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ABSTRACT ⎯ Generalized linear mixed models (or GLMMs) are an extension of linear mixed models to allow response 

variables from different distributions. Alternatively, GLMMs are an extension of generalized linear models (GLMs) to include 

both fixed and random effects (hence mixed models) that can be used as a modeling approach that allows the modeling of 

nonlinear behaviors and non-Gaussian distributions of residues. These models are very useful for general insurance claim 

predictions, where the frequency and the severity of claims distributions are usually non-Gaussian. In our research, we shall 

compare the performance of GLMS and that of GLMMS to estimate the aggregate of claims of auto insurance. The data used are a 

secondary dataset which is the motor vehicle dataset from Australia named ausprivauto0405. The results of our research suggest 

that GLMMs approach does not always give the best estimations and even in some cases GLMs outperform GLMMs. The accuracy 

of the models was compared to choosing the best model for determining pure insurance premiums using R software. More 

investigation using different models is needed to ensure which model is more appropriate for estimating the aggregate of 

insurance claims. 
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I. INTRODUCTION 

Insurance is a contract involving two parties: the insured or policyholder and the guarantor or insurance company. 

The insurance company needs to estimate all future claims related to the protection for policyholders. In return, the 

insured is required to pay premiums at regular intervals during the coverage period. A claim is an official request 

made by the insured to the insurance company to compensate for or cover losses included in the terms of the insurance 

policy. Over time, there has been an increasing trend among practitioners to model losses using Generalized Linear 

Models (GLM). GLM is an extension of the common linear regression model. This model is very useful in general 

insurance because the severity (amount) and frequency of claims do not follow a normal distribution.  

In generalized linear models (GLMs), the assumption of independence of observations is generally maintained, 

similar to common linear regression models. However, just like in linear models, this assumption can be problematic 

when dealing with certain types of data, such as repeated measures, clustered data, or longitudinal data, where 

observations are naturally grouped and may be correlated. Here is an illustration of the dependence between 

observations that exists in auto insurance data. Suppose an insurance company has data on five types of vehicles. Each 

type of vehicle has different specifications, leading to distinct loss characteristics among the types of vehicles. However, 

the loss characteristics among vehicle owners within the same group of vehicles are likely to be correlated due to the 

similarity in vehicle specifications. Ignoring this correlation by using standard GLM can lead to inaccurate estimates 

and suboptimal decisions. By using GLMM, we hope to achieve more precise and reliable predictions, ultimately 

leading to better risk management and pricing strategies in auto insurance. 

GLM has been used to model losses from claim severity or claim frequency, one example is Smyth and Jørgensen 

[1] in 2002. In GLM modeling, the compound Poisson-gamma is often referred to as a Tweedie distribution. This paper 

used the fact that the arrival of claims is Poisson distributed and the cost for individual claims is gamma distributed 

therefore Tweedie's compound Poisson distribution provided a more highly efficient method. Not long after, De Jong 

and Heller [2] produced an excellent resource for actuaries when they needed to understand generalized linear models 

(GLMs) for insurance applications. At that time, no text had introduced GLMs in this context or addressed the 

problems specific to insurance data. The reader will find this book resourceful. Recently, in 2014 Kafková and 

Křivánková [3] tried to find the best model for an estimation of insurance premium. Their models depend on many risk 

factors, e.g. the car characteristics and the profile of the driver. They utilized portfolio of vehicle insurance data and 

performed a generalized linear model (GLM) to predict the relation of annual claim frequency on given risk factors. In 

2015, Frees and Lee [4] describe a modeling process for determining rating endorsement, based on GLM techniques. It 

is common for insurance policies to contain optional insurance coverages, often referred to as endorsements or riders. 

They consider the Wisconsin Local Government Property Insurance Fund and provide a detailed case study. Through 

GLM techniques, they provided an approach for handling these optional coverages when it is not known whether a 

claim is due to an endorsement. The following papers [5-8] utilized the Generalized Linear Model (GLM) methodology 

to model auto insurance premiums, assuming independence between claim frequency and severity. These studies 
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typically relied on extensive datasets that included detailed information on insurance policies, such as policyholder 

demographics, vehicle characteristics, and historical claim records. By analyzing this data, the researchers were able to 

develop models that predict the premium costs based on factors influencing both the likelihood and the cost of claims. 

Finally, Frees et al. [9] relaxed the independent assumption between claim frequency and severity and used GLM along 

with copula model to improve loss calculations. To the authors’ knowledge, this paper is the first instance in loss 

modeling that does not rely on the independence assumption between frequency and severity. 

As we discussed before, these kinds of studies typically relied on datasets that included detailed information on 

insurance policies. In this paper, we used the ausprivauto0405 dataset [10] which includes insurance claims from 

Australian motor insurance policies during the 2004-2005. Several authors have previously utilized this dataset, for 

instances Giancaterino [11], Oktavia et al. [12], Pernagallo et al. [13] and Gao and Li [14]. GLM approach to predict loss 

claims has been applied [11, 12] and some also [11, 13] used general additive modeling. Recently, Gao and Li [14] also 

used this data and used mixed copula approach to model dependency between claim counts and claim amounts. Other 

than research article, Frees and Huang published an online supplement for working actuaries when modeling 

insurance price [15]. One of the datasets they used as an example is the ausprivauto0405 dataset. 

While generalized linear models (GLMs) are popular and widely used, they do have some limitations. One key 

limitation is that GLMs require the observations to be independent of each other. In other words, GLMs handle only 

fixed effects and do not account for random effects that may arise from hierarchical or multi-level data structures. 

Perhaps, one of the earliest research projects dealing with modeling loss with GLMM was by Yau et al. [16] and 

Antonio and Beirlant [17]. Study by Yau et al [16] demonstrates the advantage of the GLMM technique and has shown 

that the GLMM estimation method is, in general, more accurate in terms of the average bias and MSE, especially when 

the random effect variance is moderate to large. While Antonio and Beirlant [17] discussed generalized linear mixed 

models as a tool for modelling actuarial longitudinal data. Concepts on model formulation, estimation, inference, and 

prediction of GLMM are discussed and they used both a maximum likelihood and Bayesian approaches. They also 

described various applications of GLMMs in the domains of credibility, non-life ratemaking, credit risk modelling and 

loss reserving. In the last decade, there has been extensive literature discussing applications of GLMM in insurance, for 

instance Antonio et al. [18], Kim et al. [19], Rohmaniah and Chandra [20], Wang et al. [21], Günther et al. [22] and Lee et 

al. [23].  The reader can also find applications of GLMM in another field in [24-27]. 

In this paper, we will model the loss obtained from claims in auto insurance using two different methodologies: 

the standard Generalized Linear Model (GLM) and the Generalized Linear Mixed Model (GLMM). These models will 

allow us to explore and compare different assumptions about the relationships between the variables involved in the 

insurance claims process. We will conduct a detailed analysis of the results obtained from both models, comparing their 

performance in terms of predictive accuracy. To do this, we will use Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE) to evaluate the individual predictions of each model. Additionally, we will compare the 

aggregate predictions by examining the sum and the average of all claims’ predictions. This comprehensive analysis 

will help identify which model offers more reliable and robust predictions. We hope it can help insurance companies in 

reserving adequate funds to cover future claims. This will ultimately contribute to better financial planning and risk 

management within the insurance industry. 

 

II. METHODOLOGY 
The data utilized in this study originates from the ausprivauto0405 dataset, extracted from the CASDatasets package 

in R [10]. This dataset comprises insurance claims from Australian motor insurance policies during the 2004-2005 

period, encompassing a total of 67,856 policies, of which 4,624 policies have at least one claim recorded. In Table 1, one 

can see all variables in this dataset. 
Table 1  Variables used in this research 

Variables Explanations Variables Explanations 

ClaimAmount Claim amount per policy Gender Gender of the policyholder 

ClaimNb Number of claims per policy VehBody Type of vehicles 

ClaimOcc Occurrence of claim per policy VehValue Value of vehicles 

DrivAge Driver’s age Exposure Number of policy years 

VehAge Vehicle’s age ClaimIndAmount- Claim amount per claim per policy  
 

Initially, a data cleaning process is performed to address missing features. The next step is to perform random 

partitioning of the data into training and testing sets. Subsequently, a mathematical model is developed using the 

training set, with model performance evaluated using the testing set. 

To construct a predictive model for aggregate claim amounts, assumptions regarding the distribution of response 

variables are necessary. The frequency of claims is represented by either the ClaimNb or ClaimOcc variables, denoting 

the claim count and claim occurrence, respectively. ClaimNb is modeled using either a Poisson distribution or a 

Negative Binomial distribution, while ClaimOcc is modeled using a Bernoulli distribution. On the other hand, the 

severity of claims is modeled using either the ClaimAmount variable or a newly defined variable, ClaimIndAmount. 

ClaimAmount denotes the aggregate claim amount per policy, while ClaimIndAmount represents the individual claim 
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amount, computed as ClaimAmount divided by ClaimNb (only if ClaimNb is non-zero). Both severity variables are 

modeled using either a Gamma distribution or Inverse Gaussian distribution. 

Following the distribution assumptions, Generalized Linear Models (GLMs) will be constructed for both the 

frequency (N) and severity (Y) variables, with respect to the independent variables. Since the model aims to predict 

either count data or non-negative data, appropriate link functions must be applied to each response variable. For 

distributions such as Negative Binomial, Poisson, and Gamma, the natural logarithm will serve as the link function. 

When the response variable follows a binomial distribution, the logit function will be utilized. Finally, for response 

variables with an Inverse Gaussian distribution, the identity link function will be employed. Additionally, the 

independent variable Exposure, representing the duration of each individual policy within the insurance company, will 

be incorporated into the modeling process. 

To predict the total loss for each policy in the upcoming period, it is assumed that the frequency and severity 

variables are independent, as denoted by: 

                                                                           𝑬(𝑺) = 𝑬(𝑵)𝑬(𝒀)                                                                                                (1) 

Here, E(S) represents the expected total claim amount for each policy, E(N) denotes the expected number of claims 

per policy, and E(Y) signifies the expected claim amount per policy. Both E(N) and E(Y) will be modeled using GLMs. 

The GLM models for E(N) and E(Y) will be combined to obtain the most accurate estimate for E(S).  

A key objective of this study is to compare the predictions obtained from the standard Generalized Linear Model 

(GLM) methodology with those obtained from the Generalized Linear Mixed Model (GLMM) methodology. Following 

the same procedure as described above, we will now employ the GLMM methodology. In this phase, the variable 

VehBody will be designated as the random effect in our GLMM. VehBody comprises 13 distinct vehicle types and is 

selected as the random effect due to the potential correlation among the response variables within each VehBody 

category. The distribution assumptions for each response variable and the procedure for computing aggregate losses 

will remain consistent, with the only variation being the incorporation of GLMM into the methodology. 

In the final stage of analysis, all models developed using the training set will be evaluated using the testing set. We 

will compare the performance of both GLM and GLMM models. The evaluation will cover the analysis of individual 

losses as well as aggregate losses incurred by the insurance company. 

 
III. RESULTS AND DISCUSSIONS 
A. Data Preparation 

As mentioned before, this dataset comprises insurance claims from Australian motor insurance policies during the 

2004-2005 period, encompassing a total of 67,856 policies. The reader can review the first ten entries of this dataset in 

Figure 1 and a summary of all nine variables can also be seen in Figure 2. There are four categorical variables (VehAge, 

VehBody, Gender and DriveAge), three numerical variables (Exposure, VehValue and ClaimAmount), and two 

counting variables (ClaimOcc and ClaimNb). Dependent variables in this dataset are ClaimOcc, ClaimNb and 

ClaimAmount; we will also define a new dependent variable, ClaimIndAmount, which is ClaimAmount divided by 

ClaimNb (only if ClaimNb is non-zero).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 
 
 
 

Figure 1 The first ten entries of the dataset 
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B. Frequency and Severity models using GLM  

In this section, we are going to construct GLMs for both frequency and severity loss predictions. First, we will analyze 

the frequency models which we will build by using (i) the ClaimNb variable modelled with Poisson and Negative 

Binomial distributions and (ii) the ClaimOcc variable modelled with Bernoulli/Binomial distribution. The mathematical 

model of the GLM Poisson regression is given as follows:  

ClaimNbi ~ Poisson (exposurei × λi), 
λi = exp(β0 + β1𝑋1𝑖 + β2𝑋2𝑖 + β3𝑋3𝑖 + β4𝑋4𝑖 + β5𝑋5𝑖) 

where X1 represent vehicle’s value, X2 represents vehicle’s age. X3 represents vehicle’s body, X4 represents driver’s 

gender and X5 represents driver’s age. The estimations of these coefficients are given in the Table 2. The mathematical 

model of the GLM Negative Binomial regression is given as follow: 

ClaimNbi ~ Negative Binomial (exposurei × µi), 
𝜇𝑖 = exp(𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝛽4𝑋4𝑖 + 𝛽5𝑋5𝑖) 

where X1 represent vehicle’s value, X2 represents vehicle’s age. X3 represents vehicle’s body, X4 represents driver’s 

gender and X5 represents driver’s age. In Table 2, one can see the estimations of these coefficients along with the 

coefficients obtained from the GLM Poisson model. Both models give roughly the same coefficients estimations, some 

variables are also statistically significant in both models. The signs of every coefficient in both models agreed, meaning 

that each variable gives the same effect to the number of claims. Throughout this paper, we use “***” to indicate a 

significance level of less than 0.001, “**” to indicate a significance level of less than 0.01, and “*” to indicate a 

significance level of less than or equal to 0.05. 

 
Table 2  Estimated value and p-value of GLM coefficients (GLM Poisson and GLM Negative Binomial) 

Coefficient 
Poisson Model 

Estimate  
p-value 

Negative 

Binomial Model 

Estimate 

p-value 

Intercept -1.276935 0.00037         -1.87303   1.20E-06 

VehValue 0.010849 0.57978 0.03392*  0.082139          

VehAge: oldest -0.087155* 0.05616 -0.07217 0.121852          

VehAge: young 0.080218* 0.06999 0.06843 0.133820          

VehAge: youngest 0.032976   0.54066 -0.08265 0.135853          

VehBody: Convertible -1.285732* 0.06192 -1.68452** 0.017997          

VehBody: coupe -0.281752 0.45251 -0.59998 0.135478          

VehBody: hardtop -0.681688* 0.06285 -0.80505** 0.040529          

VehBody: hatchback -0.857344** 0.01596 -0.99943*** 0.008981          

VehBody: minibus -0.846507** 0.03057 -1.09349*** 0.008780          

VehBody: caravan -0.185297 0.68103 -0.37168 0.439439          

VehBody: panel van -0.774887** 0.04141 -0.80714** 0.047139          

VehBody: roadster -1.183098 0.26534 -1.58475 0.143991          

VehBody sedan: -0.800148** 0.02426 -0.96035** 0.011906          

VehBody: wagon -0.758132** 0.03302 -0.94074** 0.013811          

VehBody: truck -0.850693** 0.02059 -1.00624** 0.010619          

VehBody: utility -0.953084*** 0.00809 -1.14275*** 0.003100            

Gender Male -0.026113 0.43603 -0.01260 0.715212          

DrivAge: older 0.219950*** 5.35E-05 0.19794*** 0.000398          

Figure 2 Summary of each variable in the dataset 
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Coefficient 
Poisson Model 

Estimate  
p-value 

Negative 

Binomial Model 

Estimate 

p-value 

DrivAge: oldest 0.003188 0.96451 -0.01434 0.845080           

DrivAge: working 0.252731*** 3.61E-06 0.22942*** 4.23E-05 

DrivAge: young 0.283497*** 5.40E-07 0.23730*** 4.45E-05 

DrivAge: youngest 0.474964*** 5.31E-13 0.42191*** 5.22E-10          

 

The following is the mathematical model of the ClaimOcc variable (GLM Bernoulli): 

ClaimOcci ~ Bernoulli(exposurei × pi), 

𝑝𝑖 =
1

1 + exp[−(𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝛽4𝑋4𝑖 + 𝛽5𝑋5𝑖)]
 

where all coefficients represent the same variables as the previous model. The value of the coefficients and the p-value 

are displayed in Table 3. The GLM Bernoulli here only predicts the occurrence of claims while the GLM Poisson and 

GLM Negative Binomial predict the number of claims in one year. The values and the signs of coefficient in these three 

models are nearly similar and when one variable is significant in one model, it will also be statistically significant in the 

other two models.  

 
Table 3  Estimated value and p-value of coefficients of GLM Bernoulli 

Coefficient 
GLM Bernoulli 

Model Estimate  
p-value Coefficient 

GLM Bernoulli 

Model Estimate 
p-value 

Intercept -1.18743 0.005492 - - - 

VehValue 0.01197 0.576743 VehBody: roadster -1.21808 0.275441 

VehAge: oldest -0.10567** 0.032899 VehBody sedan: -0.87365** 0.039456 

VehAge: young 0.08043* 0.095590 VehBody: wagon -0.80713* 0.057356 

VehAge: youngest 0.04058 0.486980 VehBody: truck -0.93982** 0.031375 

VehBody: Convertible -1.31929* 0.076933 VehBody: utility -1.03268** 0.016038 

VehBody: coupe -0.31581 0.478468 Gender Male -0.02435 0.503672 

VehBody: hardtop -0.69719 0.109318 DrivAge: older 0.21665*** 0.000215 

VehBody: hatchback -0.90147** 0.033833 DrivAge: oldest -0.02294 0.765959 

VehBody: minibus -0.86457* 0.059439 DrivAge: working 0.25682*** 1.20E-05 

VehBody: caravan -0.16865 0.749724 DrivAge: young 0.28360*** 3.29E-06 

VehBody: panel van -0.78584* 0.079838 DrivAge: youngest 0.51025*** 8.66E-13 

 

In the second part of this section, we are going to build a model for severity loss using Gamma distribution and 

Inverse Gaussian distribution. In total we are going to build four GLM models for severity loss variablewhich are (i) 

GLM Gamma for ClaimIndAmount (ii) GLM Inverse Gaussian for ClaimIndAmount, (iii) GLM Gamma for 

ClaimAmount and (iv) GLM Inverse Gaussian for ClaimAmount. The first two models will be paired with either GLM 

Poisson or GLM Negative Binomial while the last two models will be paired with GLM Bernoulli. Let us discuss the 

first two models. The following are the mathematical models for GLM Gamma and GLM Inverse Gaussian for 

ClaimIndAmount: 

ClaimIndAmounti ~ Gamma(exposurei × µi), 
𝜇𝑖 = exp(𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝛽4𝑋4𝑖 + 𝛽5𝑋5𝑖) 

and 

ClaimIndAmounti ~ Inverse Gaussian(exposurei × µi), 
𝜇𝑖 = 𝛽0 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝛽4𝑋4𝑖 + 𝛽5𝑋5𝑖 

 

where X1 represent vehicle’s value, X2 represents vehicle’s age. X3 represents the vehicle’s body, X4 represents the 

driver’s gender and X5 represents the driver’s age. In the GLM Inverse Gaussian, one might notice that the variable 

vehicle value does not appear as the computation for estimating this value is not convergent. The values of the 

coefficient of these variables are given in Table 4. In both models, there are three variables that are statistically 

significant which are VehAge: oldest cars, Gender and DrivAge: young & youngest. These variables positively 

influence the ClaimIndAmount variable while the other variables do not seem to statistically effect the 

ClaimIndAmount variable.  
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Table 4  Estimated values and p-value of GLM coefficients (GLM Gamma and GLM Inverse Gaussian for ClaimIndAmount) 

Coefficient 
Gamma Model 

Estimate  
p-value 

Inverse Gaussian 

Model Estimate 
p-value 

Intercept 6.718062  < 2E-16 831.23 0.28365 

VehValue 0.025821 0.517770 - - 

VehAge: oldest 0.210023** 0.013621 405.93** 0.01138 

VehAge: young 0.005413 0.947901 61.79 0.62824 

VehAge: youngest -0.032306 0.746818 -91.52 0.50650 

VehBody: Convertible 0.726317 0.559909 1550.18 0.67158 

VehBody: coupe 0.674528 0.346729 881.53 0.35571 

VehBody: hardtop 0.549884 0.432586 708.44 0.40076 

VehBody: hatchback 0.570082 0.402631 714.80 0.35624 

VehBody: minibus 0.704787 0.342865 1128.04 0.33227 

VehBody: caravan -0.632312 0.460149 -490.22 0.53109 

VehBody: panel van 0.385558 0.594048 470.37 0.59592 

VehBody: roadster -1.708179 0.374885 -714.89 0.36876 

VehBody sedan: 0.454461 0.504274 528.74 0.49304 

VehBody: wagon 0.453020 0.506736 484.51 0.53012 

VehBody: truck 0.836438 0.234521 1564.64 0.12662 

VehBody: utility 0.574651 0.404430 835.17 0.30557 

Gender Male 0.149030** 0.016232 175.24* 0.09524 

DrivAge: older 0.109599 0.275668 205.91 0.16619 

DrivAge: oldest 0.169836 0.200814 287.65 0.20351 

DrivAge: working 0.065129 0.518089 61.04 0.65212 

DrivAge: young 0.234654** 0.025121 495.00*** 0.00657 

DrivAge: youngest 0.412275*** 0.000705 849.57*** 0.00238    

 

Next are the mathematical models for GLM Gamma and GLM Inverse Gaussian for ClaimAmount: 

ClaimAmount ~ Gamma(exposurei × µi), 

𝜇𝑖 = exp(𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝛽4𝑋4𝑖 + 𝛽5𝑋5𝑖), 

and 

ClaimAmount ~ Inverse Gaussian(exposurei × µi), 
𝜇𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝛽4𝑋4𝑖 + 𝛽5𝑋5𝑖 , 

 

where X1, X2, …, X5 represent the same variable as in the previous model. The values of the coefficient of these 

variables are given in Table 5. Similar to previous analysis, there are three variables that are statistically significant 

which are VehAge: oldest cars, Gender and DrivAge: young & youngest, which positively influence the ClaimAmount 

variable.  

Finally, we are able to combine the frequency models and the severity models using Eq. (1) to predict the aggregate 

loss for each claim. There are in total six combinations of aggregate model we can obtain which will be analysed in the 

section D. 

 
Table 5  Estimated values and p-value of GLM coefficients (GLM Gamma and GLM Inverse Gaussian for ClaimAmount) 

Coefficient 
Gamma Model 

Estimate  
p-value 

Inverse Gaussian 

Model Estimate 
p-value 

Intercept 6.855627 < 2E-16 1072.15 0.3077 

VehValue 0.022849 0.557256 21.03   0.75535 

VehAge: oldest 0.212712** 0.010399 458.75*** 0.00855 

VehAge: young 0.004958 0.951056 35.59 0.79395 

VehAge: youngest -0.050859 0.602243 -158.05 0.32393 

VehBody: Convertible 0.603086 0.619609 1108.8 0.74672 

VehBody: coupe 0.653401 0.349938 795.88 0.51107 

VehBody: hardtop 0.449294 0.510818 456.18 0.67659 

VehBody: hatchback 0.466622 0.482362 503.77 0.62964 

VehBody: minibus 0.580010 0.423423 865.21 0.52187 

VehBody: caravan 0.710821 0.394516 -804.34 0.44541 
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Coefficient 
Gamma Model 

Estimate  
p-value 

Inverse Gaussian 

Model Estimate 
p-value 

VehBody: panel van 0.261873 0.710466 230.37 0.83817 

VehBody: roadster 1.799608 0.337725 -1007.38 0.35381 

VehBody sedan: 0.370545 0.576603 329.77   0.75145 

VehBody: wagon 0.372265 0.575830 277.65   0.79021 

VehBody: truck 0.743578 0.278470 1420.84 0.25608 

VehBody: utility 0.515608 0.442997 720.88   0.50424 

Gender Male 0.141212** 0.019509 153.48   0.14680 

DrivAge: older 0.114276 0.243787 236.85 0.11590 

DrivAge: oldest 0.185875 0.151092 346.05   0.13862 

DrivAge: working 0.079074 0.421016 77.13    0.57047 

DrivAge: young 0.251975** 0.013665 536.91***   0.00374 

DrivAge: youngest 0.425392*** 0.000338 921.49***  0.00127 

 

C. Frequency and Severity models using GLMM 

In this section, we will now use GLMM to construct both frequency and severity models. The distribution 

assumptions for each response variable are the same as the distribution assumptions in the GLM section. In the first 

part of this section, we are going to build the frequency loss models using variables ClaimNb and ClaimOcc as the 

response variables. The variable VehBody will be designated as the random effect in our GLMM, which comprises 13 

distinct vehicle types. The following is the mathematical model for ClaimNb using GLMM Poisson: 

ClaimNbi,j|ui,0 ~ Poisson (exposurei,j × λi,j|ui,0),  

λ𝑖,𝑗|𝑢𝑖,0 = 𝐞𝐱𝐩(𝛃𝟎 + 𝒖𝒊,𝟎 + 𝜷𝟏𝑿𝟏𝒊,𝒋 + 𝜷𝟐𝑿2 + 𝛃𝟒𝑿𝟒𝒊,𝒋 + 𝛃𝟓𝑿𝟓𝒊,𝒋) 

where X1, X2, X4, X5 are the same variable as previously, ui,0 represents the random effect within VehBody category 

and ui,0 ~ Normal(0,σu2). Notice that we have two subscripts; i represents the VehBody category and j represents the 

observation. The coefficient estimations for this model are given in Table 6. One can see that we have two separate 

estimations: one for fixed effect coefficients and one for random effect coefficients. We also provide prediction intervals 

for random intercepts. In both GLM and GLMM, variables VehAge and DrivAge give statistically significant influence 

on the number of claims. However, for VehBody both models give a different result as there are only Hatchback, Coupe 

and Utility in GLMM that produce statistically significant coefficients while there are ten VehBody classes producing 

statistically significant coefficients in GLM. Next, we are going to build GLMM Negative Binomial for ClaimNb: 

ClaimNbi,j|ui,0 ~ Negative Bin (exposurei,j × µi,j|ui,0),  

𝜇𝑖,𝑗|𝑢𝑖,0 = 𝐞𝐱𝐩(𝜷𝟎 + 𝒖𝒊,𝟎 + 𝜷𝟒𝑿𝟒𝒊,𝒋) 

where X4 represents gender, ui,0 represents the random effect within VehBody category and ui,0 ~ Normal(0,σu2). In this 

model we only have variable gender as the computation of the coefficients is not convergent when other independent 

variables are used. The coefficient estimations for this model are given in Table 7. One can see that in this model, there 

is no significant variable which is different from the result obtained in the GLM Negative Binomial previously.  

 
Table 6  Fixed effect and random effect coefficient estimations in the GLMM Poisson 

Fixed Effect Estimations Random Effect Estimations 

Coefficient 
GLMM Poisson 

Model Estimate  

VehBody 

Class 
Estimation Lower Upper 

Intercept -2.038411 Bus 0.06330 -0.17539 0.302003 

VehValue 0.011976 Convertible -0.03062 -0.26764 0.206404 

VehAge: oldest -0.081770* Coupe 0.22708*   0.04354 0.410623 

VehAge: young 0.076673* Hardtop 0.04970 -0.10050 0.199899 

VehAge: youngest 0.027530 Hatchback -0.08898* -0.14713 -0.03083 

Gender Male -0.027850 Minibus -0.03255 -0.22709 0.161989 

DrivAge: older 0.219236*** Caravan 0.07979 -0.15220 0.311788 

DrivAge: oldest 0.002299 Panel van -0.00610 -0.18821 0.176022 

DrivAge: working 0.251408*** Roadster -0.00804 -0.25124 0.235163 

DrivAge: young 0.281729*** Sedan -0.03635 -0.08980 0.017096 

DrivAge: youngest 0.472538*** Wagon 0.00259 -0.05721 0.062391 

- - Truck -0.05532 -0.20611 0.095473 

- - Utility -0.15067* -0.26346 -0.03789 
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Table 7  Fixed effect and random effect coefficient estimations in the GLMM Negative Binomial 

Fixed Effect Estimations Random Effect Estimations 

Coefficient 
GLMM NB 

Model Estimate  

VehBody 

Class 
Estimation Lower Upper 

Intercept -1.81084 Bus 3.40E-04 -0.02400 0.024684 

Gender Male -0.04075 Convertible -1.18E-04 -0.02446 0.024225   

- - Coupe 2.42E-03 -0.02188 0.026729   

- - Hardtop 1.02E-03 -0.02323 0.025273 

- - Hatchback -2.38E-03 -0.02567 0.020912 

- - Minibus -3.69E-04 -0.02468 0.023938 

- - Caravan 5.23E-04 -0.02382 0.024862 

- - Panel van 6.62E-05 -0.02423 0.024365 

- - Roadster -5.55E-05 -0.02440 0.02429 

- - Sedan -2.39E-03 -0.02551 0.020730 

- - Wagon 4.34E-03 -0.01909 0.027776 

- - Truck -4.98E-04 -0.02474 0.023745 

- - Utility -2.90E-03 -0.02699 0.021184 

 

For the last model for frequency loss modeling, we will look at variable ClaimOcc that will be modeled using GLMM 

Bernoulli. The following is the mathematical model of ClaimOcc using GLMM Bernoulli: 

ClaimNbi,j|ui,0 ~ Bernoulli (exposurei,j × pi,j|ui,0),   

𝑝𝑖,𝑗|𝑢𝑖,0 =  
1

1 + exp[−(𝛽0 + 𝑢𝑖,0 + 𝛽1𝑋1𝑖,𝑗 + 𝛽2𝑋2𝑖,𝑗 + 𝛽4𝑋4𝑖,𝑗 + 𝛽5𝑋5𝑖,𝑗)]
 

where pi,j|ui,0 represents the probability there will be a claim in the following period given a polis coming from a certain 

vehicle’s body. Other variables represent the same meaning as previous models. The values of parameters can be seen 

in Table 8. As expected, in this model, significant variables are the same as the ones obtained in the GLM Bernoulli 

previously. However, for GLMM Bernoulli produces statistically significant on VehBody types: Hatchback, Coupe and 

Utility. This fact also occurs in GLMM Poisson. 

 
Table 8  Fixed effect and random effect coefficient estimations in the GLMM Bernoulli 

Fixed Effect Estimations Random Effect Estimations 

Coefficient 
GLMM NB 

Model Estimate  

VehBody 

Class 
Estimation Lower Upper 

Intercept -2.00317 Bus 0.05661 -0.19236 0.305577 

VehValue 0.01360 Convertible -0.02832 -0.27557 0.218932 

VehAge: oldest -0.09899** Coupe 0.21823* 0.02218 0.414282 

VehAge: young 0.07642 Hardtop 0.07098 -0.08977 0.231726 

VehAge: youngest 0.03399 Hatchback* -0.07941 -0.14190 -0.016930 

Gender Male -0.02663 Minibus -0.01911 -0.22391 0.185691 

DrivAge: older 0.21603*** Caravan 0.07918 -0.16337 0.321733 

DrivAge: oldest -0.02400 Panel van 0.01252 -0.18102 0.206057 

DrivAge: working 0.25569*** Roadster -0.00750 -0.26053 0.245530 

DrivAge: young 0.28180*** Sedan -0.05500 -0.11322 0.003221 

DrivAge: youngest 0.50751*** Wagon 0.00640 -0.05846 0.071254 

- - Truck -0.07425 -0.23608 0.087588 

- - Utility -0.16828* -0.28921 -0.047350 

 

After frequency loss random variables, we are now ready to model severity random variables using GLMM. As 

before, we are going to assume that this response variable is either Gamma distribution or Inverse Gaussian 

distribution. The variable VehBody will still be employed as the random effect in our GLMM assumption. As before, 

we are going to build four GLMMs which are (i) GLMM Gamma for ClaimIndAmount (ii) GLMM Inverse Gaussian for 

ClaimIndAmount, (iii) GLMM Gamma for ClaimAmount and (iv) GLMM Inverse Gaussian for ClaimAmount. The 

following is the first GLMM which models ClaimIndAmount response variable using Gamma distribution: 

ClaimIndAmounti,j|ui,0 ~ Gamma (exposurei,j × µi,j|ui,0), 

𝜇𝑖,𝑗|𝑢𝑖,0 = 𝐞𝐱𝐩(𝜷𝟎 + 𝒖𝒊,𝟎 + 𝜷𝟒𝑿𝟒𝒊,𝒋 + 𝜷𝟓𝑿𝟓𝒊,𝒋) 
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where the values of parameters can be seen in Table 9. Note that there are only variable gender and DrivAge as 

independent variables as the computation of coefficients is not convergent when other independent variables are used. 

As previously observed, variable DrivAge gives statistically significant estimations and for random effect intercept, it is 

only VehBody: Sedan that gives a statistically significant influence. This observation is not obtained in the GLM.  

We are still using the same variable, which is ClaimIndAmount modeled using GLMM Inverse Gaussian: 

ClaimIndAmounti,j|ui,0 ~ Inverse Gaussian (exposurei,j × µi,j|ui,0), 

𝜇𝑖,𝑗|𝑢𝑖,0 = 𝜷𝟎 + 𝒖𝒊,𝟎 + 𝜷𝟐𝑿𝟐𝒊,𝒋 + 𝜷𝟒𝑿𝟒𝒊,𝒋 + 𝜷𝟓𝑿𝟓𝒊,𝒋 

where the values of parameters can be seen in Table 10. In this scenario, variablesVehAge, Gender and DrivAge are 

all significant. For random effect intercept, we do not find statistically significant VehBody variables. Next are the final 

two GLMMs which are GLMM Gamma for ClaimAmount and GLMM Inverse Gaussian for ClaimAmount. Consider 

the following model: 

ClaimAmounti,j|ui,0 ~ Gamma (exposurei,j × µi,j|ui,0), 

𝜇𝑖,𝑗|𝑢𝑖,0 = 𝐞𝐱𝐩(𝜷𝟎 + 𝒖𝒊,𝟎 + 𝜷𝟒𝑿𝟒𝒊,𝒋 + 𝜷𝟓𝑿𝟓𝒊,𝒋) 

where the values of parameters βj can be seen in Table 11. Similar to the model of ClaimIndAmount, only variable 

Gender and variable DrivAge are used. As previously observed, variable DrivAge gives statistically significant 

estimations and for random effect intercept, VehBody: Sedan and Truck give a statistically significant influence to the 

amount of total claim. The final model of GLMM is the following: 

ClaimAmounti,j|ui,0 ~ Inverse Gaussian (exposurei,j × µi,j|ui,0), 

𝜇𝑖,𝑗|𝑢𝑖,0 = 𝜷𝟎 + 𝒖𝒊,𝟎 + 𝜷𝟏𝑿𝟏𝒊,𝒋 + 𝜷𝟐𝑿𝟐𝒊,𝒋 + 𝜷𝟒𝑿𝟒𝒊,𝒋 + 𝜷𝟓𝑿𝟓𝒊,𝒋 

where all independent variables are used in this equation. Notice that almost all variables are significant here, which 

was not obtained in the GLM. In Table 12, one can see the value of the coefficients and also the value of the random 

effect intercepts. In our final step, we shall combine the frequency models and the severity models using Eq. (1) to 

predict the aggregate loss for each claim. We will also mix GLM for frequency and GLMM for severity (and the other 

way around) to find the best possible combination.  

 
Table 9  Fixed effect and random effect coefficient estimations in the GLMM Gamma for ClaimIndAmount 

Fixed Effect Estimations Random Effect Estimations 

Coefficient 
GLMM NB 

Model Estimate  

VehBody 

Class 
Estimation Lower Upper 

Intercept 8.53781 Bus -0.50831 -5.78712 4.770513 

Gender Male 0.04338 Convertible -0.08698 -7.31079 7.136832 

DrivAge: older 0.11089** Coupe 0.192755 -1.79423 2.179746 

DrivAge: oldest 0.21496*** Hardtop -0.40618 -1.90424 1.091875 

DrivAge: working 0.14607 Hatchback 0.277009 -0.20806 0.762076 

DrivAge: young -0.06748 Minibus -0.25727 -2.81427 2.29972 

DrivAge: youngest 1.19158*** Caravan -1.35027 -5.54655 2.846014 

- - Panel van -0.50836 -2.66172 1.645004 

- - Roadster -0.57690 10.1986 9.044853 

- - Sedan* 1.024874 0.57476 1.474991 

- - Wagon 0.061528 -0.4401 0.563152 

- - Truck 1.766746 0.17650 3.3570 

- - Utility 0.163042 -0.89274 1.21883 

 

Table 10  Fixed effect and random effect coefficient estimations in the GLMM Inverse Gaussian for ClaimIndAmount 

Fixed Effect Estimations Random Effect Estimations 

Coefficient 
GLMM NB 

Model Estimate  

VehBody 

Class 
Estimation Lower Upper 

Intercept 1525.78 Bus -5.3364 -261.809 251.1357 

VehAge: oldest 410.96*** Convertible 5.6984 -251.124 262.5207 

VehAge: young 33.98 Coupe 12.9538 -235.875 261.7823 

VehAge: youngest -68.27* Hardtop 2.56240 -237.978 243.1028 

Gender Male 207.57*** Hatchback 17.7452 -144.312 179.8023 

DrivAge: older 143.74*** Minibus 15.5536 -236.765 267.8721 

DrivAge: oldest 261.77*** Caravan -23.5854 -278.430 231.2594 

DrivAge: working 87.81*** Panel van -15.7239 -265.229 233.7810 

DrivAge: young 482.50*** Roadster -3.20070 -260.304 253.9025 
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Fixed Effect Estimations Random Effect Estimations 

Coefficient 
GLMM NB 

Model Estimate  

VehBody 

Class 
Estimation Lower Upper 

DrivAge: youngest 860,89*** Sedan -107.3980 -249.069 34.27233 

- - Wagon -139.0340 -293.423 15.35461 

- - Truck 81.8874 -163.360 327.1350 

- - Utility 21.8250 -206.700 250.3495 

 

Table 11  Fixed effect and random effect coefficient estimations in the GLMM Gamma for ClaimAmount 

Fixed Effect Estimations Random Effect Estimations 

Coefficient 
GLMM NB 

Model Estimate  

VehBody 

Class 
Estimation Lower Upper 

Intercept 8.56653 Bus -0.48320 -5.69532 4.728927 

Gender Male 0.04013 Convertible -0.10399 -7.22703 7.019049 

DrivAge: older 0.10949* Coupe 0.27336 -1.69111 2.237824 

DrivAge: oldest 0.21191*** Hardtop -0.42324 -1.90445 1.057977 

DrivAge: working 0.14972 Hatchback 0.26404 -0.21563 0.743707 

DrivAge: young -0.05976 Minibus -0.27457 -2.80222 2.253080 

DrivAge: youngest 1.18466*** Caravan -1.33241 -5.47800 2.813193 

- - Panel van -0.52902 -2.65789 1.599854 

- - Roadster -0.56910 -10.0357 8.897519 

- - Sedan* 1.00578 0.56067 1.450883 

- - Wagon 0.05571 -0.44033 0.551750 

- - Truck 1.74183* 0.16948 3.314171 

- - Utility 0.16824 -0.87573 1.212223 

 

Table 12 Fixed effect and random effect coefficient estimations in the GLMM Inverse Gaussian for ClaimAmount 

Fixed Effect Estimations Random Effect Estimations 

Coefficient 
GLMM NB 

Model Estimate  

VehBody 

Class 
Estimation Lower Upper 

Intercept 1592.162 Bus -3.82812 -257.689 250.0328 

VehValue 4.926 Convertible 4.469663 -249.721 258.6604 

VehAge: oldest 449.115*** Coupe 19.09163 -227.798 265.9815 

VehAge: young 17.618 Hardtop -3.58631 -242.426 235.2535 

VehAge: youngest -115.381*** Hatchback 3.06473 -158.742 164.8711 

Gender Male 196.253*** Minibus 12.08509 -237.997 262.1673 

DrivAge: older 163.425*** Caravan -23.3178 -275.659 229.0239 

DrivAge: oldest 306.685*** Panel van -18.1483 -265.473 229.1758 

DrivAge: working 109.733*** Roadster -3.30986 -257.719 251.099  

DrivAge: young 536.887*** Sedan -105.94 -249.528 37.64719 

DrivAge: youngest - 931.585*** Wagon -133.779 -290.623 23.06512 

- - Truck 82.68164 -160.559 325.9227 

- - Utility 36.00448 -191.84  263.8493 

 
D. Results 

In this section, we are going to predict the total claim of each policy using each model derived from previous sections. 

The frequency of claim has been modeled by either GLM and GLMM and so is the severity of claim. Thus, we shall 

have four combinations i.e. (i) GLM for both frequency and severity of claim, (ii) GLM for frequency of claim and 

GLMM for severity of claim, (iii) GLMM for frequency of claim and GLM for severity of claim and (iv) GLMM for both 

frequency and severity of claim. Also, recall that GLM/GLMM Bernoulli will be paired with ClaimAmount while other 

frequency random variables will be paired with ClaimIndAmount.  

In Table 13, one can see in the first group that the combination between GLM Bernoulli and GLM Gamma gives the 

smallest RMSE and MAE with RMSE = 1021,55 and MAE = 250,824. The smallest RMSE and smallest MAE in the 

second group are obtained by the combination of GLM Bernoulli and GLMM Inverse Gaussian. The RMSE value 
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obtained is 1021,64 while the MAE obtained is 251,7. In the next two groups, the combination between GLMM Poisson 

and GLM Gamma provides the smallest RMSE and MAE with RMSE = 1021,8 and MAE = 252,618 while the 

combination between GLMM Poisson and GLMM Inverse Gaussian finds the the smallest RMSE and MAE with RMSE 

= 1021,64 and MAE = 251,704.  

Of all models, the combination between GLM Bernoulli and GLM Gamma produces the smallest RMSE and MAE. We 

can conclude that generalization of GLM to GLMM does not improve our predictions as the smallest error was 

obtained using GLM methodology on both frequency and severity models. However, we have interesting observations 

related to the distribution of observed variables. When using GLM on frequency models, it seems that Binomial 

Distribution is more favorable other than Poisson or Negative Binomial distributions. As for the severity, Gamma 

distribution is more helpful than Inverse Gaussian. However, if GLMM is used, Poisson Distribution for frequency 

random variable and Inverse Gaussian for severity random variable are more accurate.  

In the previous analysis, the accuracy of model is measured using the difference between the actual value of the total 

claim and the predicted value of the total claim. Each difference is calculated for each policy and will be averaged. This 

measurement is not wrong but is rather imprecise, because it is very difficult to predict the total claim in the individual 

level. Next, we are going to measure the accuracy of the model using the aggregate total of claim of all policies. In Table 

14, we have chosen one combination of models according to the smallest RMSE dan MAE of each group. We then shall 

calculate the total claim of all policies along with its averages, which will be compared with the actual values. 

Moreover, we shall also illustrate the distribution of predicted values of the chosen models in each group using boxplot 

in Figure 3.  

From Table 14, it shows that the combination between GLMM Poisson and GLM Gamma gives the closest 

measurement with the actual value. It indicates that the model is able to predict the total reserve of the insurance 

company. This amount of money must be available in the following year such that all claims can be paid to the policy 

holder. The average of all claim amount is also provided and can be used to calculate premium charged to policy 

holders in the next period. However, as shown in Figure 3, even though the sum and the average are very close to the 

actual value, the distribution of actual claim amount is very different from each distribution of the predicted claim 

amount obtained from each model. The actual data is left skewed as there are so many zero claims. The same 

conclusion also applies here, in which that GLM and GLMM produce generally the same measurement. Thus, 

generalization of GLM to GLMM does not improve our predictions. 
 

Table 13 Accuracy metrics of all combinations of GLM/GLMM 

 Frequency Model  Severity Model RMSE MAE 

(i) 

GLM Poisson GLM Gamma (Ind) 1,021.77 252.458 

GLM Poisson GLM Inverse Gaussian (Ind) 1,021.97 252.916 

GLM Negative Binomial GLM Gamma (Ind) 1,021.73 258.338 

GLM Negative Binomial GLM Inverse Gaussian (Ind) 1,021.81 258.740 

GLM Bernoulli GLM Gamma  1,021.55 250.824 

GLM Bernoulli GLM Inverse Gaussian 1,021.68 251.247 

(ii) 

GLM Poisson GLMM Gamma (Ind) 1,723.60 947.049 

GLM Poisson GLMM Inverse Gaussian (Ind) 1,544.50 958.627 

GLM Negative Binomial GLMM Gamma (Ind) 1,624.28 899.205 

GLM Negative Binomial GLMM Inverse Gaussian (Ind) 1,021.90 253.339 

GLM Bernoulli GLMM Gamma 1,021.74 259.345 

GLM Bernoulli GLMM Inverse Gaussian 1,021.64 251.704 

(iii) 

GLMM Poisson GLM Gamma (Ind) 1,021.80 252.618 

GLMM Poisson GLM Inverse Gaussian (Ind) 1,022.59 255.399 

GLMM Negative Binomial GLM Gamma (Ind) 1,032.62 380.324 

GLMM Negative Binomial GLM Inverse Gaussian (Ind) 1,022.03 253.135 

GLMM Bernoulli GLM Gamma 1,022.86 256.123 

GLMM Bernoulli GLM Inverse Gaussian 1,032.91 381.263 

(iv) 

GLMM Poisson GLMM Gamma (Ind) 1,736.10 950.504 

GLMM Poisson GLMM Inverse Gaussian (Ind) 1,021.94 253.459 

GLMM Negative Binomial GLMM Gamma (Ind) 1,618.33 944.081 

GLMM Negative Binomial GLMM Inverse Gaussian (Ind) 1,022.73 256.410 

GLMM Bernoulli GLMM Gamma 2,542.14 1754.60 

GLMM Bernoulli GLMM Inverse Gaussian 1,032.61 382.038 
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Table 14 Comparison between aggregate claim in the actual data and aggregate claim resulted from predictive models 

  
Sum of total 

claim 

Mean of 

total claim 

- Actual Data 1.874.898 138.154 

(i) GLM Bernoulli – GLM Gamma  1.845.701 136.003 

(ii) GLM Bernoulli – GLMM Inverse Gaussian  1.861.801 137.190 

(iii) GLMM Poisson – GLM Gamma 1.876.832 138.297 

(iv) GLMM Poisson – GLMM Inverse Gaussian 1.891.640 139.388 

IV. CONCLUSIONS AND SUGGESTIONS 
In this paper, we discuss statistical models to predict claim counts and claim amounts. We use vehicle value, vehicle 

age, type of vehicle, gender of the driver, and driver's age as covariates for our GLMs. Specifically, we employ Poisson 

and Negative Binomial distributions for claim counts and the Bernoulli distribution for claim occurrence. For claim 

amounts, we use the Gamma and Inverse Gaussian distributions. A significant contribution of this paper is the 

inclusion of random effects in the model for both claim counts and claim amounts, allowing for underlying dependency 

patterns. Using the same datasets, we compare the model estimation and results of the GLMs with those of GLMMs. 

For claim count prediction using GLMs, the Bernoulli distribution proves to be more favorable than either the 

Poisson or Negative Binomial distributions. Regarding claim amounts, the Gamma distribution is more effective than 

the Inverse Gaussian distribution. However, when using GLMMs, the Poisson distribution for claim counts and the 

Inverse Gaussian distribution for claim amounts yield more accurate results. Although generalizing GLMs to GLMMs 

does not significantly improve our predictions, we hope our modeling framework for claim counts and claim amounts 

will become a valuable tool for determining pure premiums for future claims. 

For future research, we suggest implementing zero-inflated models, as more than 90% of the data consists of zero 

claims, and utilizing Generalized Additive Models (GAMs) to capture potential non-linear relationships and 

interactions among covariates. 
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