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ABSTRACT ⎯ The Poisson model is a model that can be applied to count data, where in this research the case study used is the 

number of bicycle sales. However, there is an equidispersion assumption in the Poisson model, that the response variable has the 

same mean and variance. A more flexible model is needed if the equidispersion assumption is not met, namely the Negative 

Binomial model. In this research, two models were applied, namely the regression model and the GSARIMA model, with two 

different distributions, namely the Poisson distribution and the Negative Binomial distribution. Therefore the models that will be 

compared are the Poisson Regression, Negative Binomial Regression, Poisson GSARIMA, and Negative Binomial GSARIMA 

models. The differences in results for each model are due to errors that occur in each model used. Hence, a model with a smaller 

error can be said to be a model that has a smaller risk than other models. The results of this study show that the error rate in the 

Negative Binomial GSARIMA ZQ1 model is relatively smaller than other models with a value of AIC = 1058.7. This model is the 

best model that can be used as a forecasting model in the case of bicycle sales and can minimize the risk of error in a forecasting 

result.  
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I. INTRODUCTION 

Bicycle is one of the transportations and can also be used as sports facilities. Based on "Big Data di Tengah Masa 

Adaptasi Kebiasaan Baru Badan Pusat Statistik", the number of bicycle sales has increased [1]. This is partly due to 

WHO's recommendation to exercise by bicycle during the pandemic. The number of bicycle sales data is count data, 

where count data is the data in the discrete domain and a positive integer {0,1,2,3,…} [2]. In count data, the data usually 

does not spread normally, therefore a forecasting model in the non-Gaussian form must be applied.  

McCullagh and Nelder developed the Generalized Linear Models (GLM) model to analyze the relationship between 

response variables and predictor variables, where the response variable does not have to be normally distributed 

(Gaussian), but is included in the exponential family [3]. Then Cameron, et al (1998) made a regression analysis of count 

data [4]. The Poisson distribution is an exponential family distribution, but there is an equidispersion assumption, that 

the mean value of the response variable is the same as the variance value. The most frequent violation of equidispersion 

is overdispersion, in which the response variable has a greater variance than the mean. Overdispersion cases can be 

overcome with other distributions such as Negative Binomial distribution. Benjamin, et al (2003) developed the 

Generalized Autoregressive Moving Average model for data that follows non-Gaussian distributions such as the 

Poisson distribution and the Negative Binomial distribution [5]. 

Previous research regarding the application of the Poisson and Negative Binomial models is the application of the 

Poisson regression model to large frequency data in PSTP [6]. Funda H, et al (2004) and Haibin Liu, et al (2005) 

respectively applied the Negative Binomial regression model to data on the number of labor strikes and the number of 

power outages [7, 8] with Negative Binomial model have realistic results to overcome data overdispersion. 

Furthermore, Briet, et al (2013) developed the GARMA model for seasonal data with a differencing, namely the 

GSARIMA model for the number of malaria sufferers in Sri Lanka [2]. In Indonesia, Asrirawan (2015) compared the 

GSARIMA and SARIMA models on the number of dengue fever sufferers in Surabaya [9]. Then in the same year, Mada 

Aqil and Agil Desti estimated the parameters of the Negative Binomial and Poisson GARMA forecasting models using 

the IRLS algorithm [10, 11]. Furthermore, Wardhani, LP et al (2020) researched forecasting the number of theft crimes in 

the Surabaya Polrestabes area using the Poisson GARMA model and the Negative Binomial GARMA model [12]. In 

this research, the best model obtained was the GARMA Negative Binomial model. Then in the same year, T Kim, et al 

applied the Poisson regression model to predict Covid-19 cases in the United States [13]. 
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The model will be applied that involves seasonal elements in one of the count data, namely the number of bicycle 

sales data. Then a regression model is applied with several factors that influence bicycle sales with two different 

distributions, namely Negative Binomial distribution and Poisson distribution. Therefore, the models applied are the 

Poisson Regression, Negative Binomial Regression, Poisson GSARIMA, and Negative Binomial GSARIMA. The 

application of forecasting to the four models will be compared with the criteria for selecting the best model. Then 

analyze how errors occur in the model. The model with the smaller error will be chosen as the best model that can 

minimize the risk of error in a forecasting result. 

 

II. LITERATURE REVIEW 
A. Poisson Model and Negative Binomial Model for Count Data 

 Generalized Linear Models (GLM) is a development of the classical linear model, where in this model the 

response variable follows an exponential family distribution [3]. In this research, the exponential family 

distributions used are the Negative Binomial distribution and the Poisson distribution. The Negative Binomial 

distribution has the following exponential family distribution function as follows [9]: 

𝑓(𝑦𝑡; 𝜇𝑡 , 𝑘) = 𝑒𝑥𝑝 {𝑙𝑛 (
Г(𝑦𝑡 + 1/𝑘)

𝑦𝑡! Г(1/𝑘)
) + 𝑦𝑡𝑙𝑛 (

𝑘𝜇𝑡

𝑘𝜇𝑡 + 1
) +

1

𝑘
𝑙𝑛 (

1

𝑘𝜇𝑡 + 1
)}                                                                        (1) 

 

The Poisson distribution has an exponential family distribution function as follows: 

𝑓(𝑦𝑡; 𝜇𝑡) = 𝑒𝑥𝑝{𝑦𝑡𝑙𝑛𝜇𝑡 − 𝜇𝑡 − 𝑙𝑛𝑦𝑡!}                                                                                                                                              (2)  
 

where the link function g(.) in the Poisson distribution and Negative Binomial distribution is: 

 

𝑔(𝜇𝑡) = ln(𝜇𝑡) = 𝐗𝑻𝜷                                                                                                                                                                          (3) 
 

B. Regression Model 

 The Poisson regression model has been stated in the research of Famoye et al [14], and then compared with 

another distribution model, namely the Negative Binomial regression model [15]. Then the parameter estimation is 

carried out for each model using the Maximum Likelihood (MLE) method. The dispersion parameters in the 

Negative Binomial regression model are also estimated, and then a forecasting model is formed.  

 
C. Generalized Seasonal Autoregressive Integrated Moving Average Model (GSARIMA) 

The GSARIMA model used in this research is a model formulated in the research of Briet et al [2]. In this research, 

two GSARIMA models were applied, namely the GSARIMA model with ZQ1 transformation and the GSARIMA 

model with ZQ2 transformation. The value of 𝑦𝑡 given in the ZQ1 transformation GSARIMA model is 𝑦𝑡
′ =

 𝑚𝑎𝑥(𝑦𝑡 , 𝑐) where 0 < 𝑐 ≤ 1, where 𝑐 is the threshold parameter. The GSARIMA model with ZQ2 transformation is 

a model that adds a 𝑐 value to each value of 𝑦𝑡. 

 
D. Best Model Selection Criterion 

The criteria for selecting the best model used in this research is Akaike's Information Criterion (AIC) [9], where the 

best prediction model will be selected using this criterion. 

 

III. RESULTS AND DISCUSSIONS 
A. Research Variable 

 The data used in this research is secondary data from publications by "Badan Pusat Statistika" and Grand View 

Research regarding Bicycle Marker Analysis. The data obtained is the mountain bike sales (𝑌) with factors that 

influence it (𝑋) for each month in 2016 - 2020. The independent variables (𝑋) in this study are the inflation rate (𝑋1), 

household consumption index for sports equipment (𝑋2), consumer price index (𝑋3), and average daily wage (𝑋4). 

Before forming the regression model, a multicollinearity test was carried out on each independent variable. The 

results of the multicollinearity test are presented in the Table 1. 

Table 1  Multicollinearity Test Results 

Variable Tolerance VIF 

𝑋1 0.980 1.021 

𝑋2 0.965 1.036 

𝑋3 0.312 3.208 

𝑋4 0.309 3.233 
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Table 1 shows the result that each independent variable has a 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 > 0.1 and a 𝑉𝐼𝑃 𝑣𝑎𝑙𝑢𝑒 < 10, which 

means that multicollinearity does not occur. 

 
B. Determination of a Poisson Regression Model 

In the Poisson regression model, bicycle sales data is assumed to have a Poisson distribution. Then the first 

parameter significance test, namely the simultaneous test, obtained the value of each 𝒅𝒆𝒗𝒊𝒂𝒏𝒄𝒆 > 𝝌(𝟒,𝟎.𝟎𝟓)
𝟐 = 𝟗. 𝟒𝟖𝟖, 

then 𝑯𝟎 was rejected, in other words, there was at least one significant variable. Then the second parameter 

significance test which can be partially seen from the value of |𝒁𝒉𝒊𝒕| in Table 2.  

 
Table 2 Parameter Estimation of Poisson Regression Model 

Parameter Estimation 

Value 

SE 𝒁𝒉𝒊𝒕 𝒑 𝒗𝒂𝒍𝒖𝒆 

𝛽0 -8.376 0.047 -179.559 0.0000 

𝛽1 0.095 0.000 391.601 0.0000 

𝛽2 0.004 0.002 2.393 0.0167 

𝛽3 0.044 0.000 75.526 0.0000 

𝛽4 0.000 0.000 213.613 0.0000 

 
Based on the Table 2, each parameter has a value of |𝒁𝒉𝒊𝒕| > 𝒁𝜶/𝟐 = 𝟏. 𝟗𝟔, in other words, each parameter has a 

partially significant effect on the model. Therefore we get the Poisson regression model as follows 

 

ln(𝜇̂) =− 8.376 + 0.095𝑋1 + 0.004𝑋2 + 0.044𝑋3 + 0.000 𝑋4                                                                                           (4) 

 

The residual deviance value obtained divided by the degrees of freedom from the parameter estimation results 

is 
𝟏𝟎𝟕𝟒𝟒𝟖

𝟓𝟓
= 𝟏𝟗𝟓𝟑. 𝟔 > 𝟏, which means the model experiences overdispersion. There is an assumption in Poisson 

regression, namely that the equidispersion condition must be met. Then another regression model will be formed 

that is more flexible in conditions such as overdispersion, namely the Negative Binomial regression model. 

 

 
C. Determination of a Negative Binomial Regression Model 

In the Negative Binomial regression model, bicycle sales data is assumed to have a Negative Binomial 

distribution. The results of parameter estimation of the Negative Binomial regression model are presented in the 

Table 3. 
Table 3 Parameter Estimation of Negative Binomial Regression Model 

Parameter Estimation 

Value 

SE 𝒁𝒉𝒊𝒕 𝑷𝒗𝒂𝒍𝒖𝒆 

𝛽0 -8.0082 2.074 -3.861 0.000 

𝛽1 0.0947 0.011 9.015 0.000 

𝛽2 -0.0040 0.080 -0.050 0.960 

𝛽3 0.0423 0.026 1.627 0.104 

𝛽4 0.0002 0.000 4.528 0.000 

Based on the Table 3, it can be seen that each parameter has a value of |𝑍ℎ𝑖𝑡| > 𝑍𝛼/2 = 1.96, except 𝛽2. It can be said 

that the parameters 𝛽0, 𝛽1, 𝛽3, and 𝛽4 have a partially significant effect on the model. Then we get the Negative 

Binomial regression model as follows 

 
ln(𝜇̂) =8.008 + 0.095  𝑋1 − 0.004 𝑋2 + 0.042 𝑋3 + 0.0002 𝑋4                                                                                            (5) 

 
D. Determination of a GSARIMA Model 

The determination of the GSARIMA(p,d,q)(P,D,Q)s model is obtained from identifying the best 

SARIMA(p,d,q)(P,D,Q)s model. The first step is to analyze the stationarity of the data regarding the variance and 
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mean through the Box-Cox plot and ACF plot. Box-Cox Plot and Box-Cox transformation results are presented in 

Figure 1 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Figure 1  Box-Cox Plot and Box-Cox Transformation Results of Bicycle Sales Data (A: Box-Cox Plot, B: Box-Cox Transformation) 

 

Then the average stationarity analysis is carried out through the ACF plot. Based on Figure 2, it can be seen that 

the data is not stationary for the mean, then a differencing is made between non-seasonal lag and seasonal lag. The 

results of differencing between non-seasonal lag and seasonal lag are presented in Figure 3 and Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2  ACF dan PACF Plot of Box-Cox Transformation Results (A: ACF Plot, B: PACF Plot) 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 3  ACF dan PACF Plot of Non-seasonal Lag Differencing Result (A: ACF Plot, B: PACF Plot) 
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Figure 4  ACF dan PACF Plot of Seasonal Lag Differencing Result (A: ACF Plot, B: PACF Plot) 

 
Based on Figure 4, the estimated temporary model obtained is the SARIMA(1,1,1)(0,1,0)12 model. The results of 

parameter estimation and significance testing with the t-test and α = 5% are presented in Table 4. 

 
Table 4 Estimation Results and Significance Test of SARIMA(1,1,1)(0,1,0)12 Model Parameters 

Parameter Coefficient 𝒕𝒕𝒆𝒔𝒕 𝒕𝒕𝒂𝒃𝒆𝒍 Result 

AR 1 0.502 3.18 1,996 Significance 

MA 1 0.948 9.19 9.015 Significance 

 
Then a white noise and normal residual test was carried out. It was found that the SARIMA(1,1,1)(0,1,0)12 model 

fulfilled the white noise and normal residual assumptions. Therefore the SARIMA model formed is 

SARIMA(1,1,1)(0,1,0)12, with 𝑝 = 0, 𝑃 = 0, 𝑞 = 1, 𝑄 = 1, 𝑑 = 1, 𝐷 = 1, 𝑆 = 12. So the GSARIMA(1,1,1)(0,1,0)12 

model with ZQ1 transformation is 

 
ln(𝜇𝑡) = 𝛽0 + ln(𝑦𝑡−1

′ ) + ln(𝑦𝑡−12
′ ) − ln(𝑦𝑡−13

′ ) + 𝜙1 ln(𝑦𝑡−1
′ ) − 𝜙1 ln(𝑦𝑡−2

′ ) − 𝜙1 ln(𝑦𝑡−13
′ ) + 𝜙1ln (𝑦𝑡−14

′ )

+ 𝜃1ln (
𝑦𝑡−1

′

𝜇𝑡−1
)                                                                                                                                                        (6) 

 

or it can also be written as follows 

𝜇𝑡 = 𝑒𝑥𝑝 {𝛽0 + ln(𝑦𝑡−1
′ ) + ln(𝑦𝑡−12

′ ) − ln(𝑦𝑡−13
′ ) + 𝜙1 ln(𝑦𝑡−1

′ ) − 𝜙1 ln(𝑦𝑡−2
′ ) − 𝜙1 ln(𝑦𝑡−13

′ ) + 𝜙1ln (𝑦𝑡−14
′ )

+ 𝜃1ln (
𝑦𝑡−1

′

𝜇𝑡−1
)}                                                                                                                                                      (7) 

 

 

 

the GSARIMA(0,1,1)(0,1,1)12 ZQ2 transformation model is as follows 
 
 

ln(𝜇𝑡) = 𝛽0 + ln(𝑦𝑡−1 + 𝑐) + ln(𝑦𝑡−12 + 𝑐) − ln(𝑦𝑡−13 + 𝑐) + 𝜙1 ln(𝑦𝑡−1 + 𝑐) − 𝜙1 ln(𝑦𝑡−2 + 𝑐) − 𝜙1 ln(𝑦𝑡−13 + 𝑐)

+ 𝜙1ln (𝑦𝑡−14 + 𝑐) + 𝜃1ln (
𝑦𝑡−1 + 𝑐

𝜇𝑡−1 + 𝑐
)                                                                                                            (8) 

 

or it can also be written as follows 
 

𝜇𝑡 = 𝑒𝑥𝑝 {𝛽0 + ln(𝑦𝑡−1 + 𝑐) + ln(𝑦𝑡−12 + 𝑐) − ln(𝑦𝑡−13 + 𝑐) + 𝜙1 ln(𝑦𝑡−1 + 𝑐) − 𝜙1 ln(𝑦𝑡−2 + 𝑐) − 𝜙1 ln(𝑦𝑡−13 + 𝑐)

+ 𝜙1ln (𝑦𝑡−14 + 𝑐) + 𝜃1ln (
𝑦𝑡−1 + 𝑐

𝜇𝑡−1 + 𝑐
)}                                                                                                                     (9) 

 

The estimated parameter values for the Negative Binomial GSARIMA model and the Poisson GSARIMA Model 

were obtained using Bayesian inference with the MCMC method using R software. The parameter estimation 

results for the GSARIMA model are presented in Table 5. 

  

(A.) (B.) 
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Table 5 Parameter Estimation Results of the Negative Binomial GSARIMA Model and the Poisson GSARIMA Model 

Model Parameter Mean 2,5% 97,5% 

Poisson GSARIMA(0,1,1)(0,1,1)12 

Transformation ZQ1 

𝛽0 

AR1(𝜙1) 

MA1(𝜃1) 

0.00003 

0.00003 

0.00006 

0.00000 

0.00000 

0.00000 

0.00010 

0.00014 

0.00020 

Poisson GSARIMA(0,1,1)(0,1,1)12 

Transformation ZQ2 

𝛽0 

AR1(𝜙1) 

MA1(𝜃1) 

0.00002 

0.00003 

0.00005 

0.00000 

0.00000 

0.00000 

0.00010 

0.00011 

0.00015 

Binomial Negatif GSARIMA(0,1,1)(0,1,1)12 

Transformation ZQ1 

𝛽0 

AR1(𝜙1) 

MA1(𝜃1) 

0.00807 

0.02374 

0.04697 

0.00061 

0.00003 

0.00216 

0.02067 

0.08300 

0.14660 

Binomial Negatif   GSARIMA(0,1,1)(0,1,1)12 

Transformation ZQ2 

𝛽0 

AR1(𝜙1) 

MA1(𝜃1) 

0.00767 

0.02164 

0.05081 

0.00033 

0.00002 

0.00159 

0.02061 

0.10600 

0.17240 

 

 
 

E. Analysis of Forecasting Results and Selection of The Best Model 

The best model is selected based on the smallest AIC value presented in the Table 6. 

 
Table 6 The Comparison of AIC Values 

Model AIC 

Poisson  108340.1 

Negative Binomial Regresion 1406.1 

Poisson GSARIMA ZQ1 54396.1 

Poisson GSARIMA ZQ2 54395.0 

Negative Binomial GSARIMA ZQ1 1058.7 

Negative Binomial GSARIMA ZQ2 1059.5 

 

Based on Table 6, the Negative Binomial GSARIMA ZQ1 model has the smallest AIC value = 1058.7, which can be 

used as the best model for forecasting the number of bicycle sales. The results of comparing forecasting plots with 

outsample data using the best model are presented in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5  Comparison of Forecasting Results with the Negative Binomial GSARIMA Model with Actual Data 

 

IV. CONCLUSIONS AND SUGGESTIONS 
The conclusion obtained in this research is that the Negative Binomial Regression model applied to forecasting the 

number of bicycle sales has the lowest AIC value. It can be said that this model has the smallest risk than another 

model. In this study, the estimation method used is Bayesian inference, where this method allows for analysis of the 
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posterior distribution of predictions. This shows that the posterior predictive distribution is much better for the 

GSARIMA ZQ1 Negative Binomial model. Hence this model can be used as the best model for forecasting the number 

of bicycle sales in the future period. Therefore, using this forecasting model can minimize errors in the forecasting 

results. In further research, other estimation methods can be applied to forecasting models for count and seasonal data 

as a material for comparison and decision-making. 
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