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ABSTRACT ⎯ Air quality significantly impacts global environmental health, influencing both human well-being and climate change. 

According to the World Health Organization (WHO), air pollution is one of the most substantial environmental threats to human health, 

with Indonesia experiencing particularly severe air quality issues. The World Air Quality Report ranks Indonesia 14th globally and 1st 

in Southeast Asia for poor air quality, with a notable increase in PM2.5 concentrations to 37.1 µg/m³ in 2023. Major sources of pollution 

include coal-fired power plants, motor vehicles, forest fires, and agricultural activities. In urban areas like Surabaya, PM2.5 levels have 

risen, contributing to high incidences of Acute Respiratory Infections (ARI). Spatial analysis reveals a correlation between PM2.5 levels 

and ARI cases, with spatial regression and co-kriging methods offering accurate estimation models. This study utilizes co-kriging, 

incorporating PM2.5 data from nine districts in Surabaya, to estimate ARI cases. The Exponential semivariogram model provided the 

most accurate predictions, with a MAPE value of 5.11%. The highest estimated ARI cases were in the Kenjeran district, highlighting the 

need for targeted interventions. Future research should expand observation points and consider additional influencing factors such as 

weather, population density, and socioeconomic conditions to enhance prediction accuracy and support effective public health 

strategies. 
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I. INTRODUCTION 

Air quality is a global environmental issue that significantly affects the quality of life for living beings. According to 

the World Health Organization (WHO) [1],air pollution is one of the largest environmental threats to human health. Also, 

poor air quality directly impacts the environment, such as causing climate change. Based on the World Air Quality Report 

[2], Indonesia ranks 14th globally and 1st in Southeast Asia for the worst air quality. Indonesia's average annual PM2.5 

concentration sharply increased in 2023 to 37.1 µg/m³, a rise of more than 20% compared to 2022. According to Law No. 

23 of 2007 on Environmental Pollution, air pollution is caused by human activities such as emissions from factories, motor 

vehicles, burning trash, agricultural residues, and natural events like forest fires and volcanic eruptions that release dust, 

gas, and ash clouds. Most air pollutants in Indonesia come from coal-fired power plants, forest fires, and peatland 

clearing for agricultural development [2]. Acute air pollution occurs during the dry season, typically from July to 

September, but it can be influenced by changing meteorological conditions. 

Emissions from the combustion of motor vehicle fuels also cause air pollution. Urban areas are the largest emitters 

of carbon emissions from motor vehicle combustion. One metropolitan city with serious air quality issues is Surabaya. 

The average PM2.5 concentration in Surabaya in 2023 ranked 11th in Indonesia, with an average of 27.6 µg/m³, which falls 

into the moderate category [2]. The PM2.5 concentration in Surabaya has tended to increase in 2023 and 2024, warranting 

caution. According to WHO [1], there are 7 million premature deaths each year due to the combined effects of outdoor 

and household air pollution, with millions more falling ill from breathing polluted air. According to the WHO Global 

Air Quality Guidelines [2], fine particulate matter (PM2.5) can penetrate the lungs and enter the bloodstream, affecting all 

major organs. Exposure to PM2.5 can cause cardiovascular and respiratory diseases, such as stroke, lung cancer, and 

chronic obstructive pulmonary disease (COPD). Air pollution is the fourth leading cause of premature death worldwide, 

accounting for 29% of lung cancer deaths, 17% of acute respiratory infection deaths, and 43% of COPD deaths. 

The increase in air pollution has had a negative impact on health, especially concerning respiratory diseases. 

According to Nanik Sukristina, the Head of the Surabaya Health Office [3], cases of Acute Respiratory Infections (ARI) 

in Surabaya reached 174,222 during the first semester of 2023. This data is cumulative from all health service facilities in 

Surabaya. This figure shows that ARI cases are very high, having increased significantly compared to the same period in 

2022. The implementation of Sustainable Development Goals (SDGs) in addressing diseases caused by air pollution is 

crucial to achieving global health goals holistically. This relates to SDG Goal 3: Good Health and Well-being and Target 

3.9: Reducing illnesses and deaths from hazardous chemicals and pollution. To address this issue, efforts to reduce 

pollution and promote a clean environment are essential. This aligns with several other SDG targets, such as Goal 6 

(Clean Water and Sanitation), Goal 7 (Affordable and Clean Energy), and Goal 13 (Climate Action), as pollution in water, 

air, and energy are major causes of health and environmental issues. 

Observations of ARI cases and PM2.5 concentrations in Surabaya indicate a spatial dependency. This shows a 

correlation between the number of ARI cases and PM2.5 concentration conditions in Surabaya, viewed from spatial 

characteristics such as patterns, size, distance, and regional conditions. Furthermore, each observation location in 

Surabaya has its unique characteristics regarding ARI data and PM2.5 concentrations, requiring better analysis than linear 

regression. Spatial regression can be used as a solution for modeling data with spatial elements. Spatial regression is a 
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statistical method developed from classical linear methods due to the influence of location or spatial factors on the 

analyzed data [4]. Therefore, spatial analysis is a suitable method for estimating the number of ARI cases in Surabaya. 

To estimate data at unsampled locations, a technique is needed. One geostatistical technique used for estimation and 

interpolation of data at unsampled locations is called kriging. Several common kriging methods include ordinary kriging 

and co-kriging [5]. Estimating unobserved ARI cases in Surabaya can be done using spatial analysis methods. With PM2.5 

concentration as secondary data in estimating ARI cases, spatial analysis with the co-kriging method is required. Co-

kriging is a method that not only relies on spatial correlation but also utilizes secondary control data as a corrector for 

the primary attribute to be estimated [6]. The co-kriging method involves two variables in performing spatial 

interpolation [7]. The co-kriging method was chosen in the study [8] because it is considered more accurate than the 

kriging method. 

Previous studies have provided a foundation for further analysis. For example, a study by [8] on the application of 

kriging and co-kriging in spatial estimation of groundwater quality parameters with Sodium Adsorption Ratio (SAR) as 

the primary variable and Chloride (𝐶𝑙) as the secondary variable showed that the co-kriging method is more accurate 

than the kriging method. However, both methods generally had appropriate accuracy for estimating SAR and 𝐶𝑙 based 

on water salinity parameters. A study by [9] on estimating NO2 concentration using the co-kriging method in Jakarta 

with NO2 content as the primary variable and SO2 content as the secondary variable in eight Jakarta areas showed that 

NO2 content in Tanjung Priok, a coastal area, significantly deviated from estimates in other Jakarta areas, ranking highest 

among the locations studied, with GBK showing the lowest content with co-kriging estimates. Then, a study by [10] on 

applying the co-kriging method in predicting monthly rainfall in West Java with rainfall as the primary variable and 

elevation as the secondary variable also showed that applying the co-kriging method with rainfall as the primary variable 

and elevation as the secondary variable produced satisfactory results. 

Based on explanations from previous studies and the background described, the researcher is interested in estimating 

the number of respiratory disease cases related to air quality in Surabaya using the co-kriging method. This study is 

expected to enhance the researcher's knowledge of co-kriging and its application and serve as a reference for future 

research. 

 

II. LITERATURE REVIEW 
A. Particulate Matter 2.5 

Particulate Matter (PM) is a type of hazardous pollutant that varies in size and can cause increased mortality due to 

exposure to air pollution. Particulate Matter 2.5 (PM2.5), also known as fine particle, is a type of particulate matter that is 

very small in size and can cause various diseases. When inhaled into the body, it can penetrate into the lower respiratory 

tract and can pass through the bloodstream [11]. 

Particulate Matter 2.5 (PM2.5) is airborne particles that have a size ≤ 2.5μm that can be inhaled, cannot be filtered in the 

upper respiratory system, and settles in the respiratory tract until it reaches the lungs. Particulate Matter 2.5 (PM2.5) comes 

from various sources such as the combustion of motor vehicle fuel to forest fires [12]. According to the World Health 

Organization (WHO), PM2.5 can also cause respiratory tract infections (URI), lung cancer, cardiovascular disease, 

premature death and chronic obstructive pulmonary disease  

 
B. Acute Respiratory Infection (ARI) 

Acute Respiratory Infection (ARI) is an infection that occurs in a component of the respiratory tract. ARI consists of 

upper respiratory tract infections or upper respiratory tract infections (URTI) and lower respiratory tract infections or 

lower respiratory tract infections (LRTI). URTI is associated with infections in or above the larynx [13]. ARI includes 

rhinitis, pharyngitis, epiglottitis, tonsillitis, and laryngitis. Symptoms of ARI generally include cough, sore throat, runny 

nose, stuffy nose, headache, mild fever, facial pressure, sneezing and myalgia. The onset of symptoms usually begins one 

to three days after exposure and lasts for 7–10 days, and can last up to 3 weeks [14]. Meanwhile, LRTI is an infection that 

occurs below the larynx and includes bronchitis, bronchiolitis and pneumonia. 
ARI causes inflammation of the respiratory tract, from the nose to the lungs. This condition can be caused by viral and 

bacterial infections which spread very easily, such as through the sufferer's droplets. ARI is very easily transmitted and 

can be experienced by anyone, especially children and the elderly. The cause of ARI according to [15] is caused by viruses 

such as rhinoviruses, RSV, adenovirus, influenza virus or parainfluenza virus. Apart from viruses, there are several types 

of bacteria that can also cause ARI, including streptococcus and staphylococcus aureus. 

There are several factors that can increase a person's risk of contracting ARI, including children under 5 years old or 

elderly and someone who has a weak immune system. This is because a weak immune system will find it difficult to 

fight bacteria and viruses that enter the body, making it susceptible to disease. Apart from that, someone who has a 

smoking habit or is a passive smoker is also at risk of developing ARI because they are often exposed to direct cigarette 

smoke which can irritate the respiratory tract [16]. Another cause that can increase a person's exposure to ARI is frequent 

exposure to air pollution. This is because dangerous substances that enter through the nose as a result of air pollution 

can settle in the respiratory tract so that they can irritate and cause ARI [17]. 
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C. Spatial Data 

Spatial data is data resulting from measurements that include information about the location and measurement of an 

object. This information is usually presented in the form of the geographical position of the object and its relationship 

with other objects, using coordinate points and areas. According to [18], spatial data falls into the category of dependent 

data because it is collected from different spatial locations, indicating a dependency between the data measurements and 

the location. Spatial data allows us to obtain information about the geographic coordinates of each area, as displayed in 

the form of maps or satellite images. 

The difference between spatial data and other types of data is local (spatial) information and descriptive (attribute) 

information. Local (spatial) information relates to coordinates such as geographic coordinates (latitude and longitude) 

and coordinates, including projection and datum information. Descriptive (attribute) or non-spatial information is 

information related to a specific location, such as population, vegetation types, and so on [19]. 

 
D. Experimental Semivariogram 

In the co-criging analysis, a variogram is performed to evaluate the correlation between the difference in observed 

values and the distance between the corresponding observation points [20]. The experimental auto-covariance equation 

can be defined as follows 

𝐶1(ℎ) =
1

𝑁(ℎ)
∑(𝑈𝑖 − �̅�)(𝑈𝑖+ℎ − �̅�)

𝑁(ℎ)

𝑖=1

(1) 

𝐶2(ℎ) =
1

𝑁(ℎ)
∑(𝑉𝑖 − �̅�)(𝑉𝑖+ℎ − �̅�)

𝑁(ℎ)

𝑖=1

(2) 

where, 

𝐶1(ℎ) = auto-covariance value of the primary variable (𝑢) at distance ℎ 

𝐶2(ℎ) = auto-covariance value of the secondary variable (𝑣) at distance ℎ 

𝑈𝑖 = observation value of the primary variable (𝑢) at point 𝑖 

𝑈𝑖+ℎ = observation value of the primary variable (𝑢) at point 𝑖 + ℎ 

𝑉𝑖 = observation value of the secondary variable (𝑣) at point 𝑖 

𝑉𝑖+ℎ = observation value of the secondary variable (𝑣) at point 𝑖 + ℎ 

𝑁(ℎ) = the number of pairs of points that have distance ℎ 

The experimental cross-covariance equation can be defined as follows: 

𝐶12(ℎ) =
1

𝑁(ℎ)
∑(𝑈𝑖 − �̅�)(𝑉𝑖+ℎ − �̅�)

𝑁(ℎ)

𝑖=1

(3) 

where, 

𝐶12(ℎ) = cross-covariance value of the primary variable (𝑢) and secondary variable (𝑣) at distance ℎ 

 
E. Theoritical Semivariogram 

The experimental auto and cross covariances generated from the data often have irregular patterns, making them 

difficult to understand and cannot be used directly. Therefore, structural analysis is required to match the experimental 

covariance with the theoretical covariance [21]. 

According to McBratney [22], there are three theoretical covariance models that are often used in co-kriging analysis, 

namely the spherical, exponential, and gaussian models. The form of the three models can be defined as follows. 

1.) Spherical Model 

𝐶(ℎ) =

{
 
 

 
 

(

𝑃 + 𝑄                                  ; ℎ = 0

𝑃 + 𝑄) {1 − 1,5 (
ℎ

𝑟
) − 0.5 (

ℎ

𝑟
)
3

}        ; 0 ≤ ℎ ≤ 𝑟

0                                      ; ℎ > 𝑟

(4) 

2.) Exponential Model 

𝐶(ℎ) = (𝑃 + 𝑄) [1 − 𝑒𝑥𝑝 (−
ℎ

𝑟
)] (5) 

3.) Gaussian Model 

𝐶(ℎ) = (𝑃 + 𝑄) [1 − 𝑒𝑥𝑝 (−
ℎ

𝑟
)
2

] (6) 

where, 

𝑃 (nugget effect) = approximation of auto covariance and cross covariance values at distances around zero 

𝑄 (sill)  = maximum value which achieved by auto covariance and cross covariance 

𝑟 (range)  = distance when the covariance has achieved its maximum value 
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F. Co-Kriging Method 

Co-Kriging is an extension of the kriging method that uses more than one variable. The Co-Kriging method is an 

estimation method that minimizes the variance of the estimation error by utilizing the cross-correlation between two 

variables, namely the main variable (primary) and additional variables (secondary) [23]. The primary variable is the main 

variable used to interpolate while the secondary variable is a supplementary variable as additional data for the primary 

variable in order to obtain more accurate estimation results. Co-Kriging estimation is a linear combination of the main 

and auxiliary variable data expressed as follows: 

�̂�0 =∑𝑎𝑖𝑢𝑖

𝑛

𝑖=1

+∑𝑏𝑗𝑣𝑗

𝑚

𝑖=1

(7) 

where, 

�̂�0   = estimated 𝑢 at location 0 

𝑢1, 𝑢2, … , 𝑢𝑛   = main variable data at 𝑛 locations 

𝑣1, 𝑣2, … , 𝑣𝑛  = auxiliary variable data at m locations 

𝑎1, 𝑎2, … , 𝑎𝑛  = main variable weights 

𝑏1, 𝑏2, … , 𝑏𝑛  = main variable weights 

   

III. METHODOLOGY 
A.  Data Source 

The data used in this research is secondary data obtained from the January 2024 Air Quality Report on the Nafas app 

and the Surabaya One Data website. The data includes air quality information in Surabaya and the number of respiratory 

system diseases in Surabaya as in December 2023. 

 
B.  Research Variables 

Research variables are aspects possessed by the research subjects, which can be individuals, objects, or events, gathered 

from the research subjects to describe the condition or characteristics of each research subject. In this study, there are two 

variables: primary variables and secondary variables. The variables and their operational definitions used in this research 

are listed in Table 1 as follows: 
Table 1 Research of Variables 

No. Variables Operational Definition 

1 Primary Variable 
Number of ARI Cases at 9 Community Health Centers 

in Surabaya 

2 Secondary Variables PM2.5 at 9 Stations in Surabaya 

3 Variable Distance Longitude and latitude coordinates of each region 

 
C. Analysis Steps 

The process of data analysis in this study is as follows: 

1. Pre-process data before analyzing using Co-Kriging Method. 

2. Test the spatial autocorrelation assumption using the Moran I test. 

3. Test the correlation assumption using the Pearson Correlation test. 

4. Estimate model with the Co-Kriging method which begins with the calculation of the matrix 𝒉𝒊𝒋. 

5. Determine the model of the experimental semovariograms and determine the values of 𝑷 (nugget), 𝑸 (sill), 

and 𝒓 (range) on each experimental semivariogram. 

6. Determine theoretical semovariograms with three models: spherical, exponential, and gaussian. 

7. Predict In-Sample and Out-Sample data on each theoretical semivariograms model. 

8. Compare the performance of the most optimal semivariogram model with minimum MAPE. 

9. Interpolate using the best semivariogram model of the data. 

10. Create a point distribution map and an interpolation map of the number of ARI cases. 

 

IV. RESULTS AND DISCUSSIONS 

A. Descriptive Statistics 

Descriptive statistics were carried out to determine the general description of the characteristics for the PM2.5 

concentration variables and the number of ARI diseases in several health centers in Surabaya. The following are the 

results of descriptive statistics from the research variables of this paper. 
Table 2. Charasteristic of Variables 

No. Variables N Mean Maximum Minimum St.Dev 

1 ARI Cases in Health Center 9 188.44 421 64 111.224 

2 PM2.5 contentration 9 36.89 39 30 3.018 

 

Based on Table 2, it is found that the characteristics of the PM2.5 concentration variable in Surabaya have an average of 

36.89 with a standard deviation of 3.018. Meanwhile, the average number of ARI cases observed at community health 

centers in Surabaya was 188.44 with a standard deviation of 111.224. 
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B. Point Distribution Map 

 
Figure 1 Point Distribution Map between PM2.5 Station and Community Health Center In-Sample 

Based on Figure 1, a distribution map can be obtained between the PM2.5 Station and the observed health centers. The 

in-sample health centers used were health centers located in Krembangan, Rungkut, Bulak, Sambikerep, Gubeng, 

Sawahan, Tenggilis Mejoyo, Pakal and Wonocolo sub-districts. Meanwhile, the PM2.5 stations from the nine sub-districts 

used include South Krembangan, Medokan Ayu, Kenjeran, Lontar, Kertajaya, Kedungdoro, Tenggilis Mejoyo, Babat and 

Jemur Wonosari. 

 
Figure 2 Point Distribution Map between Health Center In-Sample data Health Center and Out-Sample data Health Center 

Based on Figure 2, a map of the distribution of locations between the observed health centers and the estimated health 

centers is obtained. The observed health centers or health centers used for the In-Sample were Krembangan, Rungkut, 

Bulak, Sambikerep, Gubeng, Sawahan, Tenggilis Mejoyo, Pakal and Wonocolo health centers. Meanwhile, the Out-

Sample health center that will be estimated is the Siwalankerto Health Center, Dr. Soetomo, Tanjungsari, Sememi and 

Tambak Wedi. 

 
Figure 3 Community Health Center Point Distribution Map for Interpolation 

 

Based on Figure 3, an interpolated map of the distribution of health center locations is obtained. The interpolated health 

centers include all health centers in Surabaya, including those used for Out-Sample and In-Sample, namely 63 health 

centers. 
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C. Assumption Testing 

1. Testing the Spatial Autocorrelation Assumption 
The Spatial Autocorrelation Test used is the Moran's I Test to identify spatial dependencies. 

 

 
Table 3. Testing the Spatial Autocorrelation Assumption  

Variables Moran’s I Index (𝑰) 𝒁(𝑰) P-Value 

ARI Cases in Health Center 0.153 2.301 0.021 

Table 3, the Moran's I test statistic is 2.301, where this value is greater than Zα/2 namely 1.96. Apart from that, a p-value 

of 0.021 was obtained, which is smaller than alpha 0.05, so it can be concluded that there is spatial dependence in the data 

on ARI cases in Surabaya. 

2. Correlation Test 

The primary variable in this research is the number of ARI cases. while PM2.5 concentration is a secondary variable. 

The correlation test between the two variables was carried out to see the relationship between the two variables. The 

results of correlation testing between the two research variables can be seen in Table 4. 
Table 4. Correlation Test Results Between Variables 

Correlation Pearson Description 

0.456 Moderate correlation 

Table 4 shows that the two variables are moderately correlated. Thus, these results support the use of the cokriging 

method in estimating ARI case variables in Surabaya using information from the PM2.5 concentration variable as 

secondary. 

 
D. Experimental Semivariogram 

The process of obtaining the estimated values for PM2.5 pollutant levels begins with using the data. The next step is to 

calculate the distance (𝒉) between air monitoring station points in Surabaya and the distance between these station points 

and the locations to be estimated, using Python software. After determining the distances between station locations, the 

next step is to divide the distances into k classes. This division is performed using the formula based on Sturges' rule: 
𝒌 = 𝟏 + (𝟑, 𝟑𝟑× 𝐥𝐨𝐠(𝒏)) with 𝒏 being 81 data points. The output of the distances between station locations and the 

locations to be estimated, along with the number of classes from the running program. The following step is to calculate 

the experimental auto covariance and the experimental cross-covariance values using equations (1), (2), and (3). The 

experimental auto covariance and experimental cross-covariance values can be seen in Table 5 below with the assistance 

of Python software. 
Table 5 Distance Class Division and Experimental Covariance 

Class Interval Distance (𝒉) 𝑵 Auto Covariance 𝑼 Auto Covariance 𝑽 Cross Covariance 𝑼𝑽 

0,000000-0,026538 0,013269 8 0,859097 1.000000 0,404229 

0,026538-0,053276 0,039957 16 0,094080 -0,147104 -0,035467 

0,053276-0,079915 0,066595 16 0,001511 -0,207012 0,086540 

0,079915-0,106553 0,093234 16 0,251689 0,026677 0,226978 

0,106553-0,133191 0,119872 12 -0,097254 -0,314024 -0,589158 

0,133191-0,159829 0,146510 9 -0,854213 -0,053354 0,320781 

0,159829-0,186467 0,173148 2 -2,631829 0,435976 -1,389694 

0,186467-0,213105 0,199786 2 -0,300529 -0,396341 -0,360207 

With 𝑵 being the number of pairs at distance ℎ, 𝑈 as the first variable (number of ARI cases), and 𝑉 as the second 

variable (PM2.5). After obtaining the experimental auto covariance and experimental cross covariance, the next step is to 

determine the spherical auto covariance and spherical cross covariance. For this purpose, based on equations (4), (5), (6), 

estimation of the values of 𝑃 (nugget effect), 𝑄 (Sill), and 𝑟 (range) is required. The values of 𝑃, 𝑄, and 𝑟 for spherical auto 

covariance are determined based on the plot of distance against experimental covariance, while the values of 𝑃, 𝑄, and 𝑟 

for spherical cross-covariance are determined based on the plot of distance against experimental cross-covariance. The 

plot of distance against experimental auto covariance for the first variable (number of ARI cases) is shown in Figure 4 

below. 
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Figure 4 Plot of Distance against Experimental Auto Covariance for the ARI Variable 

Based on Figure 4, the plot of distance against experimental auto covariance for the ARI variable, the values obtained 

are 𝑃 = 0.00151, 𝑄 = 0.859096, and 𝑟 = 0.013269 for the calculation of spherical auto covariance between ARI variables. The 

plot of distance against experimental auto covariance for the secondary variable (PM2.5) can be seen in Figure 5 below. 

 
Figure 5 Plot of Distance against Experimental Auto Covariance for the PM2.5 Variable 

Based on Figure 5, the plot of distance against experimental auto covariance for the PM2.5 variable, the values obtained 

are 𝑃 = 0.026676, 𝑄 = 0.999999, and 𝑟 = 0.013269 for the calculation of spherical auto covariance between PM2.5 variables. 

The plot of distance against experimental auto covariance for the secondary variable (PM2.5) can be seen in Figure 6 below. 

 
Figure 6 Plot of Distance against Experimental Cross Covariance 

Based on Figure 6, the values obtained are 𝑃 = 0.086540, 𝑄 = 0.404229, and 𝑟 = 0.013269 for the calculation of spherical 

auto covariance between first  variable and second variable.  

 
E. Theoretical Semivariogram 

After obtaining the values of P, Q, and r for each covariance, the formula for calculating the spherical model, according 

to equation (4), is as follows: 

The value of spherical auto covariance for the primary ARI variable is: 

𝐶𝑈(ℎ) =

{
 

 
(0,00151 + 0,859096), 0 = ℎ

(0,00151 + 0,859096) (1 −
3ℎ

2(0,013)
+

ℎ3

2(0,013)3
) , 0 < ℎ ≤ 0,013

0, ℎ > 0,013

(8) 

The value of spherical auto covariance for the secondary PM2.5 variable is: 

𝐶𝑉(ℎ) =

{
 

 
(0,026676 + 0,999999), 0 = ℎ

(0,026676 + 0,999999) (1 −
3ℎ

2(0,013)
+

ℎ3

2(0,013)3
) , 0 < ℎ ≤ 0,013

0, ℎ > 0,013

(9) 



 
 8 
 

 

Department of Statistics, Institut Teknologi Sepuluh Nopember  

                   INFERENSI, Vol. 8(1), March. 2025. ISSN: 0216-308X (Print) 2721-3862 (Online) 

DOI: 10.12962/j27213862.v8i1.20512 

 

The value of spherical cross covariance is:  

𝐶𝑉(ℎ) =

{
 

 
(0,086540 + 0,404229), 0 = ℎ

(0,086540 + 0,404229) (1 −
3ℎ

2(0,013)
+

ℎ3

2(0,013)3
) , 0 < ℎ ≤ 0,013

0, ℎ > 0,013

(10) 

After obtaining the values of P, Q, and r for each covariance, the formula for calculating the exponential model, 

according to equation (5), is as follows: 

The value of exponential auto covariance for the primary ARI variable is: 

𝐶(ℎ) = (0,00151 + 0,859096) [1 − 𝑒𝑥𝑝 (−
ℎ

0,013
)] (11) 

The value of exponential auto covariance for the primary PM2.5 variable is: 

𝐶(ℎ) = (0,026676 + 0,999999) [1 − 𝑒𝑥𝑝 (−
ℎ

0,013
)] (12) 

The value of exponential cross covariance is: 

𝑪(𝒉) = (𝟎, 𝟎𝟖𝟔𝟓𝟒𝟎 + 𝟎, 𝟒𝟎𝟒𝟐𝟐𝟗) [𝟏 − 𝒆𝒙𝒑 (−
𝒉

𝟎, 𝟎𝟏𝟑
)] (𝟏𝟑) 𝑪(𝒉) = (𝟎, 𝟎𝟖𝟔𝟓𝟒𝟎 + 𝟎, 𝟒𝟎𝟒𝟐𝟐𝟗) [𝟏 − 𝒆𝒙𝒑 (−

𝒉

𝟎, 𝟎𝟏𝟑
)] (𝟏𝟑) 𝑪(𝒉) = (𝟎, 𝟎𝟖𝟔𝟓𝟒𝟎 + 𝟎, 𝟒𝟎𝟒𝟐𝟐𝟗) [𝟏 − 𝒆𝒙𝒑 (−

𝒉

𝟎, 𝟎𝟏𝟑
)] (𝟏𝟑) 𝑪(𝒉) = (𝟎, 𝟎𝟖𝟔𝟓𝟒𝟎 + 𝟎, 𝟒𝟎𝟒𝟐𝟐𝟗) [𝟏 − 𝒆𝒙𝒑 (−

𝒉

𝟎, 𝟎𝟏𝟑
)] (𝟏𝟑) 𝑪(𝒉) = (𝟎, 𝟎𝟖𝟔𝟓𝟒𝟎 + 𝟎, 𝟒𝟎𝟒𝟐𝟐𝟗) [𝟏 − 𝒆𝒙𝒑 (−

𝒉

𝟎, 𝟎𝟏𝟑
)] (𝟏𝟑) 

After obtaining the values of P, Q, and r for each covariance, the formula for calculating the gaussian model, 

according to equation (6), is as follows: 

The value of gaussian auto covariance for the primary ARI variable is: 

𝐶(ℎ) = (0,00151 + 0,859096) [1 − 𝑒𝑥𝑝 (−
ℎ

0,013
)
2

] (14) 

The value of gaussian auto covariance for the primary PM2.5 variable is: 

𝐶(ℎ) = (0,026676 + 0,999999) [1 − 𝑒𝑥𝑝 (−
ℎ

0,013
)
2

] (15) 

The value of gaussian cross covariance is: 

𝑪(𝒉) = (𝟎, 𝟎𝟖𝟔𝟓𝟒𝟎 + 𝟎, 𝟒𝟎𝟒𝟐𝟐𝟗) [𝟏 − 𝒆𝒙𝒑 (−
𝒉

𝟎, 𝟎𝟏𝟑
)
𝟐

] (𝟏𝟔) 𝑪(𝒉) = (𝟎, 𝟎𝟖𝟔𝟓𝟒𝟎 + 𝟎, 𝟒𝟎𝟒𝟐𝟐𝟗) [𝟏 − 𝒆𝒙𝒑 (−
𝒉

𝟎, 𝟎𝟏𝟑
)
𝟐

] (𝟏𝟔) 𝑪(𝒉) = (𝟎, 𝟎𝟖𝟔𝟓𝟒𝟎 + 𝟎, 𝟒𝟎𝟒𝟐𝟐𝟗) [𝟏 − 𝒆𝒙𝒑 (−
𝒉

𝟎, 𝟎𝟏𝟑
)
𝟐

] (𝟏𝟔) 𝑪(𝒉) = (𝟎, 𝟎𝟖𝟔𝟓𝟒𝟎 + 𝟎, 𝟒𝟎𝟒𝟐𝟐𝟗) [𝟏 − 𝒆𝒙𝒑 (−
𝒉

𝟎, 𝟎𝟏𝟑
)
𝟐

] (𝟏𝟔) 𝑪(𝒉) = (𝟎, 𝟎𝟖𝟔𝟓𝟒𝟎 + 𝟎, 𝟒𝟎𝟒𝟐𝟐𝟗) [𝟏 − 𝒆𝒙𝒑 (−
𝒉

𝟎, 𝟎𝟏𝟑
)
𝟐

] (𝟏𝟔) 

 
F. Comparison of Semivariogram Models on In-Sample Data 

1. Spherical Semivariogram Model 
In selecting the semivariogram model on in-sample data using the spherical semivariogram model, the predicted data 

values are presented in Table 6 below. 
Table 6 Prediction Results of In-Sample Data with Spherical Semivariogram Model 

Location Prediction Data (𝐳𝟎) Original Data  

Krembangan Health Centre 217 214 

Rungkut Health Centre 218 215 

Bulak Health Centre 424 421 

Sambikerep Health Centre 95 92 

Gubeng Health Centre 238 235 

Sawahan Health Centre 109 106 

Tenggilis Mejoyo Health Centre 246 243 

Pakal Health Centre 67 64 

Wonocolo Health Centre 109 106 

By using the spherical semivariogram model, the MSE value on the training data is 14.425 and the MAPE value is 

2.761%. Prediction results using this model will produce highly accurate forecasting, because the MAPE value of 2.761% 

is below 10%.   

2. Exponential Semivariogram Model 
In selecting the semivariogram model on in-sample data using the exponential semivariogram model, the predicted 

data values are presented in Table 7 below. 
Table 7 Prediction Results of In-Sample Data with Exponential Semivariogram Model 

Location Prediction Data (𝐳𝟎) Original Data  

Krembangan Health Centre 222 214 

Rungkut Health Centre 223 215 

Bulak Health Centre 429 421 

Sambikerep Health Centre 100 92 

Gubeng Health Centre 243 235 

Sawahan Health Centre 114 106 

Tenggilis Mejoyo Health Centre 251 243 

Pakal Health Centre 72 64 

Wonocolo Health Centre 114 106 
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By using the exponential semivariogram model, the MSE value on the training data is 66.408 and the MAPE value is 

5.924%. Prediction results using this model will produce highly accurate forecasting, because the MAPE value of 5.924% 

is below 10%.   

3. Gaussian Semivariogram Model 
In selecting the semivariogram model on in-sample data using the gaussian semivariogram model, the predicted data 

values are presented in Table 8 below. 
Table 8 Prediction Results of In-Sample Data with Gaussian Semivariogram Model 

Location Prediction Data (𝐳𝟎) Original Data  

Krembangan Health Centre 229 214 

Rungkut Health Centre 230 215 

Bulak Health Centre 436 421 

Sambikerep Health Centre 107 92 

Gubeng Health Centre 250 235 

Location Prediction Data (𝐳𝟎) Original Data  

Sawahan Health Centre 121 106 

Tenggilis Mejoyo Health Centre 258 243 

Pakal Health Centre 79 64 

Wonocolo Health Centre 121 106 

By using the exponential semivariogram model, the MSE value on the training data is 240.544 and the MAPE value is 

11.275%. Prediction results using this model will produce accurate forecasting, because the MAPE value of 11.275% is in 

the 10-20% interval.   
G. Comparison of Semivariogram Models on Out-Sample Data 

1. Spherical Semivariogram Model 
In selecting the semivariogram model on out-sample data using the spherical semivariogram model, the predicted data 

values are presented in Table 9 below. 
Table 9 Prediction Results of Out-Sample Data with Spherical Semivariogram Model 

Location Prediction Data (𝐳𝟎) Original Data  

Dr. Soetomo Health Centre 189 165 

Sememi Health Centre 189 159 

Siwalankerto Health Centre 67 63 

Tambak Wedi Health Centre 191 254 

Tanjungsari Health Centre 189, 187 

By using the spherical semivariogram model, the MSE value on the testing data is 1100.514 and the MAPE value is 

13.316%. Prediction results using this model will produce accurate forecasting, because the MAPE value of 13.316% is in 

the 10-20% interval.   

2. Exponential Semivariogram Model 
In selecting the semivariogram model on out-sample data using the exponential semivariogram model, the predicted 

data values are presented in Table 10 below. 
Table 10 Prediction Results of Out-Sample Data with Exponential Semivariogram Model 

Location Prediction Data (𝐳𝟎) Original Data  

Dr. Soetomo Health Centre 177 165 

Sememi Health Centre 153 159 

Siwalankerto Health Centre 59 63 

Tambak Wedi Health Centre 243 254 

Tanjungsari Health Centre 186 187 

By using the exponential semivariogram model, the MSE value on the training data is 65.896 and the MAPE value is 

4.307%. Prediction results using this model will produce highly accurate forecasting, because the MAPE value of 4.307% 

is below 10%.   

3. Gaussian Semivariogram Model 
In selecting the semivariogram model on out-sample data using the gaussian semivariogram model, the predicted data 

values are presented in Table 11 below. 
Table 11 Prediction Results of Out-Sample Data with Gaussian Semivariogram Model 

Location Prediction Data (𝐳𝟎) Original Data  

Dr. Soetomo Health Centre 183 165 

Sememi Health Centre 174 159 

Siwalankerto Health Centre 62 63 

Tambak Wedi Health Centre 223 254 

Tanjungsari Health Centre 195 187 

By using the exponential semivariogram model, the MSE value on the training data is 312.822 and the MAPE value is 

7.587%. Prediction results using this model will produce highly accurate forecasting, because the MAPE value of 7.587% 

is below 10%.   
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H. Best Model Selection 

To determine the best semivariogram model used for co-kriging interpolation, a comparison of the MAPE values 

obtained from the prediction of the number of disease cases that occur is used. Table 12 is the result of the MAPE value 

comparison, 
Table 12 The Comparison of the MAPE value on Semivariogram Models 

Semivariogram Model MAPE In-Sample MAPE Out-Sample MAPE Overall 

Spherical 2.76% 13.32% 8.04% 

Esponential 5.92% 4.31% 5.11% 

Gaussian 11.27% 7.58% 9.42% 

Based on Table 12, of the three types of semivariogram models, the best model is the exponential semivariogram model. 

Where it has the smallest and most optimal overall MAPE value among other models. The next step is to perform co-

kriging interpolation using the exponential semivariogram model. 
 
I. Co-Kriging Interpolation 

Based on the best model, which is the exponential semivariogram model, a prediction map of the number of cases of 

ARI in Surabaya City can be shown in Figure 7 below. 

 
Figure 7 Interpolation Map with Co-Kriging Method 

Based on the estimation of the number of ARI cases in 31 sub-districts in Surabaya, the highest number of ARI cases is 

located in Kenjeran sub-district with a total of 968 ARI patients who seek treatment at the health centre and the lowest 

number of ARI cases is located in Pakal sub-district with a total of 125 ARI patients who seek treatment at the health 

centre. 

 

V. CONCLUSIONS AND SUGGESTIONS 

This study used 9 community health centres (Puskesmas) in Surabaya as the primary variable (𝒖) and 9 PM2.5 stations 

in Surabaya as the secondary variable (𝒗) in the co-kriging method to interpolate the number of ARI cases in Surabaya. 

The selection of the best semivariogram model was made by comparing the MAPE values on Out-Sample data, which 

included 5 community health centres in Surabaya. Based on the MAPE values, the best semivariogram model was 

determined to be the Exponential semivariogram model. The MAPE value was 5.11%. This indicates that the Exponential 

semivariogram model is able to predict the number of ARI cases in Surabaya with high accuracy. Based on the estimation 

of the number of ARI cases in 31 sub-districts in Surabaya, the highest number of ARI cases is located in Kenjeran sub-

district with a total of 968 ARI patients who seek treatment at the health centre and the lowest number of ARI cases is 

located in Pakal sub-district with a total of 125 ARI patients who seek treatment at the health centre.

Future research is recommended to increase the number of observation points for both the primary variable 

(community health centers) and the secondary variable (PM2.5 stations) to obtain more accurate and representative 

estimates. Then, future analyses should consider additional factors that influence the spread of ARI, such as weather 

conditions, population density, and socio-economic factors. 
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