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ABSTRACT ⎯ Air pollution in the DKI Jakarta Province is a serious issue as it is related to public health and environmental 

concerns. Therefore, this research aims to analyze the causality of PM2.5 concentration with meteorological factors such as air 

temperature, humidity, rainfall, and wind speed. The data source used is from the MERRA-2 satellite, which provides information 

at a spatial resolution of 0.5° × 0.625°. The data covers the period from January 1, 1980, to November 1, 2023, with hourly time intervals. 

The research variables involve PM2.5 concentration as the response variable, as well as predictor variables such as air temperature, 

humidity, rainfall, and wind speed. The analytical method employed is the Vector Autoregressive (VAR) approach, as all variables 

are stationary at the level.  The constructed VAR model tends to indicate that meteorological variables have a low explanatory power 

for PM2.5 concentration, while changes in PM2.5 concentration itself have sustained impacts in both the short and long term. This 

suggests that the fluctuations in PM2.5 concentration in DKI Jakarta Province are not significantly influenced by meteorological 

factors. 
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I. INTRODUCTION 

Air pollution, according to Government Regulation No. 41 of 1999, refers to substances, energy, and/or other 

components that enter or are introduced into the ambient air due to human activities, resulting in a deterioration of 

ambient air quality and the impairment of its functions [1]. There are many types of air pollutants that are of concern 

according to the WHO, including Particulate Matter (PM), carbon monoxide, nitrogen dioxide, ozone, and sulfur dioxide 
[2]–[4]. Air pollution can lead to allergies, diseases, and even loss of life in humans. Furthermore, air pollution can result 

in the deterioration of other living organisms, namely the degradation of habitats for animals and plants. Environmental 

damage and degradation can also occur, such as acid rain, climate change, and ozone layer depletion. Therefore, air 
quality is one of the serious issues that needs attention as it is a crucial factor for human health and environmental 

sustainability. 

PM2.5 is a type of small particle that can be inhaled and can have negative impacts on human health due to its very 
small size, allowing it to penetrate deeper into the respiratory system. The components of PM2.5 consist of elements such 

as Al, As, Br, Ca, Cl, Cr, Fr, K, Mg, Mn, Na, Pb, Ti, Zn, sulfate ions, nitrate ions, and ammonium ions [5]. PM2.5 can 

originate from natural factors such as sandstorms, forest fires, airborne dust, as well as anthropogenic sources like home 
cooking activities and smoking [6]. There are several factors that influence PM2.5 pollution, such as vehicle emissions, 

fuel usage, dust, and meteorological factors like relative humidity, surface pressure, wind speed, and air temperature[6]. 

PM2.5 causes various detrimental health problems such as asthma, respiratory inflammation, decreased lung function, 
and cancer [5].  

From 2001 to 2019, there was an increase in the annual average concentration of PM2.5 in DKI Jakarta [7]. A research 

on the impact of air pollution in Jakarta, Indonesia, found that more than 10.5 million people in Jakarta are at significant 
risk due to air pollution [8]. According to air quality index monitoring data from IQAir, air pollution is predicted to cause 

13,000 deaths in Jakarta during 2023 and result in approximately US$3.4 billion in losses in Jakarta during the same period 

[9]. This amount is equivalent to IDR 51.95 trillion (US$1 = Rp 15,280). Air pollution is a significant factor that causes 
diseases and deaths, including cancer, heart disease, and lung disease. 

Respiratory effects can be caused by PM2.5. Research indicates that long-term exposure to PM2.5 can increase the risk 

of respiratory disease-related mortality, such as asthma, respiratory inflammation, and decreased lung function [10], [11]. 

PM2.5 also induces cardiovascular effects, such as an increased risk of heart attacks, heart rhythm disturbances, and 
coronary heart disease [12], [13]. Exposure to PM2.5 has also been linked to various other health impacts, including an 

increased risk of diabetes, decreased lung function, and an elevated risk of lung cancer [10], [14]. Therefore, the risk of 

premature death will increase due to exposure to PM2.5, especially for children, the elderly, and individuals with heart 
or lung diseases. 

Therefore, controlling PM2.5 exposure is crucial to protect public health. Solutions to address air pollution in Jakarta 

involve emission control. Measures taken to reduce pollutant concentrations in the air and reduce emissions from 
pollution sources include controlling the number of motor vehicles and actively monitoring industrial activities. 

Additionally, efforts to improve public transportation by promoting its use and reducing private vehicle usage can 

contribute to reducing exhaust emissions. Another solution that can be implemented is increasing urban greenery. Urban 
greening and tree planting can help absorb pollutants from the air and improve air quality. 
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This research utilizes several meteorological variables, namely temperature, humidity, rainfall, and wind speed, to 

analyze the meteorological impacts on PM2.5 concentration in DKI Jakarta. Through this research, an analysis of air 
quality changes can also be conducted. The sensitivity of PM2.5 concentration to meteorological variables needs to be 

understood as a consideration in developing emission control strategies. It is essential for policymakers to comprehend 

the influence of meteorological condition changes on the effectiveness of emission control strategy plans in achieving air 
quality control objectives. 

Research related to the relationship between meteorological variables and PM2.5 concentration has been conducted 

several times. A research that analyzed the influence of meteorological variables on PM2.5 concentration was once 
conducted in Jakarta using the Convergent Cross Mapping (CCM) method [15]. The results of the research indicate that 

meteorological variables influence local PM2.5 concentrations in the Jakarta area, but their effects vary across different 

seasons. Research in China shows that the relationship between meteorological variables and PM2.5 concentration 
exhibits spatial and seasonal variations [16]. Another research in China yielded results indicating that the influence of 

meteorological variables on PM2.5 concentration exhibits significant seasonal and regional variations [17]. In other 

words, changes in meteorological conditions have varying effects on PM2.5 concentrations in different regions. Several 
studies have also concluded that meteorological variables and climate or weather changes can influence PM2.5 

concentrations [18], [19]. 

Vector Autoregressive (VAR) is a statistical model in time series analysis used to model the relationships between two 
or more variables that influence each other over time. This model is an extension of univariate autoregression (AR) 

models. In the VAR model, all variables are treated symmetrically as endogenous variables or variables whose values 

are determined by the model. To avoid simultaneous bias problems, each endogenous variable is a function of lagged 
values of all endogenous variables. PM2.5 concentration in a region is influenced by temperature, humidity, rainfall, and 

wind speed, making it suitable for the formulation of a VAR model.  

The use of VAR method has been employed in several studies. A research conducted in Bangladesh mentioned that the 
VAR model used was stable and normal in analyzing the causality of six exogenous variables [20]. The results of the 

research explain that the VAR model can elucidate the influence of dependent variables on independent variables, 

Granger Causality can demonstrate bidirectional causality, and Impulse Response Functions (IRF) can provide an 
overview of the explanatory power of each independent variable. The utilization of the VAR method, which includes 

Granger Causality and IRF, has also been conducted in research in China to understand the relationships between PM2.5, 

PM10, SO2, CO, and NO2 [21]. The research demonstrates that Granger Causality can elucidate cause-and-effect 
relationships, and the results of Impulse Response Functions (IRF) can indicate short-term relationships between 

variables. 

Regarding the air pollution issue in Jakarta, this research is conducted with the aim of (1) providing a general overview 
of PM2.5 and meteorological variables such as temperature, humidity, rainfall, and wind speed, and (2) analyzing the 

influence of meteorological variables including air temperature, humidity, rainfall, and wind speed on PM2.5 

concentration. These values are expected to be used as considerations in determining policies for prevention and 

mitigation of the negative impacts of PM2.5 concentration.  
 

II. LITERATURE REVIEW 
A. The Influence of Temperature on PM2.5 

Temperature has a positive correlation with PM concentration. Temperature is linked to solar radiation, and as solar 

radiation increases, the temperature also rises. This can lead to the vertical lifting of air masses, causing the ascent of 
water vapor and air pollutants, including particulate matter, present within it into the atmosphere [22]. Research in Delhi 

indicates an exponential increase in PM2.5 concentration with decreasing temperature. The research also reveals a 

negative correlation between temperature and PM2.5 concentration, which is attributed to several factors such as motor 
vehicles and factories [23]. Furthermore, a research in China identified temperature as the dominant influencing factor 

in monitoring PM2.5 concentrations [24].  
 

B. The Influence of Humidity on PM2.5 

Humidity has a significant influence on PM2.5 concentration. A research in Delhi found a strong negative correlation 

between PM2.5 concentration and air temperature under high humidity conditions, specifically when the relative 

humidity is above 50%. Furthermore, it was also found that PM2.5 concentration correlates positively with humidity [23]. 
Another research found that humidification is a method that can accelerate the rate of PM2.5 deposition [25]. As particle 

size increases and pollutant concentrations rise, the influence of humidity on PM2.5 concentration becomes more 

significant. Furthermore, the research indicates that increased humidity leads to the agglomeration of fine PM, forming 
larger PM particles. Humidification is beneficial in preventing PM from entering the human respiratory system, thereby 

reducing the impact of PM on the human body. 
 

C. The Influence of Rainfall on PM2.5 

Rainfall factor influences the concentration of PM2.5. A research found that rainfall has a significant effect in reducing 

PM2.5 concentrations in several regions in China [14]. This research indicates that the reduction effect on PM2.5 

concentration by rainfall varies depending on the intensity of rainfall and the previous air pollution levels. Another 
research found that PM2.5 concentrations tend to decrease after rainfall occurs. This research also demonstrates that the 

average PM2.5 concentration decreases by 20.99% one hour after rainfall compared to pre-rainfall conditions [26]. A 

research in China elucidates that various types of rainfall have an impact on the concentration of PM2.5 [14], [27]. 
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D. The Influence of Wind Speed on PM2.5 

A research found that wind speed has an influence on the concentration of PM2.5 in Hong Kong [28]. Winds from the 

north during the winter increase the concentration of PM2.5, while winds from the south during the summer reduce the 

concentration of PM2.5. Another research found a negative correlation between wind speed and PM2.5 concentration. 
This research indicates that PM2.5 concentration tends to decrease with an increase in wind speed [29]. Furthermore, a 

research also found the influence of wind speed on PM2.5 concentration in Delhi. This research indicates a negative 

correlation between PM2.5 concentration and wind speed, where PM2.5 concentration tends to decrease with increasing 
wind speed [23]. 

 

III. METHODOLOGY 
This research is conducted with the objective of examining the impact of meteorological variables, including air 

temperature, surface humidity, precipitation, and wind speed, on the concentration of PM2.5 in DKI Jakarta Province. 

The research process, spanning from the data collection to VAR model estimation and analysis, is delineated in the 

flowchart shown in the Figure 1. 

 

 

 
 

Figure 1 Flowchart of methodology 
 

 
A. Study Area 

DKI Jakarta Province is located between 6°12' South Latitude and 106°48' East Longitude. This province is a low-lying 

area with land area of 662.33 km2 and average elevation of 7 meters above sea level. Based on its geographical position, 

the province is bordered by West Java Province from south to the east and shares boundaries with Banten Province to 

the west. On the northern side, DKI Jakarta extends along the coast from west to the east for a length of 35 km, serving 

as the estuary for 9 rivers and 2 canals [30].  
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(a) 

 
(b) 

Figure 2 (a) Spatial distribution of PM2.5 concentrations in Indonesia and (b) area averaged of PM2.5 concentrations in DKI Jakarta Province during 
the period of 2021-2023 

 

According to Figure 2a, it is evident that the northern regions of Java Island, particularly in the DKI Jakarta Province 

and its vicinity, display elevated concentrations of PM2.5 in comparison to other geographical areas. Satellite data derived 

from the Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) further indicates that the average 

aggregate PM2.5 concentration in the DKI Jakarta Province over the past three years amounts to 23.9074 µgram/m3, 

surpassing the designated threshold for favorable conditions (0 – 15 µgram/m3) as shown in Figure 2b. Consequently, 

this research is specifically oriented towards the DKI Jakarta Province, encompassing East Jakarta, North Jakarta, South 

Jakarta, Central Jakarta, and West Jakarta. 

 
B. Data and Variables 

This research utilizes meteorological variables, including air temperature, surface humidity, precipitation, and wind 

speed, to investigate their impact on PM2.5 concentrations in the DKI Jakarta Province. The data is derived from the 

MERRA-2 satellite, covering the period from January 1, 1980, to November 1, 2023, with hourly intervals. The initial 

observation values for each variable represent aggregated averages over specific areas. Details regarding the number of 

observations and units for the variables employed in this research can be found in Table 1.  
MERRA-2 constitutes a satellite equipped with a long-term reanalysis model developed by the Global Modeling and 

Assimilation Office (GMAO) at NASA, as outlined by Gelaro et al. [31]. This satellite is instrumental in furnishing a 

spectrum of meteorological and aerosol parameters spanning from the year 1980 to the present. The MERRA-2 model 

incorporates the atmospheric model from the Goddard Earth Observing System (GEOS) and employs the Grid Point 

Statistical Interpolation (GSI) scheme. Operating at a spatial resolution of 0.5° × 0.625°, the model comprises 72 vertical 

pressure layers extending from the surface to 0.01 hPa. Furthermore, it integrates a three-dimensional variational data 

assimilation algorithm, refreshed at six-hour intervals for analysis, as detailed by Sayeed et al. [32].  
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Table 1  Research variables 

Variable Name Units Obs. 

Y PM2.5 Concentrations kg/m3 384,263 

X1 Wind speed m/s 384,263 

X2 Air temperature C 384,263 

X3 Surface humidity - 384,264 

X4 Precipitation mm/hour 384,264 

 
The data was sourced from the MERRA-2 satellite at a spatial resolution of 0.5° × 0.625°. Specifically, each satellite data 

pixel represents an area of approximately 50 km × 65 km. Considering the constraints in resolution and the geographical 

extent of the study site, the examination of PM2.5 concentrations in DKI Jakarta was conducted at the provincial level. In 

addition to the inherent low resolution, the data obtained from the MERRA-2 satellite is constrained by the absence of 

daily period data. Research conducted by Xu et al. underscores the significant day-to-day fluctuations in PM2.5 

concentrations [33]. To capture data variations more effectively, this study concentrated its analytical efforts on daily 

periods. Before conducting the analysis, a data preprocessing stage was implemented to aggregate hourly data into daily 

periods. The outcomes of the preprocessing stage reveal a total of 16,009 daily period data points for each observed 

variable. 

 
C. Stationarity Test 

A stationarity test was conducted on the aggregated daily data before employing the VAR model for analysis. 

According to Basuki & Prawoto, a time series is deemed stationary if it lacks unit roots. In this research, the Augmented 

Dickey Fuller (ADF) test was utilized to ascertain the stationarity of the data [34]. Detection of unit roots involves 

comparing the t-statistics against the Critical Value MacKinnon. A dataset is identified as stationary when the absolute 

value of t-statistics exceeds the Critical Value MacKinnon or when the significance value is less than α = 0.05 [35]. The 

equation model applied in the ADF test is explicated as follows:  
 

∆𝑌𝑡   =  𝛽1  +  𝛽2𝑡  +  𝛿𝑌𝑡−1  +  𝛼𝑖   ∑ ∆𝑌𝑡−𝑖  +  𝑒𝑡

𝑚

𝑖=1

 (1) 

𝑚 is the lag length. 

 
D. Optimum Lag Determination 

Following the application of the ADF test to assess stationarity, the identification of the optimal lag length for model 

formulation ensued. In the context of VAR modeling, the determination of both short and long spans or lags is a pivotal 

phase. A model with an excessively short lag may pose interpretability challenges, while an overly extended lag may 

result in inefficiency [34]. In this research, the selection of the optimal lag relied on three criteria: Akaike Information 

Criterion (AIC), Schwarz Information Criterion (SIC), and Hannan-Quinn Information Criterion (HQ). The mathematical 

expressions employed for computing these criteria are explicated as follows: 

 

𝐴𝐼𝐶  =   − 2 (
1

𝑇
)   +  2(𝑘 + 𝑙) 

(2) 

𝑆𝐼𝐶  =   − 2 (
1

𝑇
)   +  𝑘 (

𝑙𝑜𝑔 (𝑇) 

𝑇
) 

(3) 

c 

𝐻𝑄  =   − 2 (
1

𝑇
)   +  2𝑘  (

𝑙𝑜𝑔 (𝑇) 

𝑇
) 

(4) 

  

 𝑙 is the sum square residual, 𝑇 is the number of observations, and 𝑘 is the number of parameters.  
 
E. Granger Causality Test 

An examination of Granger causality is conducted on the observed variables before estimating parameter of the VAR 

model. The Granger causality test serves to identify the presence of causal relationships or consequential links between 

one variable and another. Essentially, this test is instrumental in determining whether a given dependent variable may 

be influenced by an independent variable, while reciprocally, the independent variable may assume the role of a 

dependent variable [36]. The equation model employed in the Granger causality test is delineated as follows: 

𝑌𝑡  =   ∑ 𝛼𝑖  𝑌𝑡−𝑖 

𝑚

𝑖=1

+   ∑ 𝛽𝑖  𝑋𝑡−𝑖

𝑚

𝑖=1

  +  𝑒𝑡 
 

(5) 

 

where 𝑚 is the lag length, 𝛼𝑖  is the coefficient of the 𝑖th lag on Y variable, and 𝛽𝑖  is the coefficient of the 𝑖th lag on X 

variable. 
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F. Vector Autoregressive (VAR) 

Christopher A. Sims originally introduced the VAR model for macroeconomic analysis in 1980 [37]. The VAR model 

constitutes a system of equations, representing all variable components as a linear function of a constant value and lags 

derived from variables within the system [38]. This research utilizes a VAR model to examine meteorological variables 

such as wind speed, air temperature, surface humidity, and rainfall, and investigate their impact with PM2.5 

concentrations within the DKI Jakarta Province. The equation model employed in the VAR framework is articulated as 

follows: 

 
𝑌𝑡   =  𝐴0 + 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2 + ⋯ + 𝐴𝑝𝑌𝑡−𝑝 + 𝑒𝑡  ,         or (6) 

 

𝑌𝑡  =  𝐴0  +   ∑ 𝐴𝑛𝑌𝑡−𝑛

𝑝

𝑛=1

  +  𝑒𝑡 
(7) 

 

where 𝐴0 is a vector of constant values or intercepts and 𝐴𝑛 is a matrix of parameter values.  

The parameters of the VAR model are deduced through the Ordinary Least Squares (OLS) method. As per Salsabila et 

al., OLS stands out as the most widely used method for VAR model estimation. OLS estimates parameters by minimizing 

the sum of squared errors within a model [39]. Additionally, Gujarati underscores the simplicity of the OLS method in 

model estimation, as it does not necessitate intricate separation with other variables [40]. In essence, OLS emerges as a 

straightforward and effective estimation approach in comparison to more intricate methods. 
 
G. Impulse Response Function (IRF) 

Following the estimation of the VAR model, an analysis of Impulse Response Functions (IRF) is undertaken to examine 

the influence of shocks on individual variables. The IRF analysis serves as a method to discern the response of an 

endogenous variable to perturbations in a specific variable. Through IRF analysis, the response to a one-standard-

deviation independent change can be systematically assessed. Beyond scrutinizing shocks, this analysis also facilitates 

the exploration of the impact of disturbances equivalent to one standard error. Such disturbances represent innovations 

in one endogenous variable and their subsequent effects on other endogenous variables within the dynamic structure of 

the VAR model [41]–[44]. 

 
H. Forecast Error Decomposition of Variance (FEDV) 

This research employs FEDV analysis in addition with IRF to assess the magnitude of the impact of shocks on individual 

variables. FEDV analysis, also known as Forecast Error Variance Decomposition, is a method utilized to dissect 

innovations in a variable concerning the constituent components of other variables within the VAR model. The 

information encapsulated in FEDV provides insights into the proportion of sequential movements induced by shocks 

[45]–[48]. Through the computation of the percentage of squared prediction errors for a variable resulting from 

innovations in other variables, the forecasting errors of said variable attributable to its own dynamics and those of other 

variables can be discerned [41]. 

 

IV. RESULTS AND DISCUSSIONS 
In order to confirm the findings of previous studies that meteorological variables, which in this case are represented by 

surface humidity, air temperature, wind speed, and precipitation, have an influence on fluctuations in PM2.5 

concentrations, especially in DKI Jakarta Province specifically, an in-depth exploration of the data used was first carried 

out. Figure 3 presents a time series graph of daily fluctuations of meteorological variables used to identify patterns, 

trends, and fluctuations in the data throughout the study period from 1980 to 2023. From Figure 3, it can be seen that the 

surface moisture level in DKI Jakarta Province from 1980 to 2023 fluctuates significantly throughout the period, with 

values ranging from about 0.015 to 0.025. These fluctuations may reflect seasonal variations or long-term climate change. 

Then for air temperature in DKI Jakarta Province from 1980 to 2023 is known to range between 25°C and 30°C. Although 

there were some temperature spikes above and below this range, there was no clear increasing or decreasing trend during 

the period. Furthermore, on the wind speed variable (in meters per second) in DKI Jakarta Province from 1980 to 2023, it 

can be seen that there are variations with significant fluctuations throughout the time period. There are some prominent 

peaks, indicating days with very high wind speeds. Although there are large variations in the data, there is no clear 

upward or downward trend in average wind speed over time. Finally, for the precipitation variable (in mm per hour) in 

DKI Jakarta Province from 1980 to 2023 it is known that there is significant variation throughout the period, with some 

notable peaks. While there are fluctuations, there is no clear trend of an overall increase or decrease in precipitation over 

this time period. 
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Figure 3 Daily fluctuations of meteorological variables of DKI Jakarta Province 1980 - 2023 
 

To further identify the recent fluctuations of the meteorological variables used, Figure 4 is presented, covering the last 

year of the study period used, 2023. In Figure 4, it is clear that the surface moisture experienced significant fluctuations 

throughout 2023 with values ranging between 0.015 and 0.025, with some noticeable peaks and valleys. Although there 

are high daily variations, it can be seen that surface humidity in DKI Jakarta Province has a downward trend throughout 

the year. As for the air temperature variable, it can be seen that there are significant fluctuations, with some noticeable 

peaks and valleys throughout 2023. Although there is considerable daily variation, there is a clear upward trend in 

temperature from January to November, as shown by the trend line. Then on the wind speed variable, it can be seen that 

there are significant variations throughout 2023. There are several peaks that show a sharp increase in wind speed, but 

there are also times when the wind speed is relatively low. This indicates that weather conditions and wind circulation 

in Jakarta are very dynamic and can change rapidly with a downward trend. Finally, in the precipitation variable, it can 

be seen that there are several significant precipitation peaks, especially around March 2023. In general, the fluctuations 

show that precipitation varies from day to day, with some days experiencing a sharp increase in precipitation intensity 

but with a decreasing trend throughout 2023. 
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Figure 4 Daily fluctuations of meteorological variables of DKI Jakarta Province in 2023 

 

Figure 5 specifically presents the daily fluctuations of the endogenous variable in this study, namely the concentration 

of PM2.5 in DKI Jakarta Province for the 43-year observation period, namely 1980 to 2023 and the one-year observation 

period, namely during 2023.  Figure 5 shows that the level of air pollution represented by PM2.5 concentration fluctuates 

significantly from 1980 to 2023. In addition, there are also several high peaks that signify a drastic increase in fine particle 

concentrations, which may be caused by meteorological variables that are exogenous to the present study. As for the 

special observation period of 2023, it can be seen that the PM2.5 concentration variable has significant variations. There 

are several high peaks that show a sharp increase and an increasing trend during 2023 in the particle concentration and 

may be caused by meteorological variables such as surface humidity, air temperature, wind speed, and precipitation. 
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(a) 

 
 

(b) 

Figure 5 (a) Daily fluctuation of PM2.5 concentration in DKI Jakarta Province 1980 - 2023 and (b) daily fluctuation of PM2.5 concentration of DKI Jakarta 

Province in 2023 

A. Stationarity Test 

The results of stationarity testing using the Augmented Dickey Fuller (ADF) test are presented in Table 2. 

 
Table 2  Stationarity testing results using augmented dickey fuller 

Variable 
ADF (Level) 

t-statistics ADF Critical Value MacKinnon (5%) Prob* 

Precipitation 
−16,094 −2.861 <  0.001 

Wind Speed 
−26.394 −2.861 <  0.001 

Surface Humidity 
−11.932 −2.861 <  0.001 

PM2.5 Concentration 
−7.653 −2.861 <  0.001 

Air Temperature 
−12.221 −2.861 <  0.001 

 

In this case the data is said to be stationary if the absolute value of the ADF t-statistics is greater than the MacKinnon 

criterion value at the 5% significance level or the p-value obtained is smaller than the significance level used which is 

0.05. So based on the values obtained in Table 2, it is known that all the variables used have been stationary at the level 

without having to do the differencing process. 

 
B. Optimum Lag Determination 

In order to optimize the Akaike Information Criterion (AIC), Schwarz Criterion (SC), and Hannan-Quinn Criterion 

(HQ) while considering the stability of the model, the selection of the optimum lag is based on tracking the lag that has 

the minimum AIC, SC, and HQ values. Table 3 presents the results of the optimal lag search. Table 3 shows that the 

smallest SC (-41.91706) value is located at the seventh lag, so the optimum lag value is seven. 

 
Table 3  Optimum lag determination results 

Lag AIC SC HQ 

0 −37.94161 −37.93921 −37.94082 

1 −41.68456 −41.67014 −41.67979 

2 −41.82919 −41.80277 −41.82045 

3 −41.88391 −41.84547 −41.87119 

4 −41.93696 −41.88651 −41.92027 

5 −41.96925 −41.90680 −41.94860 

6 −41.98515 −41.91068 −41.96052 

7 −𝟒𝟐. 𝟎𝟎𝟑𝟓𝟒 −𝟒𝟏. 𝟗𝟏𝟕𝟎𝟔 ∗ −𝟒𝟏. 𝟗𝟕𝟒𝟗𝟒 

8 −42.00777 −41.90928 −41.97519 
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C. Granger Causality Test 

The Granger Causality test is conducted to determine the causal relationship between each variable with each other. 

The existence of a causal relationship in the variables used in building the model indicates that the model built contains 

the right variables because each variable can become an endogenous variable so that it is suitable for the application of 

the vector autoregressive model. Table 4 shows the results of the Granger Causality test. 

 
Table 4  Granger causality test results 

Hipotesis Null Obs F-Statistics p-value 

Wind speed does not granger cause precipitation 
16009 

 4.895 2 ×  10−5 

Precipitation does not granger cause wind speed  11.416 2 ×  10−14 

Surface humidity does not granger cause precipitation 
16009 

 43.701 1 ×  10−61 

Precipitation does not granger cause surface humidity  39.693 1 ×  10−55 

PM2.5 concentration does not granger cause precipitation 
16009 

 20.671 7 ×  10−28 

Precipitation does not granger cause PM2.5 concentration  52.108 6 ×  10−74 

Air temperature does not granger cause precipitation 
16009 

 3.805 4 ×  10−4 

Precipitation does not granger cause air temperature  39.573 2 ×  10−55 

Surface humidity does not granger cause wind speed 
16009 

 2.379 2 ×  10−2 

Wind speed does not granger cause surface humidity  39.648 1 ×  10−55 

PM2.5 concentration does not granger cause wind speed 
16009 

 4.953 1 ×  10−5 

Wind speed does not granger cause PM2.5 concentration  26.403 3 ×  10−36 

Air temperature does not granger cause wind speed 
16009 

 26.081 9 ×  10−36 

Wind speed does not granger cause air temperature  4.124 2 ×  10−4 

PM2.5 concentration does not granger cause surface humidity 
16009 

 6.996 2 ×  10−8 

Surface humidity does not granger cause PM2.5 concentration  11.898 3 ×  10−15 

Air temperature does not granger cause surface humidity 
16009 

 111.443 3 ×  10−160 

Surface humidity does not granger cause air temperature  9.163 2 ×  10−11 

Air temperature does not granger cause PM2.5 concentration 
16009 

 28.178 8 ×  10−39 

PM2.5 concentration does not granger cause air temperature  6.678 6 ×  10−8 

 

Based on Table 4, it is known that the p-value for the entire null hypothesis stating the causal relationship between 

variables is partially smaller than the significance level used (0.05). Thus, it can be said that all variables used have a 

reciprocal (two-way) relationship. This condition indicates that the variables used in building the VAR model are 

appropriate because all variables can be positioned as endogenous variables including the PM2.5 concentration variable 

which is the specific endogenous or dependent variable in this study. 

 
D. Parameter Estimation of Vector Autoregressive Model 

In the process of estimating the parameters of the VAR model with PM2.5 concentration as the dependent variable, the 

method used is Ordinary Least Square. Then because the range of values of each variable used is quite large, the 

logarithmic transformation of all variables is carried out so that the resulting VAR model is simpler and easier to interpret. 

Consequently, the VAR model built will lead to the principle of elasticity. Table 5 presents the parameter coefficients of 

the VAR model constructed using the Ordinary Least Square method. 
 

Table 5  Model parameter coefficients of ordinary least square estimation results 

Parameter 
Coefficient of Estimation 

Results 
Parameter 

Coefficient of Estimation 

Results 

Constant −3.5416 Log(precipitation (-2)) −0.0062 

Log(wind speed (-1)) 0.0922 Log(precipitation (-5)) −0.0039 

Log(wind speed (-3)) 0.0988 Log(PM2.5 (-1)) 0.5272 

Log(air temperature (-1)) 1.4458 Log(PM2.5 (-2)) 0.0368 

Log(air temperature (-4)) −0.4364 Log(PM2.5 (-3)) 0.0527 

Log(surface humidity (-1)) 0.2173 Log(PM2.5 (-4)) 0.0709 

Log(surface humidity (-3)) −0.2199 Log(PM2.5 (-5)) 0.0521 

Log(surface humidity (-6)) 0.1922 Log(PM2.5 (-6)) 0.0328 

Log(precipitation (-1)) −0.0127 Log(PM2.5 (-7)) 0.0902 

 

Based on Table 5, the VAR model equation for PM2.5 concentration as the dependent variable can be written as follows: 
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log(𝑌𝑡) = −3,5416 + 0,0922 log(𝑋1𝑡−1) + 0.0988 log(𝑋1𝑡−3) + 1.4458 log(𝑋2𝑡−1) − 0.4364 log (𝑋2𝑡−4
)

+ 0.2173 log(𝑋3𝑡−1) − 0.2199 log (𝑋3𝑡−3
) + 0.1922 log(𝑋3𝑡−6) − 0.0127 log(𝑋4𝑡−1)

− 0.0062 log(𝑋4𝑡−2) − 0.0039 log(𝑋4𝑡−5) + 0.5272 log(𝑌𝑡−1) + 0.0368 log(𝑌𝑡−2)

+ 0.0527 log(𝑌𝑡−3) + 0.0709 log (𝑌𝑡−4) + 0.0521 log(𝑌𝑡−5) + 0.0328 log(𝑌𝑡−6)
+ 0.0902 log(𝑌𝑡−7) 

(8) 

 

Equation(8) above can be interpreted that changes in PM2.5 concentrations in DKI Jakarta Province every day are 

influenced by wind speed the day before (increasing PM2.5 concentrations by 0.092%), wind speed three days before 

(increasing PM2.5 concentrations by 0.098%), air temperature the day before (increasing PM2.5 concentrations by 

1.445%), air temperature four days before (decreasing PM2.5 concentrations by 0.436%), surface humidity the day before 

(increasing PM2. 5 concentrations by 0.217%), surface humidity three days before (decreased PM2.5 concentration by 

0.219%), surface humidity six days before (increased PM2.5 concentration by 0.192%), rainfall one day before (decreased 

PM2.5 concentration by 0.012%), rainfall two days before (decreased PM2. 5 concentration by 0.006%), rainfall five days 

before (decreased PM2.5 concentration by 0.003%), PM2.5 concentration one day before (increased PM2.5 concentration 

by 0.527%), PM2.5 concentration two days before (increased PM2.5 concentration by 0.036%), PM2.5 concentration three 

days before (increasing PM2.5 concentration by 0.052%), PM2.5 concentration four days before (increasing PM2.5 

concentration by 0.070%), PM2.5 concentration five days before (increasing PM2.5 concentration by 0.052%), PM2.5 

concentration six days before (increasing PM2.5 concentration by 0.032%), PM2.5 concentration seven days before 

(increasing PM2.5 concentration by 0.090%). 

 
E. Impulse Response Function (IRF) and Forecast Error Decomposition of Variance (FEDVs) Analysis 

The results of the IRF are depicted in Figure 6. In the IRF, for the endogenous variable (PM2.5 concentration), any shock 

to the exogenous variable causes an impulse response close to zero, indicating the stability of the constructed VAR model. 

The response of the change in PM2.5 concentration due to a shock to the change in rainfall is almost zero (slight variation 

in the initial path and thereafter, no change in the time path). The same conclusion applies to changes in wind speed, 

changes in surface humidity, and changes in air temperature, indicating the weak explanatory power of these exogenous 

variables. In the case of PM2.5 concentration changes alone, we observe a negative trend, with a drastic drop from 25% 

to about 5% in the early stages, and after more than 60 days, the shocks are close to zero. The attention to the negative 

trend in the impulse response of PM2.5 concentration to changes in itself is an interesting finding. The drastic drop 

initially, followed by a slow approach to zero after more than 60 days, illustrates that the impact of changes in PM2.5 

concentration in earlier days on changes in later days tends to be stronger and last longer. This suggests a cumulative 

effect that needs to be considered in understanding the dynamics of air quality. Therefore, the impulse response function 

summarizes that the impact of changes in PM2.5 concentrations in previous days on changes in PM2.5 concentrations in 

subsequent days tends to be stronger and last longer than other explanatory variables. 

 
Figure 6 Impulse response function (IRF) analysis 
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The results of the FEDV visualization are presented in Figure 7. In this case, the Variance Decomposition (VDC) is 

calculated over a 200-day forecast horizon to determine how much of the forecast error variance for the variables in the 

model can be explained by the contributions to each explanatory variable. The change in PM2.5 concentration in DKI 

Jakarta Province is influenced by the shock itself, which is 94.63% on the second day, which then gradually decreases to 

88.14% in the next 200 days (see Figure 7). Thus, in the long run, the influence of the PM2.5 concentration variable shocks 

themselves will continue to decrease. The VDC results also reveal the explanatory power of the other exogenous 

variables. Within a period of 10 days (short term), the variables of rainfall, wind speed, surface humidity, PM2.5 

concentration, and air temperature can explain 3.12%; 1.99%; 0.64%; 93.14%; and 1.09% of the variation in the growth of 

PM2.5 concentration in DKI Jakarta Province. Therefore, in the short term, the variation in the growth of PM2.5 

concentration in DKI Jakarta Province can be better explained successively by the PM2.5 concentration itself, followed by 

rainfall, and wind speed. Meanwhile, for 200 days (long term), the contribution of rainfall, wind speed, surface humidity, 

PM2.5 concentration, and air temperature to explain the variation in PM2.5 concentration growth is 8.61%; 1.72%; 0.47%; 

88.14%; and 1.07%. Therefore, we can conclude that PM2.5 concentration has the maximum explanatory power to explain 

the growth of PM2.5 concentration in DKI Jakarta Province, both in the short and long term. In addition, it is also known 

that wind speed, surface humidity, and air temperature have better explanatory power in the short-term when compared 

to the long-term perspective while rainfall has better explanatory power in the long-term when compared to the short-

term perspective to explain the variation in PM2.5 concentration growth in DKI Jakarta Province. 

 

 
Figure 7 Forecast error decomposition of variance (FEDVs) analysis 

 

With this finding, it can be said that the constructed VAR model has a tendency to show that meteorological variables 

have low explanatory power on PM2.5 concentrations, while changes in PM2.5 concentrations themselves can have a 

sustained impact in the short and long term. These findings tend to contradict the results of studies conducted by Vaishali, 

(2023) and Zhao (2016), who respectively found that meteorological variables such as surface humidity, air temperature, 

wind speed, and precipitation have a significant influence on decline and growth. This could be due to the different 

geographical conditions of the research locus and the possibility of other variables apart from the meteorological side 

that have a significant influence specifically on PM2.5 concentrations in DKI Jakarta Province. 

V. CONCLUSIONS 
Changes or growth in PM2.5 concentrations in DKI Jakarta when viewed from a meteorological aspect are influenced 

by wind speed the day before, wind speed three days before, air temperature the day before, air temperature four days 

before, surface humidity the day before, surface humidity three days before, surface humidity six days before, rainfall 

the day before, rainfall two days before, rainfall five days before, and PM2.5 concentrations the day, two days, three days, 

four days, five days, six days, and seven days before. However, the constructed VAR model shows that the meteorological 

variables, which in this case are surface humidity, air temperature, wind speed, and rainfall, have low explanatory power 
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on PM2.5 concentrations. This finding is based on the IRF and FEDVs analysis which shows that the variable with the 

greatest explanatory power for fluctuations in PM2.5 concentrations in DKI Jakarta Province is the PM2.5 concentration 

variable itself, followed by the rainfall variable, then the wind speed variable, the surface humidity variable, and finally 

the air temperature variable. Based on these findings, in order to reduce PM2.5 concentrations in DKI Jakarta Province 

which tend to continue to increase, the DKI Jakarta government is advised to explore variables outside of meteorological 

elements before formulating policies aimed at improving air quality. The exploration process can be collaborated with 

expert researchers to develop a more comprehensive model by considering additional factors that can affect air quality, 

such as industrial activity, transportation, and land use. In addition, spatial analysis can also be conducted by observing 

differences in air pollution in various regions in DKI Jakarta, and more detailed temporal analysis to understand the 

seasonal and long-term trends of PM2.5 concentrations in DKI Jakarta Province more deeply. 
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