran Fluida Terhadap Penambahan Pre-Swirl Pada Lambung Kapal dengan Menggunakan CFD, Surabaya: Teknik Sistem Perkapalan-ITS, 2018.
M. Suranto and I. S. Arief, "Surface Cavitation Analys on The Propeller Wageningen Blades Series C4-40 Using CFD," Int. J. of Marine Engineering Innovation and Research, p. 2, 2018.
S. W. Adji, Engine Propeller Matching, 2005.
Y. N. Win, Computation of the Propeller-Hull and Propeller-Hull-Rudder Interaction Using Simple Body-Force Distribution Model, Osaka: Graduate School of Engineering, Osaka University, 2014.
M. Manna and R. Bontempo, "Actuator disc methods for open propellers : assessments of numerical methods," Informa UK Limited, trading as Taylor & Francis, p. 7, 2017.
B. Roy, "Introduction to Aerospace Propulsion," Department of Aerospace Enggineering, IIT Bombay, Bombay.
K. B. Korkmaz, CFD Predictions of Resistance and Propulsion for the JAPAN Bulk Carrier (JBC) with and without an Energy Saving Device, Gothenburg, Sweden: Department of Shipping and Marine Technology, Chalmers University Technology, 2015.
N. O. D. Platform, Theory of Actuator Disk Propeller, FINE™/Marine 7.1 © NUMECA International.
A. Santoso and B. P. Pratama, Redesain Amphibious Rescue Boat Kasrat X-1 Sebagai Langkah Optimalisasi Hull Resistance dan Daya Engine, Surabaya: Jurusan Teknik Sistem Perkapalan-ITS, 2018.
E. Jadmiko, L. Arif and I. S. Arief, "Comparison of Stern Wedge and Stern Flap on Fast Monohull Vessel Resistance," International Journal of Marine Engineering Innovation and Research, p. 43, 2018.
A. H. Muhammad, H. Hasan and Jusman, "Desain Kriteria Propeller Clearance Kapal Tradisonal Tipe Pinisi," Jurnal JPE, vol. 20, p. 4, 2016.
DOI: http://dx.doi.org/10.12962/j25481479.v6i1.4747
Refbacks
- There are currently no refbacks.
| |||
|
|
|
|
P-ISSN: 2541-5972
E-ISSN: 2548-1479
IJMEIR journal published by Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya Indonesia under licenced Creative Commons Attribution-ShareAlike 4.0 International Licence. Based on https://iptek.its.ac.id/index.php/ijmeir/