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ABSTRACT ⎯ Diabetes mellitus is a dangerous disease that requires long-term medical treatment. The cause of this disease is high 

blood sugar levels. If not treated immediately, complications will occur and even cause death. The data is taken from the Indonesia 

Family Life Survey (IFLS). IFLS is a longitudinal measurement that is performed repeatedly every five years. More data is needed 

for repeated measures. Therefore, this research needs to be done to accommodate the missing data, and it is assumed that it is missing 

at random (MAR). This study aims to analyze the causative factors that are thought to affect the recovery time of patients with 

diabetes mellitus using the joint modeling method. This model is a relationship between event time data and repeated measurement 

data. The joint modeling method uses a linear mixed model for longitudinal measurements and a Cox proportional hazard model 

for survival. The variables were taken from IFLS4 and IFLS5 data with 293 observations: measurement time, treatment history, 

gender, comorbidities, and complications. The results in this study obtained a significant influence, namely the variables of 

measurement time, gender, and complications, on the recovery time of patients with diabetes mellitus. With the reduced 

measurement time, the patient has a lower chance of recovering 8.7184 times. The variables of gender also have a lower possibility 

of recovery of 9.1032 times, respectively.  
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I. INTRODUCTION 

Diabetes mellitus is a group of metabolic diseases with the leading cause of high blood sugar levels for a long time. 

If not treated immediately, this disease will cause complications and even death [1]. These complications include possible 

blindness, kidney failure, stroke, and lower extremity amputation [2]. According to the [3], the number of diabetes cases 

has continued to increase over the last few decades. There are 9116.03 cases of diabetes mellitus in Indonesia, which 

causes Indonesia to be the second most common in Southeast Asia [4]. It is estimated that in 2035, the number of diabetes 

mellitus will increase by 55% due to population growth and urbanization in the world [5]. Based on previous research in 

[6] mentioned that East Java is one of the provinces with the highest cases of Diabetes Mellitus in Indonesia. 

The data is taken from Indonesia Family Life Survey (IFLS) data in 2007, IFLS4 data, and for 2014, IFLS5 data. IFLS 

is a survey conducted in several areas in Indonesia with several aspects of research. IFLS is longitudinal, with the study’s 

design time every seven years. The iterative approach in IFLS data has been widely developed, one of which is in [7] 

research investigating longitudinal models on IFLS data. However, this research still has shortcomings. Namely, it has 

not accommodated the missing data in the observations. The missing data include death, relapse or disease recovery, and 

response to treatment, for example, not taking medication when the research was conducted. In this study, there is also 

survival data. To analyze survival data, you cannot use the usual regression method because it will cause bias and cannot 

handle censored data [8], so the appropriate way to accommodate these deficiencies is joint modeling. This study also 

presents several explanatory variables that affect diabetes mellitus patients taken from previous studies. Previous 

research on [9] found that the time of measurement on IFLS4 and on IFLS5 affects. Research on [6] states that the patient's 

medical history affects. Research on [10], [11], [12] mentions that gender, comorbidities, and complications affect diabetes 

mellitus. 

Joint modeling is a longitudinal and survival approach, whereas the independent covariates joint modeling is a 

longitudinal and survival approach. Covariate joint models are time-dependent. First, one must distinguish between 

internal (endogenous) and external (exogenous) covariates. This joint modeling applies to observations when the focus 

is on survival outcomes to investigate the effect of endogenous time-dependent internal covariates, where measurements 

in this study were longitudinal. The overall aim of the joint analysis is to study the impact of covariates on longitudinal 

outcomes, survival outcomes, or both [13]. One example of joint modeling is found in the study of [14], [15], regarding to 

the recovery time of AIDS (Immunodeficiency Syndrome Study), which correlates the survival time of AIDS patients on 

the CD4 cell count with longitudinal measurements. Based on the references of several studies above, in this article, a 

joint modeling approach will be used using a linear mixed model (LME) for longitudinal measurements and a Cox 

proportional hazard model for survival. 

To detect individuals who suffer from diabetes mellitus by examining blood sugar levels. Each measurement is seen 

from the glycated Hemoglobin (HbA1c) level, which is often used for long-term glycemic control. Leveraging wearable 

censored and uncensored of longitudinal data, this joint model offers unprecedented insights into the daily lives of 

diabetes patients, uncovering previously unidentified behavioral patterns linked to disease progression. Existing joint 

models often focus on estimating blood sugar levels, this novel approach delves deeper, uncovering hidden links between 
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diabetes mellitus, comorbidities, and complications that potentially paving the way for personalized preventive 

interventions. So, in this study, further data on diabetes mellitus will be carried out using the joint modeling method 

using longitudinal and survival data. In this study, we will examine the diabetes mellitus data model in IFLS using joint 

modeling and analyze what factors affect the recovery time of diabetes mellitus patients in East Java on IFLS data. 

 

II. LITERATURE REVIEW 
 

A. Longitudinal Sub-model 

Longitudinal data is data from repeated measurements for a variable with the same number of subjects but at 

different times [13]. The Linear Mixed Effects (LME) model can be seen as an extension of the standard linear 

regression model by introducing random effects in the model [16]. The most popular approach in longitudinal data 

analysis is mixed models in which random effects between subjects are determined to address concerns that there 

may be unobserved data for each patient or at a certain point [7]. Let 𝑛𝑖 be the number of repeated measures for the 

subject 𝑖 in a sample of 𝑁 individuals, and 𝑦𝑖 be the 𝑛𝑖 dimension vector of repeated measurements. Given linear 

mixed models as follows [13]: 

𝑦𝑖𝑗 = 𝑿𝑖𝑗𝜷+ 𝑏𝑖𝑗 + 𝜀𝑖𝑗 (1) 

𝑿𝑖𝑗 is the 𝒏𝒊 ×𝑴 vector of covariates for the subject 𝑖 at time point 𝑗. 𝜷 is the 𝑴× 𝟏 vector of the unknown population 

parameter called the fixed effect, and 𝑏𝑖 is the unknown subject effect, a random effect parameter [17]. In general, the 

LME model for the longitudinal response 𝑦𝑖 can be written as: 

𝒚𝒊 = 𝑿𝒊𝜷 + 𝒁𝒊𝒃𝑖 + 𝜺𝒊 (2) 

Where 𝒚𝒊 = (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑛𝑖)′ is 𝑛𝑖 × 1 repeated measurement vector for the subject, 𝑿𝑖 and 𝒁𝑖  are design matrices, 

for fixed effect regression coefficient 𝜷, and 𝒃𝑖  is random effect regression coefficient. Meanwhile 𝜺𝒊 = (𝜀𝑖1, 𝜀𝑖2, . . . , 𝜀𝑖𝑛𝑖)′ 

is a vector of 𝑛𝑖 × 1 error measurements in sampling. In this case, we will use a linear mixed effect (LME) model to 

emphasize the normal distribution of longitudinal results. A similar notation can be written [16]: 
𝒚𝒊(𝑡) = 𝑚𝑖(𝑡) + 𝜺𝒊(𝑡)

𝒚𝒊(𝑡) = 𝒙𝒊
′(𝑡)𝜷+ 𝒛𝒊

′(𝑡)𝒃𝒊 + 𝜺𝒊(𝑡)

𝒃𝒊~𝑁(0, 𝐺), 𝜺𝒊(𝑡)~𝑁(0, 𝜎
2) 

 (3) 

Where 𝒙𝒊(𝑡) and 𝒛𝒊(𝑡) are design vectors for fixed effects 𝜷 and random effects 𝒃𝒊, respectively 𝜺𝒊(𝑡) are error terms. 

Random effects follow a normal distribution with a covariance matrix 𝑮 (Rizopoulos, 2012). Dealing with 

measurement error, the observed longitudinal yield 𝒚𝒊(𝑡) is expressed as the sum of the actual longitudinal results on 

𝑚𝑖(𝑡) [13]. It is assumed that the sampling error, where 𝜺𝒊 is independent of 𝒃𝒊, is 𝐶𝑜𝑣(𝒃𝒊, 𝜺𝒊) = 0 with a limit of 

0 < 𝒃𝒊 < 𝐺 [18]. 𝑮 is the variance-covariance matrix for random effects across subjects [13]. Matrix 𝑮 is: 

𝐺 = (
𝜎00 𝜎01
𝜎10 𝜎11

) (4) 

The interpretation of the fixed effect 𝜷 is assuming 𝑝 covariate in the design matrix 𝑋, the coefficient 𝛽𝑖  where 𝑖 =

1, … , 𝑝 shows the change in the mean 𝒚𝒊 when the corresponding covariate 𝑿𝒊 increases by one unit, while all other 

predictors are held constant [13]. Similarly, the random effect, 𝒃𝑖 , is interpreted as how the subset of regression 

parameters for the i-th subject deviates from those in the population [7]. 

 
B. Survival Sub-model 

Survival analysis is a statistical step to analyze data with time until the event occurs. Suppose 𝑇𝑖
∗ is the survival 

time, and 𝐶𝑖  is the censored time for subject 𝑖 = 1,… , 𝑛 [13]. 𝑇𝑖 denotes the observed failure time for subject 𝑖 = 1, … , 𝑛, 

which is defined as 𝑇𝑖 = min  (𝑇𝑖
∗, 𝐶𝑖) [13]. If the subject is not censored, the patient's survival time has been observed, 

where 𝑇𝑖 ≤ 𝐶𝑖 , and if the subject is censored, then the follow-up has been lost or the subject has died, where 𝑇𝑖 > 𝐶𝑖  

[19]. Suppose 𝛿𝑖 is an indicator of the occurrence of events, then 𝛿𝑖 = 𝐼(𝑇𝑖
∗ ≤ 𝐶𝑖). The observed survival data are (𝑇𝑖 , 𝛿𝑖) 

where 𝑖 = 1, … , 𝑛 [19]. In general, the Cox proportional hazard model can be written as [13]: 

ℎ𝑖(𝑡|𝒂𝒊) = ℎ0(𝑡) exp{𝛾
′𝒂𝒊} (5) 

Where ℎ𝑖(𝑡) is the individual hazard function 𝑖 at time 𝑡, ℎ0(𝑡) is the initial unspecified hazard, 𝛾′ contains the 

covariates, and 𝑎𝑖 is the vector of the baseline covariates. The primary hazard ℎ0(𝑡) can be interpreted as a hazard 

when the covariate values are all zero, for example, 𝛾′ =  0. For instance, 𝑚𝑖(𝑡) shows the longitudinal result of time 

𝑡 for individual 𝑖. The actual 𝑚𝑖(𝑡) value is not observed, as will be obtained by measuring error. The following 

proportional hazard model should be considered to test the relationship between 𝑚𝑖(𝑡) and the hazard in an event.  

ℎ𝑖(𝑡|ℳ𝑖(𝑡), 𝒂𝒊) = ℎ0(𝑡) exp{𝛾
′𝒂𝒊 + 𝛼𝑚𝑖(𝑡)}  (6) 

Where ℳ𝑖(𝑡) = {𝑚𝑖(𝑠), 0 ≤ 𝑠 < 𝑡} represents the actual value of the longitudinal covariate for time 𝑡. ℎ0(𝑡) 

represents a hazard function whose initial value is not defined or individuals with all covariate values of 0. 𝒂𝒊 denotes 

the initial covariate vector, and 𝛾′ denotes the vector of regression coefficients corresponding to vector 𝒂𝒊. The impact 

of longitudinal data on survival outcomes at time 𝑡 is measured with the parameter [13]. 

 
C. Basic Joint Model 

The Cox model's covariate 𝒚𝒊(𝑡) depends on the measurement error and missing data [16]. For longitudinal data, it 

is possible to model the path of the observed data 𝑦𝑖𝑗 based on the simple LME model, then:  
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𝒚𝑖(𝑡) = 𝑋𝑖(𝑡)
′𝜷+ 𝒁𝒊(𝑡)

′𝒃𝒊 + 𝜀𝑖 ≡ 𝑚𝑖(𝑡) + 𝜺𝒊(𝑡) (7) 

Following the longitudinal sub-model, 𝑚𝑖(𝑡) is the actual value and other covariates without measuring errors or 

missing data, and 𝜺𝒊 is an error measurement.  

𝑚𝑖(𝑡) = 𝑦𝑖𝑗 = 𝜷𝟎 + 𝜷𝟏𝑡𝑖𝑗 + 𝜷𝟐𝑿𝟐𝒊𝑡𝑖𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 (8) 

Whereas in the survival sub-model, it is assumed that the event risk is related to the values of the covariates. So, the 

survival model can be written as:  

ℎ𝑖(𝑡) = ℎ0(𝑡)exp (𝛾
′𝒂𝒊+ 𝛼[𝜷𝟎 + 𝜷𝟏𝑡𝑖𝑗 + 𝜷𝟐𝑿𝟐𝒊𝑡𝑖𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 (9) 

The survival and longitudinal models are related in this case, so the inference is needed together. The standard joint 

model framework for linking survival models and longitudinal models is through shared random effects, often called 

shared-parameter models. Here, the shared-parameter model can be extended by assuming the longitudinal model 

and the survival model have a random effects correlation, which can be written as follows [16]:  

{

ℎ𝑖(𝑡) = ℎ0(𝑡)exp  (𝛾′𝒂𝒊 + 𝛼𝑚𝑖(𝑡))

𝒚𝒊 = 𝑿𝒊
′𝜷 + 𝒁𝒊

′𝒃𝒊 + 𝜺𝒊
(𝒂𝒊′, 𝒃𝒊

′)′~𝑁(𝟎,𝑮)
 (10) 

Where 𝒂𝒊 and 𝒃𝒊 are random effects correlated with the covariance matrix 𝑮. 

 
D. Newton Raphson 

The application of numerical integration procedures, such as Monte Carlo sampling or to assess 𝑄 (𝜽|𝜽(𝑖𝑐)). 

log 𝑓 ( 𝑇𝑖 , 𝛿𝑖 , 𝒚𝒊, 𝒃𝑖; 𝜽 ) = 𝑙𝑜𝑔 𝑓 ( 𝑇𝑖 , 𝛿𝑖| 𝒃𝑖; 𝜽𝒕, 𝜷) + log 𝑓 (𝒚𝒊|  𝒃𝒊; 𝜽𝒚) + 𝑙𝑜𝑔 𝑓 (𝒃𝒊; 𝜽𝒃) (11) 

where, 

𝜎̂2 = 
∑ ∫(𝒚𝑖 −𝑋𝑖𝜷− 𝑍𝑖𝒃𝑖)′ (𝒚𝑖 −𝑋𝑖𝜷− 𝑍𝑖𝒃𝑖) 𝑓( 𝒃𝑖| 𝑇𝑖, 𝛿𝑖 , 𝒚𝑖; 𝜽)𝑑𝒃𝑖𝑖

𝑁
 (12) 

and  

𝐺̂ =  
∑  𝑣𝒃𝒊 ̃ +  𝒃̃𝒊𝒃̃𝒊′𝑖

𝑛
 (13) 

where 𝑁 = ∑ 𝑚𝑖
𝑛
𝑖=1  is the total number of observations in the study. 

𝒃̃𝒊 = 𝑬(𝒃𝒊|𝑇𝑖 , 𝛿𝑖 , 𝒚𝒊;  𝜽
(𝑖𝑐)) = ∫  𝒃𝒊 𝑓(𝒃𝒊|𝑇𝑖 , 𝛿𝑖 , 𝒚𝒊;  𝜽

(𝑖𝑐))𝑑𝒃𝒊 (14) 

𝑣𝒃𝑖 ̃ =  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝒃𝒊|𝑇𝑖 , 𝛿𝑖 , 𝒚𝒊; 𝜽
(𝑖𝑐)) = ∫(𝒃𝒊 − 𝒃̃𝒊)

2
𝑓(𝒃𝒊|𝑇𝑖 , 𝛿𝑖 , 𝒚𝒊;  𝜽

(𝑖𝑐))𝑑𝒃𝒊 (15) 

To maximize 𝑄 (𝜽|𝜽(𝑖𝑐)) with respect to 𝜽 can maximize the individual parts with appropriate parameters. The 

solutions of 𝜷 in the longitudinal submodel and parameters in the survival submodel 𝜽𝒕  are obtained by Newton 

Raphson [20]: 

𝜷̂(𝑖𝑡+1) = 𝜷̂(𝑖𝑡) − {
𝛿𝑆(𝜷̂(𝑖𝑡))

𝛿𝜷
}

−1

𝑆(𝜷̂(𝑖𝑡)) (16) 

𝜽̂(𝑖𝑡+1) = 𝜽̂(𝑖𝑡) − {
𝛿𝑆(𝜽̂(𝑖𝑡))

𝛿𝜽𝒕
}

−1

𝑆(𝜽̂(𝑖𝑡)) (17) 

where 𝜷̂(𝑖𝑡) and 𝜽̂(𝑖𝑡) are the values of 𝜷 and 𝜽𝒕 at the current iteration, respectively, 
𝛿𝑆(𝜷̂(𝑖𝑡))

𝛿𝜷
 and 

𝛿𝑆(𝜽̂(𝑖𝑡))

𝛿𝜽𝒕
 are the 

corresponding blocks of the Hessian matrix. The elements of the score vectors 𝜷 and 𝜽𝒕 are: 

𝑆(𝜷) =  
∑ 𝑋𝑖

′{ 𝑦𝑖 − 𝑋𝑖𝜷− 𝑍𝑖𝒃𝒊
′}𝑖

𝜎2
+ 𝛼𝑖𝑥𝑖(𝑇𝑖)

− exp(𝛄′𝒂𝑖)∫∫ ℎ0(𝑠)𝑎 𝒙𝑖(𝑠) exp[𝛼{𝒙𝒊
′(𝑠)𝜷 + 𝒛𝑖

′(𝑠)𝑏𝑖}] × 𝑓 (𝒃𝑖| 𝑇𝑖, 𝛿𝑖 , 𝑦𝑖; 𝜃)𝑑𝑠 𝑑𝒃𝑖

𝑇𝑖

0

 
(18) 

𝑆(𝛾) =∑𝒂𝑖  [ 𝛿𝑖 − exp(γ
′𝒂𝑖)∫∫ ℎ0(𝑠)exp [𝑎 𝒙𝑖(𝑠)𝜷+ 𝒛𝑖

′(𝑠)𝑏𝑖}]𝑓 (𝒃𝑖| 𝑇𝑖 , 𝛿𝑖 , 𝒚𝒊; 𝜽) × 𝑑𝑠 𝑑𝒃𝑖  
𝑇𝑖

0

]

𝑖

 (19) 

𝑆 (𝛼) =∑𝛿𝑖{𝒙𝑖′(𝑇𝑖)𝜷

𝑖

+ 𝑧𝑖′ (𝑇𝑖)𝒃𝒊̃} [ − exp(𝛄
′𝒂𝑖)∫∫ ℎ0(𝑠)exp [𝑎 𝒙𝑖(𝑠)𝜷

𝑇𝑖

0

+ 𝒛𝑖
′(𝑠)𝑏𝑖}]  × 𝑓 (𝒃𝑖| 𝑇𝑖 , 𝛿𝑖 , 𝒚𝒊; 𝜽)𝑑𝑠 𝑑𝒃𝑖  ] 

(20) 

𝑆 (𝜃ℎ0) = ∑𝛿𝑖
𝛿(𝑇𝑖; 𝜃ℎ𝑜)

𝛿𝜃ℎ0
′  

𝑖

− exp(𝛄′𝒂𝑖)∫∫
𝛿(𝑇𝑖; 𝜃ℎ𝑜)

𝛿𝜃ℎ0
′ exp [𝑎 𝒙𝑖(𝑠)𝜷+ 𝒛𝑖

′(𝑠)𝑏𝑖}]  × 𝑓 (𝒃𝑖| 𝑇𝑖 , 𝛿𝑖 , 𝒚𝒊; 𝜽)𝑑𝑠 𝑑𝒃𝑖

𝑇𝑖

0

 

(21) 

E. Hypothesis Testing 

A simultaneous test is conducted to determine the effect of the coefficients as a whole in a model [13]. 𝐻0: 𝜃1 = 𝜃2 =

⋯ = 𝜃𝑝 = 0 and 𝐻1: there is at least one 𝜃𝑝 ≠ 0. The likelihood ratio test statistic (𝐺2) is as follows. 

𝐺2 = −2 ln [
𝐿(𝜔̂)

𝐿(Ω̂)
] (22) 
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In the G-test following the Chi-Square distribution 𝜒2, 𝐻0 will be rejected if the value of 𝐺 > 𝜒2(𝑘; 𝛼) or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <

 𝛼, which means that the predictor variables together mean the response variable. Meanwhile, the partial test is 

𝐻0: 𝜽𝑗 = 0 ;  𝐻1: 𝜽𝑗 ≠ 0  , 𝑗 = 1,2, … , 𝑝 with the test statistics 

 

𝑊 = [
𝜽̂𝑗

𝑆𝐸𝜽̂𝑗
]

2

 (23) 

Where 𝜽̂𝑗 denotes the estimator of 𝜽𝑗 and 𝑆𝐸𝜽̂𝑗 is the error of 𝜽̂𝑗, while W is a test with degrees of freedom equal to 

one. 𝐻0 is rejected if 𝑊 > 𝜒2(1;𝛼) or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  𝛼, concluding that the predictor variable affects the response variable. 

 

III. METHODOLOGY 
The data used in the study is secondary data on diabetes mellitus in East Java obtained from IFLS in 2014 (late October 

2015 to the end of April 2015) with IFLS5. Measurements were taken two to four times per patient. This data is the result 

of a survey that has been conducted. The dependent variables used include Survival time (𝑾). Survival time is the output 

of survival, where the patient is taking therapy for diabetes mellitus until he is declared dead or stops therapy during the 

study. Units in research in months. Patient status (𝑫), which consists of categories 1: Uncensored (Diabetes mellitus 

patient died) and 0: Censored (Diabetes mellitus patient transferred to another treatment or died from other causes). The 

level of HbA1c (𝒚𝒊𝒋) and glycated hemoglobin (HbA1c) is the output of longitudinal. This marker is often used to predict 

the risk of complications in patients with diabetes mellitus [21]. While the independent variables in this study include 

the time of measurement (𝑿𝟏), measurements were made two to four times in 2007 on IFLS4 and 2014 on IFLS5. Medical 

history (𝑿𝟐) whether the patient is taking diabetes-lowering drugs. Gender (𝑿𝟑), Comorbidities (𝑿𝟒), which are diseases 

experienced by patients other than diabetes mellitus, and Complications (𝑿𝟓), where the patient's condition after 

treatment has complications or not. 

Joint modeling is used in this research and the R program from JM packages is used to analyze the data [22], [23]. The 

model consists of longitudinal analysis with a linear mixed model and a survival analysis with a Cox proportional hazard 

approach. The stages of data analysis are as follows: 

1. The first stage is collecting data on diabetes mellitus patients from IFLS5 according to the required variables. 

2. Data analysis was conducted to determine the variables' general description. 

3. It establishes a basic joint modeling model specification from the longitudinal and survival sub-model. 

a. LMM Model 

- Define the dependent and fixed effect (explanatory variable) 

b. Proportional Hazard Cox Model 

- Define the event and identify covariates 

- Define the baseline hazard function 

4. We are estimating parameters using Maximum Likelihood Estimation (MLE). 

5. After getting the parameter values, the results of the parameter values are entered in the model specifications 

so that a model from the joint model is formed, with a longitudinal sub-model using a linear mixed model 

approach and a survival sub-model with a proportional hazard Cox model. 

c. LMM Model 

- Fitting the model 

- Examine fixed effect estimates and the significance 

- Asses model fit 

d. Proportional Hazard Cox Model 

- Fitting the model 

- Examine hazard ratios and the significance 

- Asses model fit 

6. Hypothesis testing was performed on the model formed to find the independent variables that affect the 

dependent variable so that the factors that are thought to affect the healing of patients with diabetes mellitus 

are known. This study chose to test the hypothesis using the Wald test with a significance level of 5%. 𝐻0 is the 

independent variables, namely measurement time, treatment history, gender, comorbidities, and complications 

that do not significantly affect the healing time of diabetes mellitus. 𝐻1 is the independent variables, namely 

measurement time, treatment history, gender, comorbidities, and complications that significantly affect the 

healing time of diabetes mellitus. 

 

IV. RESULTS AND DISCUSSIONS 
This study took IFLS data consisting of 293 observations with a minimum age of 16 to 65 years and made measurements 

of two to four repetitions in each observation. Characteristics in HbA1c levels, with the amount of HbA1c < 𝟕% [24]. The 

features of the survival time of patients with diabetes mellitus are in Table 1. 
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Table 1 Characteristics of survival time 

Patient Data Gender Total (%) 

Censored 
Male 64.5 

Female 0.0 

Died 
Male 35.5 

Female 0.0 

 

Table 1 shows that in this study, based on the characteristics of the survival time, there were more censored data than 

patients who died. There is 35.5% censored data in this case. Censored data include incomplete data, where patients are 

not taking therapy anymore or patients die. It is known that 64.5% of the data was censored with 189 patients. Two to 

four measurements were made until the total number of observations was 890 from 293 patients. In general, the data 

used in this research has the characteristics provided in the Table 2. 
Table 2 Characteristics of data 

Descriptive Statistics 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 

Mean 4.35 0.49 0.92 0.58 0.68 

Standard Deviation 4.81 0.50 0.27 0.49 0.47 

Minimum 0.00 0.00 0.00 0.00 0.00 

Maximum 18.00 1.00 1.00 1.00 1.00 

 

In this case joint modeling is a linear mixed effects model and a Cox proportional hazard model for survival [13]. In 

the formation of joint modeling, there are longitudinal and survival sub-models. The model will be formed, and 

previously discussed, the longitudinal and survival sub-model. The following is an estimation of joint modeling using 

maximum likelihood by adding Newton Raphson's algorithm in diabetic patients.  
Table 3 Estimates on data on diabetes mellitus patients 

Parameter Estimation SE t-value p-value Parameter 

𝛽0 2.6401 0.0228 115.5422 0.0001* 𝛽0 

𝛽1 -0.0017 0.0039 -4.4441 0.6570 𝛽1 

𝛽2 0.0004 0.0048 0.0735 0.9414 𝛽2 

𝜎00 0.2821    𝜎00 

𝜎01 0.0041    𝜎01 

𝛾0 -0.2822 0.2008 -1.4053 0.1599 𝛾0 

𝛼 1.0307 0.5734 1.7977 0.0722 𝛼 

𝛾1 -8.7184 1.7723 -4.9193 0.0001* 𝛾1 

𝛾2 -3.6026 1.7741 -2.0306 0.0423 𝛾2 

𝛾3 -9.1032 1.7706 -5.1413 0.0001* 𝛾3 

𝛾4 -4.4602 1.5829 -2.8177 0.0048 𝛾4 

 

A linear mixed effects model with random intercept is used to analyze longitudinal results. This model uses a variable 

𝑿𝟏, the measurement time, and 𝑿𝟐, with a treatment history. This model shows that HbA1c levels in patients have 

progressed at different measurement times in the treatment history. To normalize HbA1c levels, use the square root of 

the amount of HbA1c in the longitudinal model. Analysis of longitudinal results using linear mixed effects and random 

slope for the square root of the total HbA1c levels. The longitudinal sub-model, where 𝜷𝟎 is the intercept, 𝜷𝟏 is the 

parameter estimate of 𝑿𝟏, and 𝜷𝟐 is the parameter estimate of 𝑿𝟐. 𝒚𝒊𝒋 shows as the square root of 𝒋 the measurement of 

the number of HbA1c levels in individuals, with 293 individuals, with 𝒃𝒊 = (𝒃𝒊𝟎, 𝒃𝒊𝟏) and 𝝈𝟎𝟎 being the standard 

deviation (individual), 𝝈𝟎𝟏 is the standard deviation at the time of measurement. In comparison, 𝝈𝟐 is a measurement of 

error. 

The specifications in this model add random effects to the measurement time due to patients who do not take 

measurements at a predetermined time, resulting in missing data in the measurement of random effects. The added 

variable is measurement time. The parameters here will be estimated using the Restricted Maximum Likelihood (REML). 

REML is an estimation method used to estimate the fixed effect and variance parameters in a linear mixed model. The 

indicators used in the longitudinal sub-model are medication history and the relationship between medication history 

and measurement time. Based on Table 3 of the parameter estimation results, the form of the longitudinal sub-model is:  
𝑦𝑖𝑗 = 2,6403 − 0,0017𝑡𝑖𝑗 + 0,0004𝐗𝟐 × 𝑡𝑖𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝜀𝑖𝑗 

𝒃𝒊~𝒩(0, 𝐺)

𝜀𝑖𝑗~𝒩(0, 𝜎
2)
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with, the value of 𝐜𝐨𝐯(𝑮) = (
𝟎, 𝟐𝟖𝟐𝟏 𝟎, 𝟎𝟎𝟒𝟏
𝟎, 𝟎𝟎𝟒𝟏 −𝟎, 𝟔𝟕𝟓𝟔

) and the value of 𝝈𝟐 = 𝟎,𝟒𝟎𝟕𝟕. 

After the model is known, the next step is to test the hypothesis. The model will be tested with a partial test by showing 

that the 𝒑 − 𝒗𝒂𝒍𝒖𝒆 of each independent variable is 𝟎. 𝟎𝟔𝟓𝟕 and 𝟎. 𝟗𝟒𝟏𝟒, respectively, where the value is more than 𝜶 =

𝟎, 𝟎𝟓. It can be concluded that the measurement time variables and treatment history have no significant effects. So that 

a significant longitudinal sub-model can be written: 

𝑦𝑖𝑗 = 2,6403 −   𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝜀𝑖𝑗 

because it is not significant, it will be continued on the joint modeling. 

In the survival sub-model, we use the Cox proportional hazard model depending on the time of the study, namely the 

time the patient is taking treatment and the time he is declared cured or has stopped treatment. By entering covariates of 

patient data censored or died, treatment time (𝑿𝟏), history of treatment with (𝑿𝟐), gender (𝑿𝟑), comorbidities (𝑿𝟒), and 

complications (𝑿𝟓), with parameters and, where 𝜸𝟎 is a parameter of patients who did not take treatment within the 

specified study time. Meanwhile, an association measures the relationship between 𝒎𝒊(𝒕) on the actual square root of the 

HbA1c level and the mortality factor. The parameter 𝜸 was applied with Cox proportional hazard regression. Based on 

Table 3, which is the result of the estimated parameters of the survival sub-model form as follows:  

ℎ𝑖(𝑡|ℳ𝑖(𝑡), 𝑋𝑖) = ℎ0(𝑡) exp{−0,2822 − 8,7184𝑋1𝑖 − 3,6026𝑋2𝑖 − 9,1032𝑋3𝑖 − 4,4602𝑋4𝑖 − 7,1528𝑋5𝑖
+ 1,0307(2,6403 − 0,0017𝑡𝑖𝑗 + 0,0004𝑋2 × 𝑡𝑖𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗)} 

After the model is known, the next step is to test the hypothesis. The model will be stretched with a partial test by 

showing that the 𝒑 − 𝒗𝒂𝒍𝒖𝒆 of each independent variable successively is 𝟎. 𝟎𝟎𝟎𝟏 where the value is less than 𝜶 = 𝟎,𝟎𝟓. 

It can be concluded that the variables of measurement time, gender, and complications have a significant effect. So, the 

significant survival sub-model can be written as follows: 
ℎ𝑖(𝑡|ℳ𝑖(𝑡), 𝑋𝑖) = ℎ0(𝑡)exp {−0,2822 − 8,7184𝑋1𝑖 − 9,1032𝑋3𝑖 − 7,1528𝑋5𝑖

+ 1,0307(2,6403 − 0,0017𝑡𝑖𝑗 + 0,0004X2 × 𝑡𝑖𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗) 

A joint model will be developed after the longitudinal and survival sub-model is constructed. From the longitudinal 

sub-model and survival sub-model, a joint model can be formed so that the joint model can be written as follows: 

{
 
 

 
 

ℎ𝑖(𝑡|ℳ𝑖(𝑡), 𝑋𝑖) = ℎ0(𝑡)exp {−0,2822 − 8,7184𝑋1𝑖 −
(−3,6026)𝑋2𝑖 − 9,1032𝑋3𝑖 − 4,4602𝑋4𝑖 − 7,1528𝑋5𝑖 +

1,0307(2,6403 −  0,0017𝑡𝑖𝑗 + 0,0004X2 × 𝑡𝑖𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗)}

𝑦𝑖𝑗 = 2,6403 − 0,0017𝑡𝑖𝑗 + 0,0004X2 × 𝑡𝑖𝑗 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝜀𝑖𝑗

𝑏𝑖~𝒩(0,𝐺), 𝜀𝑖𝑗~𝒩(0, 𝜎
2)

 

with, the value of 𝐜𝐨𝐯(𝑮) = (
𝟎, 𝟐𝟖𝟐𝟏 𝟎, 𝟎𝟎𝟒𝟏
𝟎, 𝟎𝟎𝟒𝟏 −𝟎. 𝟔𝟕𝟓𝟔

) and the value of 𝝈𝟐 = 𝟎,𝟒𝟎𝟕𝟕. 

After the model is known, the next step will be to test the hypothesis. The first is the simultaneous test, where the 

results of the joint modeling test can be carried out using the Wald test. The value of the test statistic was 𝑾 =

𝟏𝟎𝟖𝟏,𝟖𝟕𝟐 ≥  𝛘𝛂;𝐩𝟐 = 𝟏𝟏,𝟎𝟕 and 𝒑 − 𝒗𝒂𝒍𝒖𝒆 = 𝟎, 𝟎𝟑𝟏𝟕𝟓 < 𝟎, 𝟎𝟓. Because 𝑾 ≥ 𝛘𝛂;𝐩𝟐 and 𝒑 − 𝒗𝒂𝒍𝒖𝒆 <  𝜶, it is concluded 

that 𝑯𝟎 is rejected. So simultaneously, there is at least one of independent variables that significantly affect the healing 

time of diabetes mellitus. 

Based on the partial joint modeling test in Table 3 shows that the measurement of times (𝑿𝟏) and gender (𝑿𝟑) partially 

have a significant effect on diabetes mellitus. It is shown that the 𝒑 − 𝒗𝒂𝒍𝒖𝒆 of the independent variable is 𝟎. 𝟎𝟎𝟎𝟏, 

𝟎. 𝟎𝟎𝟎𝟏, and 𝟎. 𝟎𝟎𝟎𝟏, respectively, where the value is less than 𝜶 = 𝟎. 𝟎𝟓, in contrast to previous research carried out by 

[7], namely obtaining two models with model 1 and model 2. In model 1, it is known that significant variables are 

measurement time and consumption of diabetes-lowering drugs with 𝒑 − 𝒗𝒂𝒍𝒖𝒆𝒔 of 𝟎. 𝟎𝟎𝟎 and 𝟎. 𝟎𝟎𝟎𝟔, respectively, 

and the value of 𝟎. 𝟎𝟓. In model 2, the significant variable is the measurement time with a 𝒑 − 𝒗𝒂𝒍𝒖𝒆 of 0.0000 and 𝜶 =

𝟎, 𝟎𝟓. So, the 𝒑 − 𝒗𝒂𝒍𝒖𝒆 < 𝜶. 

The two models were compared through the criteria for the best model using AIC. From of the AIC model 2 results, it 

is better because the value is smaller than model 1. Thus, a significant variable was obtained in previous study conducted 

by [25], [26] using longitudinal data: the measurement time. While in this study using the joint modeling method with 

estimates using the maximum likelihood and adding the Newton Raphson algorithm significant variables, namely the 

time of measurement of gender and complications. 

Based on Table 3, the interpretation of the coefficients obtained in the formation of joint modeling states that the chance 

of recovering patients suffering from diabetes mellitus is influenced by the measurement time with a −𝟖.𝟕𝟏𝟖 gender 

coefficient value of −𝟗.𝟏𝟎𝟑𝟐. At the same time, complications show a coefficient value of −𝟕.𝟏𝟓𝟐𝟖. Furthermore, the 

parameter shows the relationship between HbA1c levels and mortality factors affecting patient recovery with a coefficient 

of 𝟏. 𝟎𝟑𝟎𝟕. So, with the reduced measurement time, the patient has a lower possibility of recovering 𝟖. 𝟕𝟏𝟖𝟒 times. The 

variables of gender and complications also have a lower possibility of recovery, respectively, 𝟗. 𝟏𝟎𝟑𝟐 times and 𝟕. 𝟏𝟓𝟐𝟖 

times. 

This study provides the results of modeling and estimating diabetes mellitus data in Indonesia based on the method 

used. The study found that gender and complications significantly affect diabetes mellitus. One plausible explanation for 

this finding is that diabetes mellitus is more likely to occur in women [27], [28]. Other research shows that complications 
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greatly influence a person with diabetes mellitus [29], [30]. The study also discovered that separate modeling techniques 

employed to model and estimate diabetes mellitus in Indonesia produced inconsistent analytical outcomes, while joint 

model of the suggested data produced more accurate findings and developments. Additionally, we discovered that joint 

modeling, based on the analysis results, delivers more complicated information. The analysis employed in data analysis 

is based on statistical models. Making decisions can benefit from this. Therefore, policymakers, particularly the 

government, must use statistics and statistical modeling to inform their decisions. Additionally, researchers think 

providing the impact of joining two models impacts chosen for this study's techniques and models is crucial.

V. CONCLUSIONS AND SUGGESTIONS 
Based on the results and discussion of parameter estimation using combined modeling analysis. The model is formed 

using longitudinal and survival sub-models. The result of the survival sub-model is that the explanatory variables have 

no significant effect. So, proceed to combined modeling. The combined modeling results show that the factors that have 

a significant effect on diabetes mellitus disease are time measurement, gender, and complications. The time measurement 

of patients who have a smaller chance of recovery is 8.718 times. The male gender of patients who have a smaller chance 

of recovery is 9.1032 times compared to women. As for complications, the coefficient value of patients who have a smaller 

chance of recovery is 7.1528 times. The interpretation of the model is that every time the time measurement decreases, 

the patient has a smaller chance of recovery, which is one time. The gender variable has a chance of recovery equal to 

time. For future research, the combined modeling results can be applied to other data. Combined modeling analysis can 

also be developed by considering right or left censored data. This study used the Cox proportional hazard method to 

accommodate survival time. Future research is expected to use other methods with different approaches and different 

algorithms. 
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