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ABSTRACT - Analysis of human development growth at the regency/city level is challenging because the data is high-
dimensional, indicators are correlated, and the regencies/cities are correlated. In this study, we propose a Generalized Principal
Component Analysis to analyze human development growth by reducing the dimensions of regency/city and indicator. Thus,
human development growth at the regency/city level is analyzed using the GPCA results in Biplot to describe each regency/city and
its indicators. This study aims to evaluate GPCA in reducing the dimensionality of data whose observations are correlated, and
indicators are correlated through simulation and empirical study; to analyze the growth of human development at the regency/city
level based on the results of GPCA-Biplot. This research shows that GPCA works well in reducing data dimensions from correlated
observations and correlated variables. Based on the results of the GPCA-Biplot visualization, the growth of human development in
the Nduga regency from 2019 to 2022 showed significant fluctuations. Although some indicators show progress, especially in 2021,
significant challenges remain. In the same way, the growth of human development in each regency/city can be analyzed. Thus,
government policy focuses on real problems in the field.
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I. INTRODUCTION

Dimensionality reduction is a technique for reducing data dimensions so that the low-dimensional data formed can
retain meaningful information from the original data. It is very efficient in the visualization and statistical analysis of
high-dimensional data [1]. Principal Component Analysis (PCA) is one method for reducing data dimensions. PCA
projects data in a d-dimensional space into a k-dimensional subspace, with k smaller than d. The resulting new set of
dimensions is called Principal Components (PC) [2]. Furthermore, PCA is developed into Kernel PCA. KPCA is an
extension of the standard PCA to nonlinear problems using the kernel method [3]. Then, PCA is developed into
Generalized Principal Component Analysis (GPCA). The GPCA method was first proposed to obtain image compression
and representation results. GPCA is used to reduce the dimensions of image data with the results of better visual quality
and faster computation. This study shows the superiority of GPCA over PCA methods in image compression [4]. GPCA
is often called Generalized Low-Rank Approximation of Matrices (GLRAM)[5] [6].

Various studies on GPCA have been conducted, including those on GPCA being applied to face identification. The idea
is to learn low-rank approximation from raw-intensity face images such that the squared distance between all faces with
the same identity should be smaller than those with different identities. In the research, GPCA was assisted by top-push
constrained feature learning (TFL) in face identification [7]. Other research related to GPCA is that several data
dimensionality reduction methods (including GPCA) have mathematically and experimentally evaluated the validity of
reducing dimensions for calculating similarity in image pattern recognition. Image pattern recognition identifies
instances of a particular object and distinguishes differences between images [8]. GPCA is also used to identify genes
with overlapping patterns so that functions and interactions of genes can be identified. The experiment's results on gene
expression pattern images show the effectiveness of GPCA in compressing biology images [9]. GPCA is also used to
group multi-view data into several clusters based on the similarity between the data. The result of the study is that GPCA
has superior performance in multi-view clustering compared to other clustering methods [10].

In the GPCA concept, data dimensions are reduced from a collection of observations (rows) correlated with each other
and a collection of variables (columns) correlated with each other simultaneously. In addition, GPCA can simultaneously
reduce a dataset's dimensions, provided that the dimensions of the dataset are the same [11]. Various studies on the
GPCA method have been successfully applied to image data. In this research, GPCA is used on non-image data.
Therefore, this research evaluates the effectiveness of the GPCA method in reducing the dimensions of non-image data
from correlated observations and correlated variables using simulated data. On the empirical side, this study analyses
the growth of social problems from year to year.

One of the topics that can be applied to the GPCA method is the analysis of human development growth from year to
year. Measuring human development is called the Human Development Index (HDI). Indonesia's HDI increased from
71.92in 2019 to 71.94 in 2020, then 72.29 in 2021. In the following year, the HDI increased to 72.91. Even though Indonesia's
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HDI continues to increase, HDI growth in the last four years has slowed. Apart from that, gaps in human development
achievements between the regencies/cities still exist [12-15]. This may be due to the policy focus not being in line with
the real problems in the field. Therefore, it is necessary to comprehensively analyze the data on human development
dimension indicators at the regency/city level from 2019 to 2022.

Data on human development dimension indicators at the regency/city level have properties dimensions of the
indicators, and regency/city are high, between indicators are correlated, and between regencies/cities are correlated.
Therefore, analyzing human development growth from year to year on high-dimensional data is challenging. The
generalized Principal Component Analysis (GPCA) method is needed to obtain lower dimensions of indicator and
regency/city, uncorrelated indicators, and uncorrelated regencies/cities. Thus, the growth of human development is
analyzed based on data from dimension reduction using GPCA. With GPCA, the position of regencies/cities and
indicators can be visualized yearly in a plot based on the Biplot concept. This way, the visualization plot will provide a
specific description of each regency/city and its indicator so that the government's policy focus aligns with real problems
in the field. Based on the problems above, this study aims to evaluate the GPCA method in reducing high-dimensional
data from correlated observations and correlated indicators in empirical data and simulation data; analyze the growth of
human development at the regency/city level from 2019 to 2022 based on visualization from GPCA-Biplot.

II. LITERATURE REVIEW
A. Generalized Principal Component Analysis

GPCA reduces the observations and variables dimension of the data. This means that GPCA not only reduces the
dimensions of the variable but also considers the dimension of the observation, which is different from PCA, which only
focuses on reducing the dimensions of the variables. GPCA aims to calculate two matrices, L € R"* Lhand R € R¢¥lz,
with orthonormal columns to maximize the variance (L, R). An iterative procedure is used to obtain the optimal L and R
matrices. To calculate L, first calculate R, which is obtained from the eigenvectors of the matrix Mg. Calculate L, which is
obtained from the eigenvectors of the matrix My, to obtain the matrix R. This procedure is repeated until it converges. The
solution depends on the initial choice, Ly, for L. Experiments show that choosing Ly =1 € R"*", where I is the identity
matrix, obtains excellent results. Given L, R, and {A;}}-,, the projection of A; by L and R can be calculated by D; = L*A;R.
Conversely, given L,R and {D;}-;, the estimated of original data {A;}; is obtained by the formula A; ~ L D; R%.
Checking the GPCA Algorithm uses the RMSE value [5]. More specifically, RMSE(i) and RMSE(i — 1) are the RMSE values
in the i-th iteration and (i-1)-th iteration of the GPCA algorithm. Then, the convergence of the GPCA algorithm can be
determined by checking RMSE(i — 1) — RMSE(i) < 7. For some small thresholds, n > 0. The RMSE value in each GPCA
iteration describes GPCA's performance in representing the original data in a lower dimensional space and shows the
effectiveness of the dimension reduction process. Determining the number of principal components is based on the
cumulative proportion of total variance. The selection of principal components from r observations in the eigenvector
matrix L and principal components from c variables in the eigenvector matrix R. This is based on the concept of PCA
[16]. Like PCA, the standardization process is carried out because GPCA searches for principal components based on
data variance. If features with high variance dominate, the resulting principal components will be more influenced by
those features [17]. The GPCA algorithm in Table 1 has been added with a column standardization process [11].

Table 1 Algorithm GPCA
Algorithm 1. Generalized Principal Component Analysis
Input : Ay, Ay, ...,A; € R"*¢, Original dataset
Output: Dq,D,, ...,D, € Ri*L, Low-dimensional data that represents a original data
Ay A,, ... A, € R7%¢, Estimated original dataset
RMSE

1 Standardize data using standardization columns
2 Initialize the matrix Ly with the identity matrix Ly = (1,0)T
3 =0, RMSE(Q) =
4  Form the matrix Mg with the formula Mg = Y. A{L;L{ A;
5 i=i+1
6 Calculate [; eigenvectors { Bf };;1 of My corresponding to the cumulative proportion of variance (< 90%) so that R; = [Bf J s ﬁﬁ]
7  Form the matrix My, with the formula M;, = YL A; R;R} A}
8 Calculate [, eigenvectors { B} ;2:1 dari My, orresponding to the cumulative proportion of variance (< 90%) so that L; = [ﬁi J s [3{‘2]
9  Calculate RMSE(i) = \/i T, 1A — L LSAJRRY |2
10 Repeat steps 4 to 9 until (RMSE(i — 1) — RMSE(i) < 0,001)
11 Obtain the optimal L and R matrices from the last iteration
12 Form low-dimensional data with the formula
D; = L*A;R for each j from i ton
13 Form an estimate of the dataset (standardization scale)
A; =LD;R"foreach j from i ton
14 Transform the data units to the initial scale
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GPCA can analyze the position of regencies/cities, and the position of indicators based on the Biplot concept. Biplot is
a graphical visualization method used in multivariate data analysis to display information about data in two dimensions.
The main purpose of the biplot is to provide a comprehensive description of the data structure and relationships between
indicators [18]. Mathematically, the process of finding the coordinates of the origin points in the GPCA biplot display is
the same as the concept of PCA Biplot [19]. The following is an explanation for creating a Biplot in GPCA.
Suppose A is a data matrix containing r observations and ¢ indicators, then with GPCA, it can be written as:
A=LD Rt (1)
the matrix column L contains the eigenvectors from the multiplication matrix A R R'A', and the column matrix R contains
the eigenvectors from the multiplication matrix A L L* A. After decomposition using the Singular Value Decomposition
technique, matrix A can be factored in the form:
A=XY! ()
where matrix X = L D* and matrix Y* = D17¢RY, where a = 0. To plot the position of regencies/cities and the position of
indicators in GPCA, use the principal component score matrix as follows:
X=LD* and Y = (Y")! 3)
matrix X contains the principal component scores, which are the coordinates of the r observations. matrix Y contains the
principal component scores, which are the coordinates of the ¢ indicators.

B. Procrustes Analysis
Procrustes analysis measures the similarity of each original data (A) with the estimated original data (A). The basic
principle of Procrustes analysis is that the original data (A) is taken as specified, and the estimated original data (A) is
transformed so that the two data are as close as possible. This transformation involves processes like translation (shifting
the data in a specific direction), rotation (turning the data around a point), and dilation (scaling the data up or down)
[20].
Translation in Procrustes analysis is shifting all points in the original data (A) and estimated original data matrix (&) by
a fixed distance and in the same direction so that both data configurations have the same centroid. The minimum distance
between original data matrix (A) and estimated original data matrix (A) after the translation process is carried out as
follows [21]:
D;(A,A) =D(Ar,Ar)
Dr(AA) = XL, X8 [(ai; — @) — (@ — &)’ )
Ar is the translation result matrix from data A and Ay is the translation result matrix from data A.
Rotation is the movement of all points at a fixed angle without changing the distance of each point to its centroid.
Rotation transformation is done by multiplying the matrix A with an orthogonal matrix Q, which minimizes the distance
between data. To obtain the minimum Dgp (AT,KT) value, an orthogonal matrix Q = VU' must be chosen from the

decomposition of the singular values of (At)*Ar = ULV' so that the optimal distance after the rotation process is [22]
Drr(A,A) = trace (KTt KT) + trace(Ar* A) — 2 trace(L) 5)

Dilation is data scaling by increasing or decreasing the distance of each point in the configuration to its centroid. The
dilation transformation is carried out by multiplying the matrix A7Q by a scalar k so that the configuration after the
dilation transformation will be kA1 Q. To obtain the minimum Drgp, (A, K) value, k can be chosen as follows [21]:

_ trace (A7'AA) ©)
- trace(Ar Ar)
thus, obtained:
~ trace?( AYA1Q
Drrp(A,R) = trace (AYAy) — ﬁ:ﬁ;) @)

The R-square value (R?) is used to measure the similarity of data configurations in Procrustes analysis. The percentage

of the two configurations that can be considered the same is shown by R?. As the value gets closer to 100%, the similarity

of the data configuration gets higher. The formula for calculating R? is as follows [21]:

_ Drrp(AA)
R*=1- trace (AAY) (8)
. METHODOLOGY

A. Data

This research uses simulation data and empirical data. The simulation data used is 4 (four) data matrices (A; €
R500%100 5 = 12 3 4). Each data matrix is designed as follows, consisting of 25 groups of observations and 5 groups of
variables. Observations in the same group are correlated, while observations between groups are not correlated. The
same applies to variables. In addition, the simulation data fulfills the condition that the matrices are correlated. The steps
for generating simulation data are as follows:

1) Generating a covariance matrix S € R2°X20 that has symmetry and positive definite properties

1 08 .. 08
fog8 1 .. 08
SZOXZO_ . 0,8
08 08 - 1
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Doing Cholesky decomposition on matrix S aims to obtain the lower triangular matrix P and the upper triangular
matrix P'. The matrix P has the property that observations are correlated. The matrix P* has the property that
variables are correlated. The Cholesky decomposition can only be applied to symmetric and positive definite matrix.
a matrix is said to be positive-definite if all its eigenvalues are positive. If a matrix does not satisfy this condition,
Cholesky decomposition cannot be performed [23].

Generating a matrix Z € R59°X 20 yging a partition approach. Each partition matrix is generated by a multivariate
normal distribution with a mean vector (i) and a covariance matrix (diagonal). The mean vector between columns
is different.

Transforming each partition matrix from matrix Z € R59°*20 to matrix A € R5%9%20 ysing the results of Cholesky
decomposition by:

Partition1 A € R?°X20 =P, 50X Z20x20 X Piox20

Partition 25 A € R?0%20 = Py, 50X Zy0 520 X Plox 20

Next, the transformation results of the partition matrices are combined (arranged downwards) to obtain a matrix
A € R%00%20  which forms 25 groups of observations where observations in the same group have correlation
properties and observations in different groups are uncorrelated.

Steps 3) to 4) are repeated four times. Then, it is combined (arranged on the right side) at matrix A € R500%20 to
obtain five groups of variables, where variables in the same group have correlation properties and variables in
different groups are uncorrelated. So, matrix Ay € R3%0X100 wil] be formed.

Steps 3 to 5) are repeated three times to obtain X; € R>00*100j = 1,2 3 Then, for the case of correlated matrices A; €
R500x 100 = 1 2 3 4), as follows:

A1+ X1=A2
A2+X2=A3
A3+X3=A4

The empirical data used is indicators of human development dimensions at Indonesia's regency/city level from 2019 to

2022.

The data used comes from the Statistic Indonesia (BPS) publication at https://www.bps.go.id /indicator/. This data

has 20 indicators with a total of 514 observations. It is known that between indicators are correlated, and between
regencies/cities are correlated. Table 2 shows the indicators used in this research [12-15].

Table 2 Indicators of Human Development Dimensions

Dimensions Indicators (Unit) Code
Households with clean drinking water sources (%) X1
Long life and Households that have access to adequate drinking water (%) X
health life  Households that do not have defecation facilities (%) X3
Morbidity (%) X4
School enrollment rates 7-12 years (%) Xs
School enrollment rates 13-15 years (%) X
School enrollment rates 16-18 years (%) X7
Gross participation rates level ES/MI (%) Xs
Knowledge Gross participation rates level JHS/MTs (%) X
Gross participation rates level SHS/VHS/MA (%) X0
Net participation rates level ES/MI (%) X1
Net participation rates level JHS/MTS (%) X12
Net participation rates level SHS/VHS/MA (%) X3
Percentage of formal workers (%) X4
Percentage of poor people (%) X5
The decent Open unemployment rate (%) Xi6
standard of Average wages of workers, and employees per month (rupiah) X7
living Gross regional domestic product per capita based on current prices (thousand rupiah) Xis
Percentage of informal workers (%) X19
Gini ratio X20

B. Data Analysis Procedures

GPCA is applied to simulated data and empirical data. The simulation data analysis is used to study the effectiveness
of GPCA in reducing the dimensionality of data whose observations correlated, and variables are correlated. The
simulation data analysis procedure is as follows:

D)
2)
3)
4)

DOI

Preparing simulation data in the form of a matrix consisting of 4 data matrices (A; € R>00%100, j =173 4)
Applying GPCA steps based on Table 1 to reduce the dimensions of observations and dimensions of variables
Generating RMSE and dimension from low-dimensional data

Estimating original data {Ki}j: ,based on the reduced data matrix {D;}{~,and the optimal L and R matrices, with

the formula A; = L D; R* for each j from i ton
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5) Measuring the similarity (R?) of each original data with the estimated original data using Procrustes analysis
6) Steps 1) to 5) are repeated 100 times

7) Presenting the final RMSE value of each repetition in Boxplot form

8) Presenting the value of R? of each repetition in Boxplot form

9) Evaluating the GPCA method based on simulation results

The steps of the empirical data analysis procedure using GPCA are as follows:

1) Doing data description and data exploration. Data description is concise statistics such as mean, median, minimum,
maximum, and standard deviation. Data exploration is used to identify relationships between indicators, which can
provide valuable insights into correlations and dependencies between indicators.

2) Applying GPCA steps based on Table 1 to reduce the dimensions of regencies/cities and dimensions of indicators

3) Measuring the similarity (R?) of each original data with the estimated original data using Procrustes analysis

4) Evaluating the performance of GPCA using RMSE and R-square value

5) Creating a biplot visualization from the result of GPCA

6) Interpreting of GPCA results on empirical data.

IV.RESULTS AND DISCUSSIONS
A. Simulation Study

The simulation dataset has dimensions of 500 x 100. Each data is divided into 25 groups of observations and 5 groups
of variables. This means that each group of observation consists of 20 observations, and each group of variable consists
of 20 variables. In this structure, the observations in the same group are correlated, indicating a similar relationship or
pattern between the observations in one group. However, the observations in different groups are not correlated,
meaning there is no similar relationship or pattern between the observations in different groups. Like the observations,
the variables in the same group are also correlated, indicating a similar pattern or relationship between the indicators.
However, the indicators in different groups are not correlated, meaning there is no similar relationship or pattern
between the indicators in different groups.

Table 3 GPCA Result

Repetition Dimension of matrix A; Dimension of matrix L Dimension of matrix R Dimension of matrix D;

1 500 x 100 500 x 25 100 x 5 25x5
2 500 x 100 500 x 25 100 x 5 25x5
3 500 x 100 500 x 25 100 x 5 25x5
100 500 x 100 500 x 25 100 x 5 25x5

Table 3 shows the data dimensions of L, R, and Dj from the Generalized Principal Component Analysis (GPCA) results,
which were repeated 100 times. Matrix L obtained in each replication has dimensions of 500 x 25. This matrix maps the
original data from a 500-dimensional space to a 25-dimensional space, representing the observation structure. Matrix R
obtained in each replication has dimensions of 100 x 5. This matrix maps data from a 100-dimensional space to a 5-
dimensional space, representing the variable structure. Matrix D is the result of dimension reduction data with
dimensions of 25x5. This matrix D represents data that has been reduced from the initial dimensions of 500x100 to a lower
dimension of 25x5. This result is in line with the data structure that has been designed. The original data was designed
with 25 observation groups and 5 variable groups. The study results show that GPCA works well in terms of its ability
to reduce the dimensionality of data from correlated observations and correlated variables.

It is known that 25 principal components are formed from the L matrix and 5 principal components from the R matrix.
Twenty-five principal components represent the observation structure, and five principal components represent the
variable structure. Furthermore, it is determined which observations are included from PC 1 to PC 25 and which variables
are included from PC 1 to PC 5 using the loading value. Loading with the largest value means having a major role in the
PC. Based on the results, the observations that enter PC 1 to PC 25 follow the designed data structure, and the variables
that enter PC1 to PC5 follow the designed data structure. This process is repeated 100 times. Each repetition produces
the same results. GPCA has an excellent ability to detect and separate observation and variable group structures in data.

Based on Figure 1, the median RMSE value of around 1.90 indicates that the average error produced by GPCA in
reducing the data dimensionality is relatively low. The range of RMSE values of around 1.80 to 2.05 indicates that the
results of dimensionality reduction by GPCA are consistent, with small variations in errors between repetitions.

Based on Figure 2, the results of the Procrustes analysis for 100 replications show that the original data estimates
A, 52,53, 54) have very high similarity to the original data (Ay, Az, Az, A,), with R-squared values generally above
0.984. The high median R-squared value and narrow interquartile range indicate that the GPCA method is consistent and
reliable in producing estimates similarity to the original data. The few outliers that appear in pairs Az & Az and A4 & A,
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indicate some cases where the similarity value is slightly lower, but this is not significant compared to the overall excellent
results.

Boxplot RMSE

1.90 2.00

RMSE Value

1.80
1

0.992
\
\

0.980
I

T T T T

0.988
) l

R-square Value

Figure 2 Boxplot of R-Square Value

B. Empirical Study

The data description of the human development dimension indicators is shown in Tables 4 and 5. Xi7 and X1s have
different units from other indicators. Based on Tables 4 and 5, each indicator has very different maximum and minimum
values. Based on this statement, this data may have outliers. The mean and median of each indicator have different
values. Based on this statement, outliers in the data are also possible. The median value higher than the mean value
indicates a possible negative skew in the data distribution. For example, in indicator X2 in 2020. a high standard deviation
indicates that the dataset values are spread further from the average. Conversely, a small standard deviation indicates
that the data is more concentrated around the average. For example, in indicator X20 in 2021, a standard deviation value
of 15.21 indicates that most of the dataset values are 62.63 + 15.21.

Table 4 Descriptive Statistics of Human Development Dimension Indicators Data in 2019 and 2020

2019 2020
Code Mean Median Minimum Maximum Standard Mean Median Minimum Maximum Standard
Deviation Deviation
X1 70.30 73.33 0.29 100 21.60 70.35 73.97 0.29 99.84 20.58
X2 73.49 82.71 1.06 100 25.27 67.57 74.76 2.40 100 28.03
Xs 9.82 6.73 0 93.36 10.9 9.61 5.94 0 90.87 11.54
X4 16.40 15.21 0.77 51.09 6.81 15.67 14.41 0.06 51.05 7.1
X5 98.33 99.53 52.21 100 491 98.38 99.48 52.22 100 4.741
X 94.94 96.30 30.44 100 6.22 94.97 96.41 32.43 100 6.16
X7 74.36 74.50 28.20 97.72 10 73.90 74.39 22.55 98.17 104
Xs 107.82 108.51 53.55 126.17 7.06 107.19 107.75 58.82 126.78 6.75
Xo 90.46 91.08 14.54 134.97 12.04 91.69 92.36 35.71 125.32 10.20
X0 85.10 85.68 0.71 154 17.77 85.83 86.35 12.69 131.83 15.55
Xu 96.22 98.23 43.14 100 6.14 96.59 98.42 48.88 99.88 5.69
X12 76.90 78.05 12.08 98.92 10.77 77.77 78.96 12.61 97.45 10.21
X13 62.16 62.63 1.13 91.26 12.37 62.84 63.20 6.46 98.89 12.19
X4 39.39 37.64 0 74.46 15.5 35.32 33.60 0 71.77 14.4
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2019 2020
Code Mean Median Minimum Maximum Star}dérd Mean Median Minimum Maximum Star}d;frd
Deviation Deviation
X5 12.12 9.88 1.68 66.21 8.12 11.95 10.09 2.02 41.76 7.47
Xi6 4.40 3.99 0 12.37 2.28 5.55 4.90 0.21 15.92 2.73
X1z 2579261.12 2409472.50 639908 5787902 749871.03 2527590.45 2359009 1398405 5926620 720009
Xis  31403.47 12072.76 207.47  699838.12 70597.82 30871.10  12093.39  226.97  700985.69  69010.69
X19 0.32 0.32 0.19 0.48 0.04 0.32 0.32 0.19 0.47 0.05
X20 59.43 61.94 7.59 100 16.23 63.53 65.71 8.47 100 15.32
Table 5 Descriptive Statistics of Human Development Dimension Indicators Data in 2021 and 2022
2021 2022
Code Mean Median Minimum Maximum Stal?da.rd Mean Median Minimum Maximum Stal?da.rd
Deviation Deviation
X1 70.16 73.08 0.30 99.79 20.16 69.52 72.57 0.33 100 20.18
X 84.94 89.74 0.87 100 15.87 86.42 91.32 1.33 100 14.44
Xs 8.22 4.75 0 100 10.65 8.32 5.03 0 87.33 9.80
X 12.38 10.45 0.13 53.30 7.35 19.42 13.98 0.13 97.31 18.27
Xs 98.26 99.35 51.61 100 4.84 98.08 99.44 34.51 100 5.97
Xs 94.83 96.49 31.98 100 6.54 93.83 96.45 23.41 99.98 9.33
X7 75.08 75.34 27.71 99.98 10.46 72.81 74.78 11.14 99.98 15.56
Xs 106.61 107.16 59.58 129.54 6.90 106.58 107.11 57.06 126.99 7.08
Xo 92.62 92.45 36.67 135.50 9.97 91.87 91.30 37.06 125.35 11.03
X10 87.71 87.60 9.40 143.34 16.62 87.49 87.48 15.12 143.48 14.99
X1 96.41 98.41 0.87 99.98 7.05 96.61 98.22 51.96 99.99 5.95
X2 78.15 79.44 14.58 97.70 10.15 95.76 79.60 16.05 99.53 10.33
X13 63.02 63.22 8.61 99.39 12.16 63.31 63.70 9.99 99.4 11.84
X4 36.17 34.49 0 75.55 14.41 36.05 33.67 0 72.04 15.07
Xi15 12.27 10.46 2.38 41.66 7.45 11.68 9.82 2.28 42.03 7.27
X6 5.06 4.57 0 13.37 2.63 4.62 4.31 0.12 11.82 2.32
Xi7 2411408.11 2296867 1269597 5617088 61518227 2618555.04 2452670 1382402 6989775 727767.398
Xis 3314238  13112.36 24295 728386.10 73114.01 37350.28 14866 256 794936  80968.988
X19 0.32 0.32 0.20 0.52 0.05 0.32 0.31 0.18 0.54 0.05
X20 62.63 64.90 9.05 100 15.21 62.81 65.34 8.75 100 15.99

Based on the correlation heatmap from each year, as shown in Figure 3, several indicators have a strong positive
correlation, especially in the same group. Several indicators show a significant negative correlation, indicating that the
other indicator tends to decrease when one indicator increases. For example, in the 2019 data, indicators X5, Xs, Xs, Xu1
and X1 strongly correlate. Indicators X3, Xisand X2 negatively correlate with indicators X1, X1 and Xzs.

Figure 3 Heatmap of Correlations Between Observations
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Based on Figure 4, each heatmap shows that most observations have a very high correlation, as indicated by the
dominant red color in all years. High correlations indicate regional patterns or uniform policies that affect human
development dimension indicators in many regencies/cities. Although high correlations indicate similarities, it is
essential to conduct further analysis.

Correlation Heatmap of observations in 2019 Cor ion Heatmap of Observations in 2020
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Figure 4 Heatmap of Correlations between Observations

The column standardization process is carried out before starting the GPCA process. This process transforms the data
with an average value of 0 and a standard deviation of 1. The GPCA process stops at the sixth iteration. The GPCA results
show that from the matrix L, the number of principal components is 30, with a cumulative proportion of variance of
89.35%. From the matrix R, the number of principal components is 6, with a cumulative proportion of variance of 88.46%.
Table 6 shows that the indicators of the Human Development dimension consisting of 20 indicators can be reduced to 6
PC. This result is obtained from the loading value in the principal component equation formed from R.

Table 6 Indicators that Describe the Principal Components
Principal Components Indicators

Households with clean drinking water sources (X1), Households that have access to adequate drinking water
(X2) and Households that do not have defecation facilities (X3).
School enrollment rates 7-12 years (Xs), School enrollment rates 13-15 years (Xs), School enrollment rates 16-18

1

2 years (X7), Gross participation rates level SHS/VHS/MA (X10), Net participation rates level ES/MI (X11), Net
participation rates level SHS/VHS/MA (X13)

3 Morbidity (X4), Percentage of formal workers (X14) and Percentage of poor people (X1s).

4 Average wages of Workers, and Employees per Month (X17) and Gini ratio (X20)

5 Open unemployment rate (X1s), Gross regional domestic product per Capita Based on Current Prices (X1s) and
Percentage of informal workers (X19)

6 Gross participation rates level ES/MI (Xs), Gross participation rates level JHS/MTs (Xo) and Net Participation

rates Level JHS/MTS (X12)

Table 7 shows that 514 regencies/cities can be reduced to 30 principal components. The regencies/cities in each PC are
obtained from the loading values in the principal component equation formed from L. After obtaining the optimal L €
R514%30 and R € R?9*6 | the low-dimensional data formed has a dimension of 30x6. Based on the results obtained, it
can be concluded that the data of human development dimension indicators at the regency/city level consisting of 514
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regencies/cities and 20 indicators can be reduced to 30 PC and 6 PC. This low-dimensional data describes the original

data.
Table 7 Regency/City that Describe the Principal Components

Principal Components Regency/City
1 Aceh Timur, Gayo Lues, Nias, Aceh Jaya, Pidie, Tapanuli Utara, Tapanuli Selatan, Biruen and others
” Jakarta Timur, Semarang, Makassar, Jakarta Utara, Jakarta Selatan, Jakarta Barat, Bandung, Jakarta Pusat
and others
30 Jayapura, Intan Jaya, Asmat, Puncak, Yalimo, Buru, Maluku Tengah, Sumba Tengah, Beru, Alor and others.

In the first iteration, the RMSE value was very high, namely 32.884, which shows that the initial representation of L and
R was not optimal in capturing information from the original data. The significant decrease in RMSE in the second
iteration to 12.379 indicates that the GPCA begins to capture the important structure of the data, reducing the
reconstruction error drastically. a further decrease in the third iteration, with the RMSE being 3.425, indicates an
improvement in the quality of data representation by L and R. However, the rate of decrease begins to slow down. In the
fourth iteration, the RMSE value slightly decreases to 3.403, indicating that most of the variability in the original data has
been explained by the model, and the further decrease in the reconstruction error becomes smaller. The fifth and sixth
iterations show almost unchanged RMSE values, namely 3.393 and 3.392, indicating the GPCA convergence. The stability
of the RMSE at the final iteration shows that the matrix L and R are optimal. Based on our findings in the data exploration
section, the research data contains outliers. GPCA is not robust to image data containing noise or outlier [6,24]. If using
the GPCA method which is robust to outliers, the resulting RMSE is lower than the RMSE results obtained in this study.
PCA is also not robust to data containing outliers [25].

Based on Table 8, the R-square values obtained indicate that the Procrustes analysis produces estimates of the original
data that are similarity to the original data, with more than 87% of the variability of the original data explained by the
estimated data in each data pair. This shows that the GPCA method is very effective in maintaining the similarity between
the original and estimated data.

Table 8 R-square Value

Data R-square value
A &A, 0.894
A, & A, 0.896
Az & Ay 0.877
A & A, 0.878

Biplot visually depicts how the dataset's indicators and regencies/cities relate to each other in the space reduced by
GPCA. The visualization obtained from the GPCA-Biplot illustrates the characteristics of the data. In addition, the
advantage of presenting with GPCA-Biplot is that it can determine the closeness between observations and the
relationship between indicators. GPCA-biplot divides the regency/city into four quadrants. Each quadrant consists of a
regency/city with characteristics that are close to each other regarding human development indicators. Conversely,
regencies/cities in opposite quadrants will have characteristics that are opposite to each other. The interpretation of the
GPCA-Biplot visualization is the same as the PCA-Biplot visualization [26].

Based on Figure 5, the regencies/cities in Quadrant 1 are characterized by indicators Xe, X7, X14, X17 and Xu9. Therefore,
regencies/cities in Quadrant 1 have relatively higher values for their characteristic indicators. The regencies/cities in
Quadrant 2 are characterized by indicators X5, X12, X15, and Xie. Therefore, regencies/cities in Quadrant 2 have relatively
higher values for their characteristic indicators. The regencies/cities in Quadrant 3 are characterized by indicators X3, X4,
X1, and X20. Therefore, regencies/cities in Quadrant 3 have relatively higher values for their characteristic indicators. The
regencies/cities in Quadrant 4 are characterized by indicators X1, Xz, Xs, X9, X10, and Xis. Therefore, regencies/cities in
Quadrant 4 have relatively higher values for their characteristic indicators. The total cumulative variance of information
from the data that can be explained by GPCA-Biplot is 52.56%. The regency/city that are close in the biplot have similar
characteristics based on the principal components obtained from GPCA. For example, regencies/cities such as Jayapura
City, Nabire, and Marauke show similarities in the dimensions of human development.

Based on Figure 6, the regencies/cities in Quadrant 1 are characterized by indicators Xs, Xo, X13, X14, X16 and Xuo.
Therefore, regencies/cities in Quadrant 1 have relatively higher values for their characteristic indicators. The
regencies/cities in Quadrant 2 are characterized by indicators X4, Xs, Xs, X11, X12, X15 and X20. Therefore, regencies/cities
in Quadrant 2 have relatively higher values for their characteristic indicators. The regencies/cities in Quadrant 3 are
characterized by indicators X2, X3, X1 and Xis. Therefore, regency/city in Quadrant 3 have relatively higher values for
their characteristic indicators. The regencies/cities in Quadrant 4 are characterized by indicators X1, X7and Xi7. Therefore,
regency/city in Quadrant 4 have relatively higher values for their characteristic indicators. The total cumulative variance
of information from the data that can be explained by GPCA-Biplot is 51.87%. The regency/city that are close in the biplot
have similar characteristics based on the principal components obtained from GPCA. For example, regencies/cities such
as Belitung, Bangka Tengah, and Bangka show similarities in the dimensions of human development.
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Figure 6 Visualization of GPCA Results in Biplot from 2020 Data

Based on Figure 7, the regencies/cities in Quadrant 1 are characterized by indicators X3, Xs, X7, X9, X12 and Xu. Therefore,
regencies/cities in Quadrant 1 have relatively higher values for their characteristic indicators. The regencies/cities in
Quadrant 2 are characterized by indicators Xi, X2, X1, X1s and X. Therefore, regencies/cities in Quadrant 2 have
relatively higher values for their characteristic indicators. The regencies/cities in Quadrant 3 are characterized by
indicators X4, X1, X17 and Xz. Therefore, regencies/cities in Quadrant 3 have relatively higher values for their
characteristic indicators. The regencies/cities in Quadrant 4 are characterized by indicators Xs, Xs, X11, X13 and Xus.
Therefore, regencies/cities in Quadrant 4 have relatively higher values for their characteristic indicators. The total
cumulative variance of information from the data that can be explained by GPCA-Biplot is 52.17%. The regencies/cities
that are close in the biplot have similar characteristics based on the principal components obtained from GPCA. For
example, regencies/cities such as Yalimo, Membramo Raya and Jayawijaya show similarities in the dimensions of human
development.
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Based on Figure 8, the regencies/cities in Quadrant 1 are characterized by indicators X3, X4, X1 and X2 Therefore,
regencies/cities in Quadrant 1 have relatively higher values for their characteristic indicators. The regencies/cities in
Quadrant 2 are characterized by indicators X1, X2, Xs, X11 and X17. Therefore, regencies/cities in Quadrant 2 have relatively
higher values for their characteristic indicators. The regencies/cities in Quadrant 3 are characterized by indicators Xs, Xs,
X7, X9, X12, X13, X14 and X1 Therefore, regencies/cities in Quadrant 3 have relatively higher values for their characteristic
indicators. The regencies/cities in Quadrant 4 are characterized by indicators Xis and Xis. Therefore, regencies/cities in
Quadrant 4 have relatively higher values for their characteristic indicators. The total cumulative variance of information
from the data that can be explained by GPCA-Biplot is 52.68%. The regencies/cities that are close in the biplot have similar
characteristics based on the principal components obtained from GPCA. For example, regencies/cities such as Buol, Sigi
and Banggai show similarities in the dimensions of human development.
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Figure 8 Visualization of GPCA Results in Biplot from 2022 Data
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In 2019, Nduga Regency was in Quadrant 4. Indicators X1, X2, Xs and Xy are close to Nduga regency. This shows that
the Nduga regency has adequate access to the indicators of X1 (households with clean drinking water sources) and X>
(households that have access to adequate drinking water). Apart from that, indicators of Xs (Gross participation rates
level ES/MI) and Xy (Gross participation rates level JHS/MTs) are high in the Nduga regency. The indicators far from
Nduga regency are X1z, X15, and Xis. This shows that the X12 (net participation rates level JHS/MTS) is low, X15 (percentage
of poor people), and Xis (open unemployment rate) are high. The long distance from Nduga regency to indicators X2, Xs,
and Xs in 2020 shows no significant increase in these indicators. In 2020, Nduga Regency is close to X7. This shows an
increase in X7 (school enrollment rates 16-18 years). Indicators X1z, X15, and Xis remain far from Nduga Regency in 2020,
the same as in 2019. In 2021, Nduga is very close to the indicators X7 and Xs. This shows a significant improvement in the
X7 (school enrollment rates 16-18 years) and Xy (Gross participation rates level JHS/MTs) compared to 2020. Nduga
Regency also showed an increase in the X12 (Net participation rates level JHS/MTs) and X1 (percentage of formal workers)
in 2021. This shows that the indicators X2 and Xu have improved. Apart from that, other indicators are still very far from
Nduga Regency, which means there is no improvement in these indicators. In 2022, several indicators, such as X2 and
X14, decline. However, there is an improvement in the indicators X2 and Xs.

Overall, human development in Nduga Regency from 2019 to 2022 shows significant fluctuations. Despite progress in
some indicators, especially in 2021, major challenges remain, and the focus of development is shifting from one dimension
to another without improvements in all areas. More consistent and integrated efforts are needed to ensure sustainable
and equitable progress across all dimensions of human development in the Nduga Regency. In the same way, the growth
of human development in another regency/city can be described.

V. CONCLUSIONS AND SUGGESTIONS

The application of GPCA in this study is different from other studies that discuss GPCA. This study applies GPCA to
analyze human development growth by reducing the dimensions of observations and dimensions of variables in the data
set. Based on the analysis and discussion above, it can be concluded that GPCA works well in terms of its ability to reduce
the dimensions of data from correlated observations and correlated variables. This conclusion is based on the results
obtained from simulation studies and empirical studies. Based on the simulation study results, the dimensions of the
low-dimensional data are by the correlation structure of the designed data. The range of RMSE values around 1.80 to 2.05
indicates that the results of dimensionality reduction by GPCA are consistent, with small error variations between
repetitions. The results of the Procrustes analysis show that the original data estimates are similarity to the original data.
Based on empirical studies, GPCA stops at the sixth iteration with an RMSE value of 3.392. The results of the Procrustes
analysis show that the original data estimates are similarity to the original data, with the R-square value of each data pair
of more than 87%. The dimensions of the low-dimensional data are 30x6. Based on the results of the GPCA-Biplot
visualization, the growth of human development in Nduga Regency from 2019 to 2022 showed significant fluctuations.
Although some indicators show progress, especially in 2021, major challenges remain, and the focus of development is
shifting from one dimension to another without any improvement in all areas. In the same way, the growth of human
development in each regency/city can be analyzed based on the GPCA-Biplot visualization. Thus, government policy
focuses on real problems in the field.

Based on our findings, the empirical data contains outliers. Thus, this study suggests reducing the dimension of data
containing outliers, especially in the GPCA. Another research suggestion is how to reduce the dimension of data
containing missing data, especially in the GPCA.
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