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ABSTRACT ⎯ Cabbage farming is highly vulnerable to diseases and pests, leading to substantial yield losses if not properly 

managed. Traditional diagnostic methods, reliant on manual assessment, are often time-consuming and inaccurate. This study 

introduces a hybrid approach combining Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) to address 

these challenges, specifically focusing on improving classification accuracy in imbalanced cabbage image datasets. CNNs are 

leveraged for their powerful feature extraction, while SVM, optimized using a One-vs-All strategy, enhances multi-class 

classification. To handle data imbalance, Borderline SMOTE (Synthetic Minority Over-sampling Technique) is applied, generating 

synthetic samples to balance underrepresented classes. The SqueezeNet architecture is employed for feature extraction, with SVM 

hyperparameters fine-tuned via grid search. Results demonstrate that the integration of CNN, SVM, and Borderline SMOTE 

significantly improves classification performance, particularly for minority classes, achieving an accuracy of 99%. This approach 

offers a more reliable and efficient tool for early detection of cabbage diseases and pests, contributing to better agricultural 

management and reduced crop losses. 
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I. INTRODUCTION 

Brassica oleracea var. capita or cabbage, is a widely cultivated crop used as food, and easy to attack by disease and 

pest. Improper management of these issues can lead to crop failure and significant losses for farmers [1] Approaches like 

Convolutional Neural Networks (CNNs) are often used to address this. CNNs can automatically detect diseases with 

high accuracy and without requiring much time. The use of this method will assist farmers in early disease detection, 

ultimately improving crop management and yield [2]. However, real-world data is often imbalanced, as in the case of 

cabbages, where more cabbages are affected by pests than by diseases [3]. Although CNN is a reliable method for image 

classification, when faced with imbalanced data, CNN models tend to overfit to the majority class and struggle to capture 

the necessary features from the minority class, leading to poor generalization [4]. 

One way to solve this problem is by using data preprocessing techniques, such as resampling methods [5]. Studies 

have applied Borderline-SMOTE, an oversampling technique, to address imbalanced data in CNN-based brain image 

classification. This method generates synthetic samples near the decision boundary for minority classes, helping to 

balance the data before splitting it into training and testing sets. This framework helps CNN train on more balanced data 

and capture the necessary diversity in features for the minority class [6]. However, while Borderline-SMOTE can improve 

class representation, it has its limitations. In multiclass settings, the creation of synthetic samples can lead to class overlap, 

complicating the learning process, and increasing ambiguity in class boundaries [7].  

To solve this, more advanced methods like hybrid approaches are proposed. Hybrids combine several powerful 

methods into one [8]. For example, a recent study demonstrated that hybrid CNN and SVM, show higher accuracy in 

multiclass classification [9]. SVM using One vs All method to improve model performance by treating them as separate 

binary problems, which particularly useful in imbalanced data and multiclass scenarios [10]. However, the effectiveness 

of the combined approach heavily relies on the quality and quantity of the training data. If the data is not representative 

of real-world scenarios, the performance of both CNN and SVM may suffer. This is where the role of Borderline-SMOTE 

comes in, as in hybrid models, this technique can help split the data more fairly, allowing SVM to create a more defined 

hyperplane, which can lead to better classification outcomes [11].  

In this study, we aim to enhance the performance of CNN on imbalanced cabbage image datasets by utilizing two 

complementary approaches: data preprocessing and algorithmic solutions. Borderline-SMOTE will be applied to balance 

the dataset, while SVM will be integrated with CNN to improve multi-class classification performance. This approach is 

expected to assist farmers by providing a more reliable system for identifying diseases and pests in cabbages, ultimately 

improving agricultural practices in the future.  

 

II. LITERATURE REVIEW  
A. Base Model  

 CNN is a deep neural network architecture modeled after the functioning of the human brain.  CNNs operate similarly 

to other feedforward neural network models, with the distinction that they incorporate convolutional layers to eliminate 

the important characteristics from images [12]. These features are subsequently employed for classification purposes or 
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can be extracted and utilized in alternative methods [13]. A CNN's architecture comprises multiple layers, including the 

input layer, hidden layers, and the output layer. When integrated, these layers form a Multi-Layer Perceptron (MLP). 

The following equation (1) shows a single layer model [14].  

 𝑦 = 𝑓(𝑧) = 𝑓(𝑏 + ∑ 𝑤𝑘ℎ𝑘(𝒙𝑖)
𝐾
𝑘=1 )                    (1) 

where ℎ is a hidden layer, 𝑧 is a pre-activation function, and 𝒙 is vector input. Parameter used: 𝒘 is vector weight, and 𝑏 

is bias. The output is 𝑦, obtained by the non-linear function of input 𝑥 ∈ 𝑅𝑝 parameterized by a synaptic vector of weights 

(𝑤1, … , 𝑤𝑝) ∈ 𝑅𝑝 and a threshold 𝑤0 ∈ 𝑅. For a neuron to be non-linear, it will be specified by an activation function 𝑓(. ).  

The activation function used is Leaky ReLu for feature learning and Softmax function for classification. The following 

equation (2) shows Leaky ReLu [15].  

 𝑦 = {
0,01, 𝑖𝑓 𝑥 < 0
𝑥,       𝑖𝑓 𝑥 > 0

           (2)  

For Softmax function is shown in the following equation (3). 

 𝑓(𝑥) =
𝑒𝑧𝑁

∑ 𝑒𝑧𝑙𝑁
𝑙=0

            (3) 

where 𝑁 are amounts of pair (𝑥𝑁 , 𝑦𝑁) training data. There are many variants of architecture CNN, one of which is SqueezeNet. This 
architecture owing to the limited dataset size and the minimal parameter count, has approximately 1.2 million parameters, smaller 

than another architecture model. Given these advantages, this architecture is well-suited for image classification for imbalanced data 

[16].  

   
B. Hybrid Model  

 SVM is a technique that functions by discovering the most effective separating line (hyperplane) to divide the data 

into positive and negative values [10]. The model for the hyperplane is shown in equation (4) above.  

 𝑓(𝒙𝑖) = 𝒙𝑖
𝑇𝒘 + 𝑏    (4)  

while weight (𝒘) and bias (𝑏) work as a parameter. To maximize the separate line, the weight vector expands the distance 

between the separate line and the nearest data called the margin. In non-linear data (image data) to maximize 

classification it used kernels. Radial Basis Function (RBF) is a common kernel used for high-dimension data. The 

following equation (5) shows the kernel RBF model. 

 𝐾〈𝒙𝑖 , 𝒙𝑖′〉 = 𝑒𝑥𝑝 (−𝛾 ∑ (𝒙𝑖𝑗, 𝒙𝑖′𝑗)
2𝑝

𝑗=1 )                           (5) 

where gamma (𝛾) is a positive constant to control the shape of the hyperplane [10].  

 Gird search is a method for optimizing hyperparameter, by utilizing the Cross-Validation technique as an evaluation 

metric with the aim of identifying effective hyperparameter. The wider the range of parameters available, the greater the 

potential for the Grid Search method to discover the best parameter combination [15]. 
 

C. Borderline-SMOTE 

 Borderline SMOTE is a modification of the SMOTE algorithm aimed at rectifying class imbalance in classification 

contexts. It concentrates on producing artificial samples for the minority class in close proximity to the decision boundary 

or boundary line separating the minority and majority classes. B-SMOTE identifies minority class samples proximate to 

this boundary, selects their nearest neighbors within the minority class, and subsequently generates synthetic instances. 

The following equation (6) shows the Borderline-SMOTE model. 

 𝑥𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = 𝑥𝑏𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑛𝑒 + 𝜆(𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 − 𝑥𝑏𝑜𝑟𝑑𝑒𝑟𝑙𝑖𝑛𝑒)  (6) 

where λ represents a random number within the range of 0 to 1 [17].   
 
D. Evaluation Metrics 

 To evaluate the multi-class classification model, the Generalized Confusion Matrix is presented in Table 1 displays 

the depiction of the confusion matrix for multiclass classification, reflecting the performance of the classification model. 

The diagonal elements, True Positives (TP), are used to calculate the correct predictions for each class. The off-diagonal 

elements represent the number of incorrect predictions, which are divided into two: the lower diagonal for False Positives 

(FP) and the upper diagonal for False Negatives (FN) [18]. 
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Table 1 Confusion Matrix 

Actual  

(A) 

Prediction (P) 

Class 1 Class 2 ⋮ Class-k 

Class 1 𝑋11 𝑋12 ⋮ 𝑋1𝑘 

Class 2 𝑋12 𝑋22 ⋮ 𝑋2𝑘 

… … … ⋮ … 

Class-k 𝑋𝑘1 𝑋1𝑘 ⋮ 𝑋𝑘𝑘 

 

 Table 2 This section illustrates performance metrics derived from the values within the confusion matrix. Accuracy 

offers a broad evaluation of the model's overall performance. Recall evaluates the model's capability to accurately detect 

cabbage plants affected by pests. Precision assesses the model's accuracy in identifying cabbage plants unaffected by 

pests. Due to the dataset's imbalanced nature, the F1 score is calculated to offer a balanced evaluation of the model's 

performance, and Balanced accuracy is used to evaluate more fairly with K is representing number of classes in the model 

[19].  

 
Table 2 Performance Measures 

Name Representation 

Accuracy  𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
             (7) 

Loss 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦             (8) 

Recall 𝑇𝑃

𝑇𝑃+𝐹𝑁
                     (9) 

Precision  𝑇𝑃

𝑇𝑃+𝐹𝑃
                   (10) 

F1-score  2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          (11) 

Balanced Accuracy 1

𝐾
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝐾

𝑘=1            (12)   

 

III. METHODOLOGY 
A. Data 

The data for this study were primarily obtained, and conducted in Poncokusumo, Malang, East Java in July 2023. The 

dataset consists of images of cabbage plants affected by diseases and pests, with an imbalance in the number of instances 

where more cabbage plants were affected by pests than by diseases. The images were captured using a Canon Mirrorless 

M100 camera on a 1000-square-meter plot. Cabbage plants typically have an average lifespan of 70 to 80 days, nearing 

the harvest period. The pests and diseases were identified based on visible external characteristics of the plants. External 

indicators such as odor or insects, which are symptomatic of disease and pest infestations in cabbage plants, cannot be 

identified from the images. A total of 242 images were collected, divided into 5 classes based on the visible characteristics 

of pests and diseases on the cabbages. Information regarding the diseases and the number of data instances in this study 

is presented in the following Table 3.  

Table 3 Data Information 

Type of Pests Code Data 

Pest Infestation P3 170 

Foliar Disease P6 35 

Brassica rot disease P7 12 

Bacterial Soft Rot P8 15 

Plasmodiophoromycete Disease P9 10 

 

The images presented in Figure 1 exhibit different diseases and pests commonly affecting cabbage plants. . In Figure 

1 (a) Pest Infestation is evident; although the plant's overall appearance may seem healthy, noticeable holes are present 

in the outer leaves. Figure 1 (b) lllustrates cabbage impacted by Foliar Disease, displaying signs such as yellowish-brown 

discoloration and wilting of the outer leaves. Figure 1 (c) illustrates symptoms of black or brown rot, manifested by brown 

spots on the cabbage head and subsequent wilting, eventually resulting in the plant's demise. Figure 1 (d) portrays 

cabbage affected by Bacterial Soft Rot, identifiable by the darkened and deteriorating cabbage head. Lastly, Figure 1 (e) 

depicts cabbage affected by Plasmodiophoromycete Disease, recognized by the lack of a well-formed head and stunted 

growth. 



 
 202 
 

 

Department of Statistics, Institut Teknologi Sepuluh Nopember  

                   INFERENSI, Vol. 7(3), November. 2024. ISSN: 0216-308X (Print) 2721-3862 (Online) 
 

DOI: 10.12962/j27213862.v7i3.20514 

 

 

 

 

 

(a)                            (b)                              (c)                              (d)                            (e) 

 

(a)                              (b)                                   (c)                                   (d)                                             (e) 

Figure 1 Infected Cabbage Plants (a) Pests Infestation, (b) Foliar Disease, (c) Brassica Rot, (d) Bacterial Soft Rot, (e) 
Plasmodiophoromycete Disease. 

 
B. Proposed Methodology 

This study utilizes Python software with the assistance of Google Collab. The proposed methodology is Hybrid CNN-

SVM with Borderline-SMOTE for the classification of unhealthy cabbage plants images.  The pre-classification steps are 

shown below.  

(1) Preprocessing the image data, which includes:  

(a) removing the background using Photoshop to highlight the cabbage plant 

(b) resizing images from the original 1600 x 1600 pixels to 256 x 256 pixels to reduce filtering time 

(c) enhancing images post-resizing to retain essential features. 

(d) segmenting images.  

(2) Labeling the data into five types of cabbage pests and diseases, to be used as the dependent variable.  

(3) Dividing the data into training, testing, and validation sets using an 80:10:10 ratio.  

 

 

 
Figure 2 Proposed Classification Model 

 

Figure 2 illustrates the classification process using CNN-SVM with Borderline SMOTE. After splitting the data, 

Borderline SMOTE is applied to balance the classes. Feature extraction is performed with the SqueezeNet architecture, 

and hyperparameters—such as epochs, batch size, and optimizer—are optimized to improve model performance. The 

CNN model incorporates hidden layers with max pooling, Leaky ReLU activation, and fully connected layers with 

softmax for classification. Fine-tuning the learning rate enhances training, testing, and accuracy measurement. CNN-

extracted features are then used with an SVM classifier, optimized using Grid Search, and the results are compared to 

evaluate the approach's effectiveness.  

 Before classifying the data, we need to adjust the hyperparameter to optimize the result. Table 4 shows Epochs, Batch 

Size, and optimizer used in the model.  
 

Table 4 Hyperparameter for CNN 

Hyperparameter Input 

Epochs 1000 

Batch Size 12 

Optimizer Adam 

 

Table 5 shows the value of each hyperparameter using in SVM and being optimized by Grid search determined by the 

researchers.  
 

Table 5 Hyperparameter for SVM 

Hyperparameter Input 

C [10; 100; 1000] 

Kernels  [rbf] 

Gamma [0,001; 0,0001] 

 

IV. RESULTS AND DISCUSSIONS 
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A. Dataset pre-processing 

Effective preprocessing of images is essential to ensure optimal input data for classification tasks. The depicted image 

preprocessing procedure results is shown in Figure 2 with the following explanation. 

(1) Removing the background: As seen in Figure 2 (b) after vanishing unnecessary parts of the cabbage plants, resulting 

in improved visibility of the cabbage shape against a black background. 

(2) Image Enhancement and Dimension Adjustment: Given the large size of the original images (1600x1600 pixels), 

resizing them to 256x256 pixels with 3 channels accelerates the modeling process while maintaining essential details. 

(3) Segmentation: Segmentation is performed using a k-means-based method to enhance detail and convert colors into 

RGB format, facilitating more precise segmentation outcomes. 

These preprocessing steps elevate the quality of the input data, guaranteeing that the ensuing classification model can 

effectively extract meaningful features and produce accurate predictions. 

 

                              
(a)                                        (b)                                (c)                                           (d) 

Figure 2 (a) Cabbage Image before Background Removal, (b) Cabbage Image after Background Removal, (c) Cabbage Image after Sharpening 
and Resizing, (d) Segmented Cabbage Image. 

B. Borderline SMOTE 

 After data is preprocessed, the data is ready to be extracted and split into training and testing. Using equation (6) the 

B-SMOTE method will build more balanced data to solve the imbalance class data problem. Figure 3 portrays the 

distribution of data after its division into training and testing subsets. As we can see, the data distribution became more 

balanced in the training set after applying B-SMOTE. However, the test set remains imbalanced even after applying B-

SMOTE. This adjusted training data is then fed into the CNN for further processing and model training. 

 

 
(a)                                                                 (b)                                 

Figure 3 (a) Original dataset, (b) B-SMOTE dataset 

  
C. Results and Observation 

The best model is evaluated by comparing between using B-SMOTE and without B-SMOTE to acknowledge 

improvement of the proposed model. Table 6 presents a comparison of loss between the CNN using B-SMOTE and 

without B-SMOTE. 

 
Table 6 Comparison Loss 

Method Loss 

CNN without B-SMOTE 0,716 

CNN with B-SMOTE 0,841 

 

Based on the data in Table 6, it's evident that the CNN without B-SMOTE exhibits a lower loss value of 0,716 in 

comparison to the CNN without B-SMOTE, which has a loss value of 0,841. With the higher loss value, the CNN with B-

SMOTE may have gained benefits such as improved robustness to class imbalances, enhanced generalization to unseen 

data, or better resilience against overfitting.  

To assess the generalization of the model, the accuracies of both models will be compared based on their training and 
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validation test results. Table 7 shows the comparison of accuracy levels between the training and validation datasets. 
 

Table 7 Comparison Accuracy in Training and Validation 

 Method Training Validation 

without B-SMOTE 
CNN 0,80 0,79 

CNN + SVM 0,88 0,77 

with B-SMOTE  
CNN 0,77 0,78 

CNN + SVM 0,99 0,87 

 

The results show that the hybrid models effectively categorized nearly all classes during training. The CNN + SVM 

model with B-SMOTE achieved the highest training accuracy at 99%, with a corresponding validation accuracy of 87%. 

In contrast, the CNN+SVM model without B-SMOTE had the lowest accuracy, with 88% during training, with a validation 

accuracy of 77%. Notably, both the CNN models with and without B-SMOTE displayed comparable accuracy between 

the training and validation phases. This suggests that the small gap between training and validation indicates good 

generalization, while a larger gap suggests potential overfitting. Models trained with B-SMOTE perform better overall, 

showing its importance in handling imbalanced data with higher accuracy. 

To evaluate the misclassification in each class, here shown in Table 8, is the confusion matrix of the CNN-SVM model 

with B-SMOTE resampling and without resampling.  
 

Table 8 Confusion Matrix of The Model 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

The confusion matrix compares the CNN-SVM model's performance with and without B-SMOTE resampling across 

five classes. Without B-SMOTE, class P3 has 165 and 170 correct predictions in both model but several misclassifications 

into other classes. With B-SMOTE, class P3 and class P6 improve, showing fewer errors and more correct classifications, 

particularly for the underrepresented classes like P8, which goes from 6 correct predictions to 8. Misclassifications in 

other classes still occur but at lower frequencies. The frequent misclassifications in the original model suggest that certain 

classes are more prone to confusion, likely due to imbalance, while the rarer misclassifications, especially after 

resampling, indicate that B-SMOTE helps balance the dataset, improving the model's ability to correctly classify minority 

classes. 

For further evaluation, the performance is assessed using the proposed method outlined in Table 8 below. 
 

Table 9 Comparison of F1 Score and Balanced Accuracy 

 Method F1 
Balanced 

Accuracy 

without B-SMOTE 
CNN 0,78 0,94 

CNN+SVM 0,88 0,93 

with B-SMOTE 
CNN 0,94 0,97 

CNN + SVM 0,95 0,96 

 

The evaluation in Table 9 shows that models using B-SMOTE perform better than those without it, especially in 

handling imbalanced data. Without B-SMOTE, the CNN+SVM model still does well with an F1 score of 88% and balanced 

accuracy of 93%, but the CNN model alone struggles more, with a lower F1 score of 78%. This suggests that CNN has 

trouble with class imbalance when B-SMOTE isn’t used. When B-SMOTE is applied, both models improve significantly. 

The CNN+SVM model with B-SMOTE achieves the highest performance with a 95% F1 score and 96% balanced accuracy. 

The CNN model also sees a big boost, reaching a 94% F1 score and 97% balanced accuracy. This shows that B-SMOTE 

helps both models better handle imbalanced data, especially in balancing the detection of affected and unaffected plants. 

In summary, B-SMOTE improves the classification ability of CNN and CNN+SVM models, making them much more 

effective at handling imbalanced data, as seen in their higher F1 scores and balanced accuracies. 

 

Model 
Without B-SMOTE With B-SMOTE 

P3 P6 P7 P8 P9 P3 P6 P7 P8 P9 

CNN 

165 5 0 0 0 163 4 0 0 0 

3 30 0 1 1 6 29 0 0 0 

0 0 12 0 2 0 0 12 0 0 

0 0 0 15 0 0 0 0 15 0 

0 0 0 0 10 2 0 0 0 8 

CNN+ 

SVM 

170 0 0 0 0 169 1 0 0 0 

17 18 0 0 0 5 30 0 0 0 

6 0 6 0 0 0 0 12 0 0 

4 0 0 11 0 0 0 0 15 0 

4 0 0 0 6 0 0 0 0 8 
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V. CONCLUSIONS AND SUGGESTIONS 
Overall, the integration of Borderline-SMOTE with CNN and SVM hybrid models significantly improves the 

classification performance on imbalanced cabbage image datasets. While models with B-SMOTE may exhibit slightly 

higher loss values, they consistently achieve better accuracy, F1 scores, and enhanced sensitivity, particularly in 

distinguishing minority classes such as pest-affected cabbages. The application of B-SMOTE helps mitigates 

misclassifications, leading to more reliable and balanced classification outcomes. This confirms the effectiveness of the 

proposed hybrid approach in handling real-world data challenges, aligning with the research aim of developing a more 

accurate system for identifying diseases and pests in cabbages. Future research could explore additional techniques such 

as data augmentation or alternative imbalance correction methods to further optimize performance and improve 

sensitivity in models without B-SMOTE. 
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