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ABSTRACT 
The process of deploying and towing the survey equipment for 

several marine survey activities is essential since it visualises the 

seabed and improves data accuracy. Since the equipment is 

deployed to an underwater level, the risk arises with the 

deployment. These risks include potential contact with submerged 

objects and the seabed, which can result in the loss of equipment 

and have detrimental environmental consequences. This study 

aims to analyse the risk-associated factors related to the loss of 

survey equipment using Fault Tree Analysis (FTA) and Bayesian 

Network (BN). The constructed FTA was converted into BN to find 

the relationship between Basic events and simulate the probability 

of updating Basic events. The sensitivity analysis results of the BN 

model indicate that "Procedure Failure" is the Basic contributor 

to the loss of survey equipment. The findings from this study will 

have practical implications for stakeholders, enabling them to 

enhance the safety of marine survey activities, particularly by 

mitigating the occurrence of equipment loss during operational 

procedures. 
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1. INTRODUCTION 
 

Marine survey activities are one of the crucial prerequisites 

for several ocean-related activities, such as cable routing, 

cable maintenance, dredging, and environmental baseline 

assessment. The emerging demand for marine survey and 

research activities underwater requires equipment to be 

deployed under the water level to a certain depth to obtain 

better quality and accuracy of the data. The deployment risk 

occurs since the equipment has been put at an underwater 

level. These risks could involve encountering underwater 

items or the seabed, leading to equipment loss and adverse 

environmental effects. Therefore, the appropriate risk 

assessment for marine survey operations should have been 

conducted. To date, two studies related to safety assessment 

have been found in marine survey operations. Several 

authors used FTA (Fault Tree Analysis) to investigate and 

analyse the most critical risks of seismic survey operations 

[1] and utilise FTA to improve the Safety of Marine Cable 

Survey Operations [2].  

Despite its advantage in mapping various system failure 

scenarios, FTA also has drawbacks, such as the inability to 

express a connection between Basic events. Various studies 

have successfully integrated the FTA with more advanced 

methods, such as the Bayesian Network (BN), to improve 

the quality of the FTA. FTA is a static instrument due to its 

inability to update probability states. Moreover, BN is weak 

in determining how failure causes unwanted events [3]. For 

more accurate results, FTA has been integrated into the BN 

to overcome the limitations of each model [4]. Historical 

data and expert knowledge are essential tools of FTA that 

can be integrated into BN to improve its performance and 

simplify the modelling process [5]. Therefore, mapping 

FTA into a BN is a practical approach that minimises the 

complexity of the failure probability model and overcomes 

each weakness [6]. 

The study that combines FTA and BN is widely used for 

maritime risk analysis. For example, the study by[7] focused 

on FTA and BN methodology on collision in open sea 

accidents based on organisational and regulatory conditions. 

BN is also used to help incorporate multi-status variables 

often encountered in safety analysis that FTA cannot 

consider [4]. Another example of integrating FTA to BN in 

the maritime sector is a risk analysis of ship accidents by 

integrating BN with FTA methodology [8]. Moreover, [9] 

combines FTA and BN, where FTA is used for a 

comprehensive accident risk identification analysis. BN is 

used for predictive analysis from cause to consequence and 

the risk of tripping accidents on power transmission lines.  

Since the quantity of studies that focus on risk analysis 

in marine survey operations is considered infrequent, this 

study aims to analyze the risk-associated factors related to 

the loss of survey equipment using FTA and BN to find risk 

mitigation strategies, which help to reduce the probability of 

equipment loss on marine survey activities.   

http://iptek.its.ac.id/index.php/ijoce/index
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2. METHODOLOGY 
 

2.1 Fault Tree Analysis 
The fault tree analysis methodology is based on identifying 

failures or top events to be assessed. The Fault tree diagram 

is constructed top-down, from the top event to each cause 

until Basic events are obtained [10],[11]. The step for 

constructing the fault tree can be started by assuming that 

the failure or top event has already happened and then 

determining the possible factors or causes which could 

contribute to top event occurrence [12]. 

In the Fault Tree Diagram, some gates represent how the 

failure of Basic events is related within the system or how 

the failure of Basic events mixes to make the system fail 

[13]. Fault Tree Analysis diagram is designed using 'AND' 

or 'OR' gates. The 'AND' gate is used to relate the 

simultaneous failure causes of an event, while the 'OR' gate 

is used if the failure causes of an event occur directly. Figure 

1 shows the example of the Fault Tree Diagram and its 

information. 

 

 
Figure 1. Example of Fault Tree Diagram 

 

In maritime industries, FTA plays a vital role in 

understanding accident factors. Other research, such as risk 

analysis of maritime accidents in an estuary: a case study of 

Shenzhen Waters, has also used FTA in its methodology [8]. 

The analysis used FTA to estimate the probability based on 

accident statistics and ship traffic flow. In other ship 

accident research, fault tree analysis (FTA) was applied to 

create a risk hierarchy that defines the level of relationship 

among factors [14]. In collision analysis, fault tree analysis 

(FTA) was utilised to determine critical events and their 

logical structure [13]. In gas process facilities, the FTA was 

used to assess the failure [4]. FTA has also been used in 

marine survey operations to analyse the cause of survey 

equipment failure [2]. 

 

 

 

 

 

 

2.2 Bayesian Network 
The Bayesian Network is a powerful method to analyse 

causal factors of maritime accidents. Several authors [15]–

[18] have used BN to analyse several accident types' causal 

factors by data-driven influenced BN. Moreover, BN also 

used for studying maritime collision [19]–[21], piracy [22], 

and sinking accidents [23],[24]. 

A Bayesian network, also known as a causal model, is a 

graphical model that depicts the conditional independence 

of a set of random variables [25]. To connect the relationship 

between variables (nodes), the Bayesian network approach 

uses a Directed Acyclic Graph (DAG) model. For example, 

if an arrow connects nodes A and B, this might be 

understood as A causing B to occur [26]. The nodes are 

made up of states that express the nodes' current state. 

Furthermore, Bayesian networks take a qualitative and 

quantitative approach to problems. The Bayesian Network 

represents the qualitative method, a causal relationship 

between nodes. On the other hand, the quantitative approach 

is expressed in the numerical values of conditional 

probability tables at each node [27]–[29]. 

The input of conditional probability is pivotal in BN's 

analysis. For example, parent node A has child node B 

connected by the DAG. Since event A has been known, the 

probability of event B with the knowledge of event A can be 

calculated by: P(B|A) = x. On the other hand, when event B 

is known, the likelihood of event A can be determined by: 

 

𝑃(𝐵) =
𝑃(𝐴𝑖)𝑃(𝐵|𝐴𝑖)

𝑃(𝐵)
, 𝑖 = 1,2,3, … . , 𝑘 

(1) 

 

𝑃(𝐵) = 𝑃(𝐴1)𝑃(𝐴1) + ⋯+ 𝑃(𝐴𝑘)𝑃(𝐴𝑘) (2) 

 

Where P(B|Ai) is the conditional probability of B when 

Ai is already known, P(Ai) is the prior probability of the 

hypothesis, P(Ai|B) is the posterior probability, and P(B) is 

the probability of B without dependency from A or the 

marginal probability. 

 

2.3 Mapping FT into Bayesian Network 
Some techniques should be used to convert Fault Tree (FT) 

into BN. This analysis will convert the FT Diagram to BN 

using techniques from [4],[10]. The graphical mapping from 

the Fault Tree, consisting of Basic Events (Basic Events), 

Intermediate Events, and Top Events, will be converted to 

Root Nodes, Intermediate Nodes, and Leaf Nodes, 

respectively, in BN. The numerical mapping, which consists 

of Event Occurrence Probability and Boolean Gates in the 

Fault Tree, will be converted into Prior Probability of Root 

Nodes and Conditional Probability Tables (CPT) in BN. 

Figure 2 illustrates an example of converting the FT 

Diagram to BN. 
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Figure 2. Example of conversion from Fault Tree Diagram 

to Bayesian Network 

3. RESULTS 

3.1 Table Format and Arrangement  
In This Analysis, FTA was developed in the previous 

analysis [2], as shown in Figure 3. In Figure 3, the Basic 

events represented as a circle illustrate the root cause of the 

“Survey Equipment Loss” top event. The rectangle shape 

illustrates the intermediate event from a Basic event to 

another intermediate event or directly to the top event. The 

gap between the Basic event and intermediate event, 

intermediate to intermediate event, or intermediate event to 

top event is connected by an 'OR' gate, representing a 

triangle and half oval shape between them.

 

 
 

Figure 3. Fault Tree Diagram of Survey Equipment Loss 

 

From the provided Fault Tree Diagram, as depicted in 

Figure 3, four categories contributing to Survey Equipment 

Loss top event have been obtained, including Human Factor, 

Contact with Uncharted Object, Machine and Material 

Failure, and Procedure Failure. From those categories, 

twelve Basic events are obtained. According to Table 1, 

which shows the probability of each Basic event, the highest 

contributor of the Basic event causing top event failure is 

achieved by Towfish Contact with FAD (X4), No Procedure 

of Towfish Operation (X9), and Seabed and Towfish 

distance standard (X10) with the same value of 2.5E-2. 

By using the OR gate, the probability of an Intermediate 

Event is calculated by a summation. For instance, the 

probability of a "Human Error” Intermediate Event is 

determined by the sum Basic event of “Bad Communication 

Causing Human Error” (X1) and the Basic event of “Fatigue 

Personnel Causing Human Error” (X2). By sum 0.0084 and 

0.0084, the probability of Human Error is obtained at 

0.0168. The Basic Events X1 and X2 are converted into 

Root Nodes in BN, while the Intermediate Event of “Human  

Error is transformed into Intermediate Nodes in BN. Figure 

4 provides an example of a converted fault tree diagram of 

Human Factors from Survey Equipment Loss. 

 

Table 1. Probability of Survey Equipment Loss Basic Event 
Basic Event 

 

Occurr

ence 

Frequency of 

occurrence 

(118 days) 

Bad Communication Causing Human 

Error (X1) 

1 8.4E-3 

Fatigue of Personnel Causing Human 

Error (X2) 

1 8.4E-3 

Towfish Contact with Seabed (X3) 1 8.4E-3 

Towfish Contact with FAD (X4) 3 2.5E-2 

Towfish Contact with Fishing Net (X5) 1 8.4E-3 

Wire Entanglement (X6) 1 8.4E-3 

Wear and Tear of Wire (X7) 1 8.4E-3 

Winch Motor Failure (X8) 2 1.7E-2 

No Procedure of Towfish Operation (X9) 3 2.5E-2 

Seabed and Towfish distance standard 

(X10) 

3 2.5E-2 

No Personnel qualification standard 

(X11) 

2 1.7E-2 

No working hours standard (X12) 2 1.7E-2 
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Figure 4. Example of Fault Tree Diagram to Bayesian 

Network from Human Factor 

 

3.2 Bayesian Network Modelling 
Figure 5 shows the BN model converted from FTA. The top 

event, "Survey Equipment Loss," is transformed into the 

target nodes, while Intermediate events such as "Human 

Error,” “Contact with Uncharted Object,” ”Machine 

Failure,” and "Procedure Failure Nodes" are converted into 

the Intermediate Nodes. Nine basic events are modified into 

the root nodes. The prior probability of the root nodes is 

obtained from the probability of occurrence from the FTA.  

 

Figure 5. The Bayesian Network of Survey Equipment Loss 

on Marine Survey Activities 

Figure 5 shows the BN model converted from FTA. The 

top event, "Survey Equipment Loss,” is transformed into the 

target nodes, while Intermediate events such as "Human 

Error,” “Contact with Uncharted Object,” ”Machine 

Failure,” and "Procedure Failure Nodes" are converted into 

the Intermediate Nodes. Nine basic events are modified into 

the root nodes. The prior probability of the root nodes is 

obtained from the probability of occurrence from the FTA.  

The model was created using NETICA software, and 

each node has two states, “Yes” and “No,” to determine the 

status of respective nodes. The “Yes” state means the event's 

occurrence, while the “No” state represents the non-

occurrence condition. One of the most critical inputs for the 

BN is the CPT for the child nodes. The CPTs are obtained 

from the logic gates suggested by [10]. For most cases, the 

CPT value from the logic gates will be amended by 

incorporating expert judgment since there is a possibility 

that the "No" states will occur. 

 

Table 2. The Conditional Probability of “Procedure Failure” 

Node 
No Survey 

Procedure 

Yes No 

No 

Personnel 

Procedure 

Yes No Yes No 

Procedure 

Failure 

Yes No Yes No Yes No Yes No 

Probability 1 1 1 1 1 1 1 0 

 

Table 2 states the CPT value from the intermediate nodes 

"Procedure Failure", which consists of two root nodes, “No 

Survey Procedure” and “No Personnel Procedure.” 

According to the FTA, the logical gates of the Basic and 

intermediate events are OR. Therefore, the event "Procedure 

Failure" will occur whenever one of the Basic events 

happens (the "Yes" condition occurs). Since the expert 

opinion is unavailable to amend the CPT, the CPT value 

remains. 
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3.3 Results of the Bayesian Network 

 

 
Figure 6. The posterior probability of the BN model 

 

Figure 6 shows the results of the Posterior Probability of the 

accident Survey Equipment Loss for marine survey 

operation. The probability of target node "Survey 

Equipment Loss" is 0.0164 after incorporating the CPT for 

every possible node. Regarding intermediate nodes, the 

“Procedure Failure” is the highest probability contributor 

with 0.0082 compared to the other three. From the accident 

case, it was found that there is no legitimate procedure for 

operating and deploying the equipment for survey 

operations, such as the distance between the seabed and 

equipment and the procedure for towing, deploying, and 

lifting the survey equipment. From the BN, it also can be 

stated that human error has the minimum effect on the 

survey equipment loss since most of the personnel that 

operate the equipment have been certified and trained. 

 

3.3.1 Model Validation 

Model validation aims to verify whether the network 

satisfies real-world conditions [30]. In this study, [5],[31], 

and [32] conducted the three-axiom model validation. 

● A specific change in the prior probabilities of each 

parent node should result in variance in the child 

node's posterior probabilities. 

● The effect of specific changes in the parent node's 

prior probability on the child node should be 

consistent. 

● If both a and b affect a child node, the probability 

influence if a and b happen always be greater than 

the influence level of each node [33]  

 

Since the OR gate rules are applied for axiom three if the 

"Yes" states occur on one node, the probability of the target 

nodes should be 100%; therefore, axiom three is not 

applicable in this study. 

 

 
Figure 7. The Probability of Survey Equipment Loss with 

the variance of the prior probability of its parent nodes 

 

Figure 7 shows the validation results of the change in the 

posterior probability of the target nodes "Survey Equipment 

Loss" due to the increasing number of the prior probabilities 

of the Intermediate nodes. The posterior probability of the 

target node as a child node increases consistently with the 

higher number of prior probabilities from the intermediate 

nodes. Consequently, the model fulfils the requirement for 

axiom two. 

Table 3 shows the validation test for the four nodes from 

the intermediate level that were analysed. When the 

probabilities from each intermediate node were increased 

from 10% to 20%, the probability of intermediate nodes 

"Human Error,” “Contact with Uncharted Object,” 

“Machine Failure,” and “Procedure Failure” increased to 

32%, 30.2%, 30.8%, and 27.1%, respectively. Therefore, the 

BN model satisfies the axiom. 
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Table 3. The increased probability of Survey Equipment 

Loss from various Intermediate nodes. 

 Probability of Survey 

Equipment Loss 

Intermediate Node 

Probability 

10% 20% 

Human Error 23.5% 32% 

Contact with 

Uncharted Object 

21.5% 30.2 

Machine Failure 22.1% 30.8% 

Procedure Failure 18% 27.1% 

 

 

3.3.2 Probability Updating 

 
Figure 8. The Comparison Between Prior and Posterior 

Probability of Basic Events 

 

The probability updating introduces the backward inference 

from the target nodes into the Basic events. The purpose is 

to analyse which nodes have a more significant influence 

when the evidence node happens. The Survey Equipment 

Loss was settled, as evidenced in this probability updating 

calculation. Prior probability is obtained from the FTA, 

while posterior probability is the probability after the target 

nodes are set as evidence nodes. Figure 8 depicts the 

difference between the prior and posterior probability of the 

Basic events. The posterior probability is considered much 

greater than the priors on every Basic event. The essential 

event of "No Survey Procedure" is the Basic factor 

influencing the Survey Equipment with the probability of 

0.305. 

 

 

 

 

 

 

 

3.3.3 Sensitivity Analysis 

A sensitivity analysis was performed in this study to test the 

model and identify how each factor is sensitive to the 

fluctuation of the other factors. The analysis was conducted 

on the target node “Survey Equipment Loss” by NETICA 

software. The sensitivity analysis results shown in Table 4 

reveal that it is similar to probability updating and model 

validation. The “Procedure Failure” with 0.245 mutual 

information is the most sensitive node to the accident of 

“Survey Equipment Loss” followed by “No Survey 

Procedure” (0.149) and “Contact with Uncharted Object” 

(0.116). 

 

Table 4. Sensitivity analysis of the “Survey Equipment 

Loss” node 
Nodes Mutual 

Information 

Percent 

Survey Equipment Loss 0.64349 100 

Procedure Failure 0.24504 38.1 

No Survey Procedure 0.14097 21.9 

Contact with Uncharted 

Object 

0.11599 18 

Contact with Buoyant 

Object 

0.0922 14.3 

No Personnel Procedure 0.0922 14.3 

Machine Failure 0.09175 14.3 

Motor Failure 0.04547 7.07 

Human Error 0.04473 6.95 

Wear and Tear of 

Towing 

0.02218 3.45 

Wire Entanglement 0.02218 3.45 

Contact with Seabed 0.02218 3.45 

Fatigue of Personnel 0.02218 3.45 

Bad Communication 0.02218 3.45 

 

3.3.4 Reducing the Probability of Top Event 

Prevention and mitigation measures are crucial for 

eliminating or reducing the probability of the top event, 

"Survey Equipment Loss," occurring. This study provides 

several options that will be useful for marine survey 

companies, Institutions, and Authorities to arrange and plan 

the risk control option. The analysis was conducted by 

altering the prior probabilities to zero, assuming nodes on 

the non-occurrence condition. The first option is to provide 

a legitimate procedure for survey operation and personnel 

working hour procedure and improve navigational quality of 

mapping the survey area for any uncharted objects. These 

options were assumed based on the three highest values of 

the sensitivity analysis. The second option is to provide the 

procedure without improving navigational clearance. The 

third is eliminating human and machine errors that can 

influence the accident to occur. 

 

http://iptek.its.ac.id/index.php/ijoce/index


Waskito, D., et al.:Risk Analysis of Equipment…Tree to Bayesian Network 

 

 
50 

 
Figure 9. The Posterior Probability of Several Prevention 

Options 

 

Figure 9 shows the posterior probability of the “Survey 

Equipment Loss” after applying the prevention options. 

Option one is the most successful method, reducing the 

accident probability by 11.44%. In contrast, option three, 

which involves increasing human error and conducting 

maintenance of the machine and equipment failure, is the 

least effective technique, only reducing the probability by 

5%. 

 

4. DISCUSSION 
 

This study shows that the integration process from FTA to 

the Bayesian Network can be done if the data is sufficient. 

The FTA data is already in the form of an 'AND’ Gate or 

‘OR’ Gate with flow levels according to qualitative analysis 

complemented by the frequency of occurrence data that 

shows probabilities estimation based on quantitative 

analysis. Both have been done in previous papers [2], so the 

FT structure's events were translated into the BN structure's 

nodes, and conditional probabilities in the BN were 

constructed via logical gates in the FT structure. Following 

previous research conducted by [4],[5],[7], which proves 

that FTA can be developed into a BN if it has sufficient data, 

The BN and FTA results are slightly different based on 

the work done. The difference comes from calculating new 

probabilities derived from model validation and probability 

updates based on sensitivity analysis. An adjustment process 

with the development of data and information is carried out 

to convert FT into BN, where the number of Basic events is 

reduced as a probability consideration. This consideration 

resulted in four intermediate nodes and nine root nodes. In 

general, the model satisfies both validation methods using 

axioms. Furthermore, the results show that all posterior 

probabilities of Basic events (probability after BN) are 

higher than those of FTA. This process is one of the 

advantages of the BN method, which can determine the 

probability of Basic events if the top event occurs. 

Contrary to the FTA of survey equipment lost, the BN 

indicate that the human error factor was the node with the 

smallest value. By examining the root nodes, it can be seen 

that bad communication and fatigue from personnel have 

minimal effect. Therefore, the factors of equipment loss due 

to fatigue and poor communication can be ignored in the 

mitigation and prevention processes. However, it should be 

underlined that the case of human factors having no effect 

only occurs in cases where all personnel are professional and 

well-trained. 

The findings of this paper may differ from those of other 

studies due to the need for more data variation. This study is 

based on a case at the Baruna Jaya Research Vessel. 

Therefore, what happens in other organisations or ships may 

differ based on historical data and the root cause of the 

failure. If the additional data can be obtained from another 

Institution or Survey company, the results will be more 

general and can be applied to similar marine survey 

activities. Despite that, the nature of this study only provides 

an overview and steps for applying Bayesian networks to 

marine survey activities to improve their safety. 

 

5. CONCLUSIONS 
 

Accidents and losses in marine surveying activities range 

from Man Overboard, damaged survey equipment, lost 

survey equipment, fire, and even fatality. In this study, a 

previous study that used FSA (Formal Safety Assessment), 

with the help of FTA, in a risk assessment with a Bayesian 

network has been developed. Based on the previous study, 

this study will focus on the most frequent top event, the Loss 

of Survey Equipment. The previously made FTA was then 

integrated into a BN so that four intermediate nodes and nine 

root nodes were found. BN was created with the help of the 

NETICA application. The additional input given to the child 

nodes is CPT. The CPT value still refers to the previous FTA 

because the expert opinion is unavailable. The posterior 

probability result of the BN model for Survey equipment 

loss is 0.0164. This BN model was validated and found to 

fulfil axioms two and one. The probability is then updated 

by backward inference, so it is found that "No Survey 

Procedure" is the Basic factor that influences the survey 

equipment, with a probability of 0.305. The final stage is to 

analyse the model's sensitivity to identify how each factor is 

sensitive to the fluctuation of the other factors. The results 

of sensitivity analysis reveal that similar to probability 

updating and model validation, the "Procedure Failure" with 

0.245 mutual information is the most sensitive node to the 

accident of "Survey Equipment Loss" followed by "No 

Survey Procedure" (0.149), and "Contact with Uncharted 

Object” (0.116). The top contributor to accidents is different 

from the FTA analysis from the previous study. In addition 

to the analysis, the technique to reduce the probability of the 

top event is suggested. According to the sensitivity analysis, 

the best solution is to provide a legitimate procedure for 

survey operation and personnel working hour procedure and 

improve the navigational quality of mapping the survey area 

for any uncharted objects. This method is expected to reduce 

the probability of accidents by 11.44%. 
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