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ABSTRACT ⎯ Analysis of human development growth at the regency/city level is challenging because the data is high-

dimensional, indicators are correlated, and the regencies/cities are correlated. In this study, we propose a Generalized Principal 

Component Analysis to analyze human development growth by reducing the dimensions of regency/city and indicator. Thus, 

human development growth at the regency/city level is analyzed using the GPCA results in Biplot to describe each regency/city and 

its indicators. This study aims to evaluate GPCA in reducing the dimensionality of data whose observations are correlated, and 

indicators are correlated through simulation and empirical study; to analyze the growth of human development at the regency/city 

level based on the results of GPCA-Biplot. This research shows that GPCA works well in reducing data dimensions from correlated 

observations and correlated variables. Based on the results of the GPCA-Biplot visualization, the growth of human development in 

the Nduga regency from 2019 to 2022 showed significant fluctuations. Although some indicators show progress, especially in 2021, 

significant challenges remain. In the same way, the growth of human development in each regency/city can be analyzed. Thus, 

government policy focuses on real problems in the field. 
Keywords⎯ Biplot, GPCA, Human Development Growth, Procrustes 

 

 
I. INTRODUCTION 

Dimensionality reduction is a technique for reducing data dimensions so that the low-dimensional data formed can 

retain meaningful information from the original data. It is very efficient in the visualization and statistical analysis of 

high-dimensional data [1]. Principal Component Analysis (PCA) is one method for reducing data dimensions. PCA 

projects data in a d-dimensional space into a k-dimensional subspace, with k smaller than d. The resulting new set of 

dimensions is called Principal Components (PC) [2]. Furthermore, PCA is developed into Kernel PCA. KPCA is an 

extension of the standard PCA to nonlinear problems using the kernel method [3]. Then, PCA is developed into 

Generalized Principal Component Analysis (GPCA). The GPCA method was first proposed to obtain image compression 

and representation results. GPCA is used to reduce the dimensions of image data with the results of better visual quality 

and faster computation. This study shows the superiority of GPCA over PCA methods in image compression [4]. GPCA 

is often called Generalized Low-Rank Approximation of Matrices (GLRAM)[5] [6].  

Various studies on GPCA have been conducted, including those on GPCA being applied to face identification. The idea 

is to learn low-rank approximation from raw-intensity face images such that the squared distance between all faces with 

the same identity should be smaller than those with different identities. In the research, GPCA was assisted by top-push 

constrained feature learning (TFL) in face identification [7]. Other research related to GPCA is that several data 

dimensionality reduction methods (including GPCA) have mathematically and experimentally evaluated the validity of 

reducing dimensions for calculating similarity in image pattern recognition. Image pattern recognition identifies 

instances of a particular object and distinguishes differences between images [8]. GPCA is also used to identify genes 

with overlapping patterns so that functions and interactions of genes can be identified. The experiment's results on gene 

expression pattern images show the effectiveness of GPCA in compressing biology images [9]. GPCA is also used to 

group multi-view data into several clusters based on the similarity between the data. The result of the study is that GPCA 

has superior performance in multi-view clustering compared to other clustering methods [10]. 

In the GPCA concept, data dimensions are reduced from a collection of observations (rows) correlated with each other 

and a collection of variables (columns) correlated with each other simultaneously. In addition, GPCA can simultaneously 

reduce a dataset's dimensions, provided that the dimensions of the dataset are the same [11]. Various studies on the 

GPCA method have been successfully applied to image data. In this research, GPCA is used on non-image data. 

Therefore, this research evaluates the effectiveness of the GPCA method in reducing the dimensions of non-image data 

from correlated observations and correlated variables using simulated data. On the empirical side, this study analyses 

the growth of social problems from year to year. 

One of the topics that can be applied to the GPCA method is the analysis of human development growth from year to 

year. Measuring human development is called the Human Development Index (HDI). Indonesia's HDI increased from 

71.92 in 2019 to 71.94 in 2020, then 72.29 in 2021. In the following year, the HDI increased to 72.91. Even though Indonesia's 
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HDI continues to increase, HDI growth in the last four years has slowed. Apart from that, gaps in human development 

achievements between the regencies/cities still exist  [12–15]. This may be due to the policy focus not being in line with 

the real problems in the field. Therefore, it is necessary to comprehensively analyze the data on human development 

dimension indicators at the regency/city level from 2019 to 2022. 

Data on human development dimension indicators at the regency/city level have properties dimensions of the 

indicators, and regency/city are high, between indicators are correlated, and between regencies/cities are correlated. 

Therefore, analyzing human development growth from year to year on high-dimensional data is challenging. The 

generalized Principal Component Analysis (GPCA) method is needed to obtain lower dimensions of indicator and 

regency/city, uncorrelated indicators, and uncorrelated regencies/cities. Thus, the growth of human development is 

analyzed based on data from dimension reduction using GPCA. With GPCA, the position of regencies/cities and 

indicators can be visualized yearly in a plot based on the Biplot concept. This way, the visualization plot will provide a 

specific description of each regency/city and its indicator so that the government's policy focus aligns with real problems 

in the field. Based on the problems above, this study aims to evaluate the GPCA method in reducing high-dimensional 

data from correlated observations and correlated indicators in empirical data and simulation data; analyze the growth of 

human development at the regency/city level from 2019 to 2022 based on visualization from GPCA-Biplot. 

 

II. LITERATURE REVIEW 
A. Generalized Principal Component Analysis 

GPCA reduces the observations and variables dimension of the data. This means that GPCA not only reduces the 

dimensions of the variable but also considers the dimension of the observation, which is different from PCA, which only 

focuses on reducing the dimensions of the variables. GPCA aims to calculate two matrices, 𝐋 ∈  ℝ𝑟 𝑥 𝑙1and 𝐑 ∈  ℝ𝑐 𝑥 𝑙2,  

with orthonormal columns to maximize the variance (𝐋, 𝐑). An iterative procedure is used to obtain the optimal 𝐋 and 𝐑 

matrices. To calculate 𝐋, first calculate 𝐑, which is obtained from the eigenvectors of the matrix 𝐌𝐑. Calculate 𝐋, which is 

obtained from the eigenvectors of the matrix 𝐌𝐋 to obtain the matrix 𝐑. This procedure is repeated until it converges. The 

solution depends on the initial choice, 𝐋𝟎, for 𝐋. Experiments show that choosing 𝐋𝟎 = 𝐈 ∈  ℝ𝑟 𝑥 𝑟, where 𝐈 is the identity 

matrix, obtains excellent results. Given 𝐋, 𝐑, and {𝐀𝒊}𝑖=1
𝑛 , the projection of 𝐀𝒊 by 𝐋 and 𝐑 can be calculated by 𝐃𝐢 = 𝐋𝐭𝐀𝐢𝐑. 

Conversely, given 𝐋, 𝐑 and {𝐃𝐢}𝑖=1
𝑛 , the estimated of original data {𝐀𝒊}𝑖=1

𝑛  is obtained by the formula 𝐀̂𝒊  ≈ 𝐋 𝐃𝐢  𝐑
𝐭. 

Checking the GPCA Algorithm uses the RMSE value [5]. More specifically, RMSE(𝑖) and RMSE(𝑖 − 1) are the RMSE values 

in the 𝑖-th iteration and (i-1)-th iteration of the GPCA algorithm. Then, the convergence of the GPCA algorithm can be 

determined by checking RMSE(𝑖 − 1) −  RMSE(𝑖) <  𝜂. For some small thresholds, 𝜂 > 0. The RMSE value in each GPCA 

iteration describes GPCA's performance in representing the original data in a lower dimensional space and shows the 

effectiveness of the dimension reduction process. Determining the number of principal components is based on the 

cumulative proportion of total variance. The selection of principal components from 𝑟 observations in the eigenvector 

matrix L and principal components from 𝑐 variables in the eigenvector matrix R. This is based on the concept of PCA 

[16]. Like PCA, the standardization process is carried out because GPCA searches for principal components based on 

data variance. If features with high variance dominate, the resulting principal components will be more influenced by 

those features [17]. The GPCA algorithm in Table 1 has been added with a column standardization process [11]. 

 
Table 1 Algorithm GPCA 

Algorithm 1. Generalized Principal Component Analysis  

Input   :  𝐀𝟏, 𝐀𝟐, … , 𝐀𝐧  ∈  ℝ𝑟 𝑥 𝑐 , Original dataset  

Output:  𝐃𝟏, 𝐃𝟐, … , 𝐃𝐧 ∈  ℝ𝑙1 𝑥 𝑙2 , Low-dimensional data that represents a original data 

𝐀̂𝟏, 𝐀̂𝟐, … 𝐀̂𝒏 ∈  ℝ𝑟 𝑥 𝑐 ,   Estimated original dataset 

RMSE 

1 Standardize data using standardization columns 

2 Initialize the matrix 𝐋𝟎 with the identity matrix 𝐋𝟎 = (𝐈, 0)T  

3 𝑖 = 0,  RMSE(𝑖) = ∞ 

4 Form the matrix 𝐌𝐑 with the formula 𝐌𝐑 = ∑ 𝐀𝐣
𝐭𝐋𝐢𝐋𝐢

𝐭  𝐀𝐣
𝐧
𝐣=𝟏   

5 𝑖 = 𝑖 + 1 

6 Calculate 𝑙1 eigenvectors { 𝜷𝒋
𝑹}𝑗=1

𝑙1  of 𝐌𝐑 corresponding to the cumulative proportion of variance (≤ 90%) so that 𝐑𝐢 = [𝜷𝟏
𝑹 , … , 𝜷𝒍𝟏

𝑹 ] 

7 Form the matrix 𝐌𝐋 with the formula  𝐌𝐋 = ∑ 𝐀𝐣 𝐑𝐢𝐑𝐢
𝒕 𝐀𝐣

𝒕𝐧
𝐣=𝟏   

8 Calculate 𝑙2 eigenvectors { 𝜷𝒋
𝑳}𝑗=1

𝑙2  dari 𝐌𝐋 orresponding to the cumulative proportion of variance (≤ 90%) so that 𝐋𝐢 =  [𝜷𝟏
𝑳  , … , 𝜷𝒍𝟐

𝑳 ] 

9 Calculate RMSE(𝑖) = √
1

𝑛
 ∑ ||𝐀𝐣 − 𝐋𝐢

n
j=1 𝐋𝐢

𝐭𝐀𝐣𝐑𝐢𝐑𝐢
𝐭||𝐹

2 

10 Repeat steps 4 to 9 until (RMSE(𝑖 − 1) − RMSE(𝑖) ≤  0,001 ) 

11 Obtain the optimal 𝐋 and 𝐑 matrices from the last iteration  

12 Form low-dimensional data with the formula 

𝐃𝐣 = 𝐋𝐭𝐀𝐣𝐑 for each 𝑗 from 𝑖 to 𝑛 

13 Form an estimate of the dataset (standardization scale) 

𝐀̂𝐢 = 𝐋 𝐃𝐣 𝐑
𝐭 for each 𝑗 from 𝑖 to 𝑛 

14 Transform the data units to the initial scale 
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GPCA can analyze the position of regencies/cities, and the position of indicators based on the Biplot concept. Biplot is 

a graphical visualization method used in multivariate data analysis to display information about data in two dimensions. 

The main purpose of the biplot is to provide a comprehensive description of the data structure and relationships between 

indicators [18]. Mathematically, the process of finding the coordinates of the origin points in the GPCA biplot display is 

the same as the concept of PCA Biplot [19]. The following is an explanation for creating a Biplot in GPCA. 

Suppose 𝐀̂ is a data matrix containing 𝑟 observations and 𝑐 indicators, then with GPCA, it can be written as: 

𝐀̂ = 𝐋 𝐃  𝐑𝐭 (1) 

the matrix column 𝐋 contains the eigenvectors from the multiplication matrix 𝐀 𝐑 𝐑𝐭𝐀𝐭, and the column matrix 𝐑 contains 

the eigenvectors from the multiplication matrix 𝐀𝐭 𝐋 𝐋𝐭 𝐀. After decomposition using the Singular Value Decomposition 

technique, matrix  𝐀̂ can be factored in the form:  

 𝐀̂ = 𝐗  𝐘𝐭 (2) 

where matrix 𝐗 = 𝐋 𝐃α and matrix 𝐘𝐭 = 𝐃1−α𝐑t, where 𝛼 = 0. To plot the position of regencies/cities and the position of 

indicators in GPCA, use the principal component score matrix as follows: 

 𝐗 = 𝐋 𝐃α  and 𝐘 = (𝐘𝐭)𝐭 (3) 

matrix 𝐗 contains the principal component scores, which are the coordinates of the 𝑟 observations. matrix 𝐘 contains the 

principal component scores, which are the coordinates of the 𝑐 indicators. 

 
B. Procrustes Analysis 

Procrustes analysis measures the similarity of each original data (𝐀) with the estimated original data (𝐀̂). The basic 

principle of Procrustes analysis is that the original data (𝐀) is taken as specified, and the estimated original data (𝐀̂) is 

transformed so that the two data are as close as possible. This transformation involves processes like translation (shifting 

the data in a specific direction), rotation (turning the data around a point), and dilation (scaling the data up or down) 

[20]. 

Translation in Procrustes analysis is shifting all points in the original data (𝐀) and estimated original data matrix (𝐀̂) by 

a fixed distance and in the same direction so that both data configurations have the same centroid. The minimum distance 

between original data matrix (𝐀) and estimated original data matrix (𝐀̂) after the translation process is carried out as 

follows [21]: 

 𝐷𝑇(𝐀, 𝐀̂)  = 𝐷(𝐀T, 𝐀̂𝐓) 

  𝐷𝑇(𝐀, 𝐀̂)  =  ∑ ∑ [(𝑎𝑖𝑗 −  𝑎𝑗) − (𝑎̂𝑖𝑗 −  𝑎̅̂𝑗)]
2𝑝

𝑗=1
𝑛
𝑖=1   (4) 

𝐀T is the translation result matrix from data 𝐀 and 𝐀̂𝐓 is the translation result matrix from data  𝐀̂.  

Rotation is the movement of all points at a fixed angle without changing the distance of each point to its centroid. 

Rotation transformation is done by multiplying the matrix 𝐀̂𝐓  with an orthogonal matrix 𝐐, which minimizes the distance 

between data. To obtain the minimum 𝐷𝑇𝑅(𝐀𝐓, 𝐀̂𝐓) value, an orthogonal matrix 𝐐 = 𝐕𝐔𝐭 must be chosen from the 

decomposition of the singular values of (𝐀𝐓)𝐭𝐀̂𝐓 =  𝐔𝐋𝐕t so that the optimal distance after the rotation process is [22] 

 𝐷𝑇𝑅(𝐀, 𝐀̂) = trace (𝐀̂𝐓
𝐭
 𝐀̂𝐓) + trace(𝐀𝐓

𝐭 𝐀) − 2 trace(𝐋)  (5) 

Dilation is data scaling by increasing or decreasing the distance of each point in the configuration to its centroid. The 

dilation transformation is carried out by multiplying the matrix 𝐀̂𝐓𝐐 by a scalar 𝑘 so that the configuration after the 

dilation transformation will be 𝑘𝐀̂𝐓𝐐. To obtain the minimum 𝐷𝑇𝑅𝐷(𝐀, 𝐀̂) value, 𝑘 can be chosen as follows [21]: 

 𝑘 =  
trace (𝐀𝐓

𝐭𝐀̂𝐓𝐀̂)

trace( 𝐀̂𝐓
𝐭
 𝐀̂𝐓 )

 (6) 

thus, obtained: 

 𝐷𝑇𝑅𝐷(𝐀, 𝐀̂) = trace (𝐀𝐓
𝐭 𝐀𝐓) − 

 trace2( 𝐀𝐓
𝐭 𝐀̂𝐓𝐐)

trace(𝐀̂𝐓
𝐭 𝐀̂𝐓)

 (7) 

The R-square value (𝑅2) is used to measure the similarity of data configurations in Procrustes analysis. The percentage 

of the two configurations that can be considered the same is shown by 𝑅2. As the value gets closer to 100%, the similarity 

of the data configuration gets higher. The formula for calculating 𝑅2 is as follows [21]:  

 𝑅2 = 1 −  
𝐷𝑇𝑅𝐷(𝐀,𝐀̂)

trace (𝐀𝐀𝐭)
 (8) 

 

III. METHODOLOGY 
A. Data 

This research uses simulation data and empirical data. The simulation data used is 4 (four) data matrices (𝐀𝐣  ∈

 ℝ500 𝑥 100, 𝑗 = 1,2,3,4). Each data matrix is designed as follows, consisting of 25 groups of observations and 5 groups of 

variables. Observations in the same group are correlated, while observations between groups are not correlated. The 

same applies to variables. In addition, the simulation data fulfills the condition that the matrices are correlated. The steps 

for generating simulation data are as follows: 

1) Generating a covariance matrix  𝐒 ∈ ℝ20 x 20 that has symmetry and positive definite properties 

𝐒20 X 20 = (

1
0,8

0,8
1

… 0,8 
… 0,8

⋮ ⋮ ⋱ 0,8
0,8 0,8 ⋯ 1

) 
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2) Doing Cholesky decomposition on matrix 𝐒 aims to obtain the lower triangular matrix 𝐏 and the upper triangular 

matrix 𝐏𝐭. The matrix 𝐏 has the property that observations are correlated. The matrix 𝐏𝐭 has the property that 

variables are correlated. The Cholesky decomposition can only be applied to symmetric and positive definite matrix. 

a matrix is said to be positive-definite if all its eigenvalues are positive. If a matrix does not satisfy this condition, 

Cholesky decomposition cannot be performed [23]. 

3) Generating a matrix 𝐙 ∈ ℝ500 X 20 using a partition approach. Each partition matrix is generated by a multivariate 

normal distribution with a mean vector (µ) and a covariance matrix (diagonal). The mean vector between columns 

is different. 

4) Transforming each partition matrix from matrix 𝐙 ∈ ℝ500 x 20 to matrix 𝐀 ∈ ℝ500 x 20 using the results of Cholesky 

decomposition by: 

Partition 1     𝐀 ∈ ℝ20 X 20 = 𝐏20 x 20 x 𝐙20 x 20 x 𝐏20 x 20
t  

⋮  

Partition 25   𝐀 ∈ ℝ20 x 20 = 𝐏20 x 20 x 𝐙20 x 20 x 𝐏20 x 20
t  

Next, the transformation results of the partition matrices are combined (arranged downwards) to obtain a matrix 

𝐀 ∈ ℝ500 x 20, which forms 25 groups of observations where observations in the same group have correlation 

properties and observations in different groups are uncorrelated. 

5) Steps 3) to 4) are repeated four times. Then, it is combined (arranged on the right side) at matrix 𝐀 ∈ ℝ500 x 20 to 

obtain five groups of variables, where variables in the same group have correlation properties and variables in 

different groups are uncorrelated. So, matrix  𝐀𝟏 ∈ ℝ500 X 100 will be formed. 

6) Steps 3 to 5) are repeated three times to obtain 𝐗𝐢 ∈ ℝ500 x 100, i = 1,2,3. Then, for the case of correlated matrices 𝐀𝐣  ∈

 ℝ500 𝑥 100, 𝑗 = 1,2,3,4), as follows: 
𝐀𝟏 + 𝐗𝟏 = 𝐀𝟐 
𝐀𝟐 + 𝐗𝟐 = 𝐀𝟑 
𝐀𝟑 + 𝐗𝟑 = 𝐀𝟒 

 

The empirical data used is indicators of human development dimensions at Indonesia's regency/city level from 2019 to 

2022. The data used comes from the Statistic Indonesia (BPS) publication at https://www.bps.go.id /indicator/. This data 

has 20 indicators with a total of 514 observations. It is known that between indicators are correlated, and between 

regencies/cities are correlated. Table 2 shows the indicators used in this research [12–15]. 

 
Table 2 Indicators of Human Development Dimensions 

Dimensions Indicators (Unit) Code 

Long life and 

health life 

Households with clean drinking water sources (%) X1 

Households that have access to adequate drinking water (%) X2 

Households that do not have defecation facilities (%) X3 

Morbidity (%) X4 

Knowledge 

School enrollment rates 7-12 years (%) X5 

School enrollment rates 13-15 years (%) X6 

School enrollment rates 16-18 years (%) X7 

Gross participation rates level ES/MI (%) X8 

Gross participation rates level JHS/MTs (%) X9 

Gross participation rates level SHS/VHS/MA (%) X10 

Net participation rates level ES/MI (%) X11 

Net participation rates level JHS/MTS (%) X12 

Net participation rates level SHS/VHS/MA (%) X13 

The decent 

standard of 

living 

Percentage of formal workers (%) X14 

Percentage of poor people (%) X15 

Open unemployment rate (%) X16 

Average wages of workers, and employees per month (rupiah) X17 

Gross regional domestic product per capita based on current prices (thousand rupiah) X18 

Percentage of informal workers (%) X19 

Gini ratio X20 

 
B. Data Analysis Procedures 

GPCA is applied to simulated data and empirical data. The simulation data analysis is used to study the effectiveness 

of GPCA in reducing the dimensionality of data whose observations correlated, and variables are correlated. The 

simulation data analysis procedure is as follows: 

1) Preparing simulation data in the form of a matrix consisting of 4 data matrices (𝐀𝐣  ∈  ℝ500 𝑥 100, 𝑗 = 1,2,3,4) 

2) Applying GPCA steps based on Table 1 to reduce the dimensions of observations and dimensions of variables 

3) Generating RMSE and dimension from low-dimensional data 

4) Estimating original data {𝐀̂𝒊}𝑖=1

4
based on the reduced data matrix {𝐃𝒊}𝑖=1

4 and the optimal 𝐋 and 𝐑 matrices, with 

the formula 𝐀̂𝒊 = 𝐋 𝐃𝒋 𝐑𝐭 for each 𝑗 from 𝑖 to 𝑛 
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5) Measuring the similarity (𝑅2) of each original data with the estimated original data using Procrustes analysis 

6) Steps 1) to 5) are repeated 100 times 

7) Presenting the final RMSE value of each repetition in Boxplot form  

8) Presenting the value of 𝑅2 of each repetition in Boxplot form 

9) Evaluating the GPCA method based on simulation results 

 

The steps of the empirical data analysis procedure using GPCA are as follows: 

1) Doing data description and data exploration. Data description is concise statistics such as mean, median, minimum, 

maximum, and standard deviation. Data exploration is used to identify relationships between indicators, which can 

provide valuable insights into correlations and dependencies between indicators. 

2) Applying GPCA steps based on Table 1 to reduce the dimensions of regencies/cities and dimensions of indicators 

3) Measuring the similarity (𝑅2) of each original data with the estimated original data using Procrustes analysis 

4) Evaluating the performance of GPCA using RMSE and R-square value 

5) Creating a biplot visualization from the result of GPCA 

6) Interpreting of GPCA results on empirical data. 

 
IV. RESULTS AND DISCUSSIONS 
A. Simulation Study 

The simulation dataset has dimensions of 500 𝑥 100. Each data is divided into 25 groups of observations and 5 groups 

of variables. This means that each group of observation consists of 20 observations, and each group of variable consists 

of 20 variables. In this structure, the observations in the same group are correlated, indicating a similar relationship or 

pattern between the observations in one group. However, the observations in different groups are not correlated, 

meaning there is no similar relationship or pattern between the observations in different groups. Like the observations, 

the variables in the same group are also correlated, indicating a similar pattern or relationship between the indicators. 

However, the indicators in different groups are not correlated, meaning there is no similar relationship or pattern 

between the indicators in different groups. 

 
Table 3 GPCA Result 

Repetition Dimension of matrix 𝐀𝒋 Dimension of matrix 𝐋 Dimension of matrix 𝐑 Dimension of matrix 𝐃𝒋 

1 500 x 100 500 x 25 100 x 5 25 x 5 

2 500 x 100 500 x 25 100 x 5 25 x 5 

3 500 x 100 500 x 25 100 x 5 25 x 5 

⋮ ⋮ ⋮ ⋮ ⋮ 

100 500 x 100 500 x 25 100 x 5 25 x 5 

 

Table 3 shows the data dimensions of 𝐋, 𝐑, and  𝐃𝐢 from the Generalized Principal Component Analysis (GPCA) results, 

which were repeated 100 times. Matrix L obtained in each replication has dimensions of 500 × 25. This matrix maps the 

original data from a 500-dimensional space to a 25-dimensional space, representing the observation structure. Matrix R 

obtained in each replication has dimensions of 100 × 5. This matrix maps data from a 100-dimensional space to a 5-

dimensional space, representing the variable structure. Matrix D is the result of dimension reduction data with 

dimensions of 25×5. This matrix D represents data that has been reduced from the initial dimensions of 500×100 to a lower 

dimension of 25×5. This result is in line with the data structure that has been designed. The original data was designed 

with 25 observation groups and 5 variable groups. The study results show that GPCA works well in terms of its ability 

to reduce the dimensionality of data from correlated observations and correlated variables. 

It is known that 25 principal components are formed from the L matrix and 5 principal components from the R matrix. 

Twenty-five principal components represent the observation structure, and five principal components represent the 

variable structure. Furthermore, it is determined which observations are included from PC 1 to PC 25 and which variables 

are included from PC 1 to PC 5 using the loading value. Loading with the largest value means having a major role in the 

PC. Based on the results, the observations that enter PC 1 to PC 25 follow the designed data structure, and the variables 

that enter PC1 to PC5 follow the designed data structure. This process is repeated 100 times. Each repetition produces 

the same results. GPCA has an excellent ability to detect and separate observation and variable group structures in data. 

Based on Figure 1, the median RMSE value of around 1.90 indicates that the average error produced by GPCA in 

reducing the data dimensionality is relatively low. The range of RMSE values of around 1.80 to 2.05 indicates that the 

results of dimensionality reduction by GPCA are consistent, with small variations in errors between repetitions. 

Based on Figure 2, the results of the Procrustes analysis for 100 replications show that the original data estimates 

(𝐀̂𝟏,  𝐀̂𝟐, 𝐀̂𝟑, 𝐀̂𝟒) have very high similarity to the original data (𝐀𝟏,  𝐀𝟐, 𝐀𝟑, 𝐀𝟒), with R-squared values generally above 

0.984. The high median R-squared value and narrow interquartile range indicate that the GPCA method is consistent and 

reliable in producing estimates similarity to the original data. The few outliers that appear in pairs 𝐀𝟑 & 𝐀̂𝟑 and 𝐀𝟒 & 𝐀̂𝟒 
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indicate some cases where the similarity value is slightly lower, but this is not significant compared to the overall excellent 

results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
B. Empirical Study 

The data description of the human development dimension indicators is shown in Tables 4 and 5. X17 and X18 have 

different units from other indicators. Based on Tables 4 and 5, each indicator has very different maximum and minimum 

values. Based on this statement, this data may have outliers. The mean and median of each indicator have different 

values. Based on this statement, outliers in the data are also possible. The median value higher than the mean value 

indicates a possible negative skew in the data distribution. For example, in indicator X2 in 2020. a high standard deviation 

indicates that the dataset values are spread further from the average. Conversely, a small standard deviation indicates 

that the data is more concentrated around the average. For example, in indicator X20 in 2021, a standard deviation value 

of 15.21 indicates that most of the dataset values are 62.63 ± 15.21. 

 
Table 4 Descriptive Statistics of Human Development Dimension Indicators Data in 2019 and 2020 

Code 

2019 2020 

Mean Median Minimum Maximum Standard 

Deviation 

Mean Median Minimum Maximum Standard 

Deviation 

X1 70.30 73.33 0.29 100 21.60 70.35 73.97 0.29 99.84 20.58 

X2 73.49 82.71 1.06 100 25.27 67.57 74.76 2.40 100 28.03 

X3 9.82 6.73 0 93.36 10.9 9.61 5.94 0 90.87 11.54 

X4 16.40 15.21 0.77 51.09 6.81 15.67 14.41 0.06 51.05 7.1 

X5 98.33 99.53 52.21 100 4.91 98.38 99.48 52.22 100 4.741 

X6 94.94 96.30 30.44 100 6.22 94.97 96.41 32.43 100 6.16 

X7 74.36 74.50 28.20 97.72 10 73.90 74.39 22.55 98.17 10.4 

X8 107.82 108.51 53.55 126.17 7.06 107.19 107.75 58.82 126.78 6.75 

X9 90.46 91.08 14.54 134.97 12.04 91.69 92.36 35.71 125.32 10.20 

X10 85.10 85.68 0.71 154 17.77 85.83 86.35 12.69 131.83 15.55 

X11 96.22 98.23 43.14 100 6.14 96.59 98.42 48.88 99.88 5.69 

X12 76.90 78.05 12.08 98.92 10.77 77.77 78.96 12.61 97.45 10.21 

X13 62.16 62.63 1.13 91.26 12.37 62.84 63.20 6.46 98.89 12.19 

X14 39.39 37.64 0 74.46 15.5 35.32 33.60 0 71.77 14.4 

Figure 2 Boxplot of R-Square Value 

 
 

Figure 1 Boxplot RMSE 

 
 



 
 183 
 

 

Department of Statistics, Institut Teknologi Sepuluh Nopember  

                   INFERENSI, Vol. 7(3), November. 2024. ISSN: 0216-308X (Print) 2721-3862 (Online) 
 

DOI: 10.12962/j27213862.v7i3.21506 

 

Code 

2019 2020 

Mean Median Minimum Maximum 
Standard 

Deviation 
Mean Median Minimum Maximum 

Standard 

Deviation 

X15 12.12 9.88 1.68 66.21 8.12 11.95 10.09 2.02 41.76 7.47 

X16 4.40 3.99 0 12.37 2.28 5.55 4.90 0.21 15.92 2.73 

X17 2579261.12 2409472.50 639908 5787902 749871.03 2527590.45 2359009 1398405 5926620 720009 

X18 31403.47 12072.76 207.47 699838.12 70597.82 30871.10 12093.39 226.97 700985.69 69010.69 

X19 0.32 0.32 0.19 0.48 0.04 0.32 0.32 0.19 0.47 0.05 

X20 59.43 61.94 7.59 100 16.23 63.53 65.71 8.47 100 15.32 

 
Table 5 Descriptive Statistics of Human Development Dimension Indicators Data in 2021 and 2022 

Code 

2021 2022 

Mean Median Minimum Maximum 
Standard 

Deviation 
Mean Median Minimum Maximum 

Standard 

Deviation 

X1 70.16 73.08 0.30 99.79 20.16 69.52 72.57 0.33 100 20.18 

X2 84.94 89.74 0.87 100 15.87 86.42 91.32 1.33 100 14.44 

X3 8.22 4.75 0 100 10.65 8.32 5.03 0 87.33 9.80 

X4 12.38 10.45 0.13 53.30 7.35 19.42 13.98 0.13 97.31 18.27 

X5 98.26 99.35 51.61 100 4.84 98.08 99.44 34.51 100 5.97 

X6 94.83 96.49 31.98 100 6.54 93.83 96.45 23.41 99.98 9.33 

X7 75.08 75.34 27.71 99.98 10.46 72.81 74.78 11.14 99.98 15.56 

X8 106.61 107.16 59.58 129.54 6.90 106.58 107.11 57.06 126.99 7.08 

X9 92.62 92.45 36.67 135.50 9.97 91.87 91.30 37.06 125.35 11.03 

X10 87.71 87.60 9.40 143.34 16.62 87.49 87.48 15.12 143.48 14.99 

X11 96.41 98.41 0.87 99.98 7.05 96.61 98.22 51.96 99.99 5.95 

X12 78.15 79.44 14.58 97.70 10.15 95.76 79.60 16.05 99.53 10.33 

X13 63.02 63.22 8.61 99.39 12.16 63.31 63.70 9.99 99.4 11.84 

X14 36.17 34.49 0 75.55 14.41 36.05 33.67 0 72.04 15.07 

X15 12.27 10.46 2.38 41.66 7.45 11.68 9.82 2.28 42.03 7.27 

X16 5.06 4.57 0 13.37 2.63 4.62 4.31 0.12 11.82 2.32 

X17 2411408.11 2296867 1269597 5617088 615182.27 2618555.04 2452670 1382402 6989775 727767.398 

X18 33142.38 13112.36 242.95 728386.10 73114.01 37350.28 14866 256 794936 80968.988 

X19 0.32 0.32 0.20 0.52 0.05 0.32 0.31 0.18 0.54 0.05 

X20 62.63 64.90 9.05 100 15.21 62.81 65.34 8.75 100 15.99 

 

Based on the correlation heatmap from each year, as shown in Figure 3, several indicators have a strong positive 

correlation, especially in the same group. Several indicators show a significant negative correlation, indicating that the 

other indicator tends to decrease when one indicator increases. For example, in the 2019 data, indicators X5, X6, X8, X11 

and X12 strongly correlate. Indicators X3, X15 and X20 negatively correlate with indicators X1, X14 and X16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3 Heatmap of Correlations Between Observations 

 



 
 184 
 

 

Department of Statistics, Institut Teknologi Sepuluh Nopember  

                   INFERENSI, Vol. 7(3), November. 2024. ISSN: 0216-308X (Print) 2721-3862 (Online) 
 

DOI: 10.12962/j27213862.v7i3.21506 

 

Based on Figure 4, each heatmap shows that most observations have a very high correlation, as indicated by the 

dominant red color in all years. High correlations indicate regional patterns or uniform policies that affect human 

development dimension indicators in many regencies/cities. Although high correlations indicate similarities, it is 

essential to conduct further analysis. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

The column standardization process is carried out before starting the GPCA process. This process transforms the data 

with an average value of 0 and a standard deviation of 1. The GPCA process stops at the sixth iteration. The GPCA results 

show that from the matrix 𝐋, the number of principal components is 30, with a cumulative proportion of variance of 

89.35%. From the matrix 𝐑, the number of principal components is 6, with a cumulative proportion of variance of 88.46%. 

Table 6 shows that the indicators of the Human Development dimension consisting of 20 indicators can be reduced to 6 

PC. This result is obtained from the loading value in the principal component equation formed from R. 

 
Table 6 Indicators that Describe the Principal Components 

Principal Components Indicators 

1 
Households with clean drinking water sources (X1), Households that have access to adequate drinking water 

(X2) and Households that do not have defecation facilities (X3). 

2 

School enrollment rates 7-12 years (X5), School enrollment rates 13-15 years (X6), School enrollment rates 16-18 

years (X7), Gross participation rates level SHS/VHS/MA (X10), Net participation rates level ES/MI (X11), Net 

participation rates level SHS/VHS/MA (X13) 

3 Morbidity (X4), Percentage of formal workers (X14) and Percentage of poor people (X15). 

4 Average wages of Workers, and Employees per Month (X17) and Gini ratio (X20) 

5 
Open unemployment rate (X16), Gross regional domestic product per Capita Based on Current Prices (X18) and 

Percentage of informal workers (X19)  

6 
Gross participation rates level ES/MI (X8), Gross participation rates level JHS/MTs (X9) and Net Participation 

rates Level JHS/MTS (X12) 

 

Table 7 shows that 514 regencies/cities can be reduced to 30 principal components. The regencies/cities in each PC are 

obtained from the loading values in the principal component equation formed from L. After obtaining the optimal 𝐋 ∈

 ℝ514 𝑥 30 and 𝐑 ∈ ℝ20 𝑥 6 , the low-dimensional data formed has a dimension of 30𝑥6. Based on the results obtained, it 

can be concluded that the data of human development dimension indicators at the regency/city level consisting of 514 

Figure 4 Heatmap of Correlations between Observations 
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regencies/cities and 20 indicators can be reduced to 30 PC and 6 PC. This low-dimensional data describes the original 

data. 
Table 7 Regency/City that Describe the Principal Components 

Principal Components Regency/City 

1 Aceh Timur, Gayo Lues, Nias, Aceh Jaya, Pidie, Tapanuli Utara, Tapanuli Selatan, Biruen and others 

2 
Jakarta Timur, Semarang, Makassar, Jakarta Utara, Jakarta Selatan, Jakarta Barat, Bandung, Jakarta Pusat 

and others 

⋮ … 

30 Jayapura, Intan Jaya, Asmat, Puncak, Yalimo, Buru, Maluku Tengah, Sumba Tengah, Beru, Alor and others.  

 

In the first iteration, the RMSE value was very high, namely 32.884, which shows that the initial representation of 𝐋 and 

𝐑 was not optimal in capturing information from the original data. The significant decrease in RMSE in the second 

iteration to 12.379 indicates that the GPCA begins to capture the important structure of the data, reducing the 

reconstruction error drastically. a further decrease in the third iteration, with the RMSE being 3.425, indicates an 

improvement in the quality of data representation by 𝐋 and 𝐑. However, the rate of decrease begins to slow down. In the 

fourth iteration, the RMSE value slightly decreases to 3.403, indicating that most of the variability in the original data has 

been explained by the model, and the further decrease in the reconstruction error becomes smaller. The fifth and sixth 

iterations show almost unchanged RMSE values, namely 3.393 and 3.392, indicating the GPCA convergence. The stability 

of the RMSE at the final iteration shows that the matrix 𝐋 and 𝐑  are optimal. Based on our findings in the data exploration 

section, the research data contains outliers. GPCA is not robust to image data containing noise or outlier [6,24]. If using 

the GPCA method which is robust to outliers, the resulting RMSE is lower than the RMSE results obtained in this study. 

PCA is also not robust to data containing outliers [25]. 

Based on Table 8, the R-square values obtained indicate that the Procrustes analysis produces estimates of the original 

data that are similarity to the original data, with more than 87% of the variability of the original data explained by the 

estimated data in each data pair. This shows that the GPCA method is very effective in maintaining the similarity between 

the original and estimated data. 
 

Table 8 R-square Value 

Data R-square value 

𝐀𝟏 & 𝐀̂𝟏 0.894 

𝐀𝟐 & 𝐀̂𝟐 0.896 

𝐀𝟑 & 𝐀̂𝟑 0.877 

𝐀𝟒 & 𝐀̂𝟒 0.878 

 

Biplot visually depicts how the dataset's indicators and regencies/cities relate to each other in the space reduced by 

GPCA. The visualization obtained from the GPCA-Biplot illustrates the characteristics of the data. In addition, the 

advantage of presenting with GPCA-Biplot is that it can determine the closeness between observations and the 

relationship between indicators. GPCA-biplot divides the regency/city into four quadrants. Each quadrant consists of a 

regency/city with characteristics that are close to each other regarding human development indicators. Conversely, 

regencies/cities in opposite quadrants will have characteristics that are opposite to each other. The interpretation of the 

GPCA-Biplot visualization is the same as the PCA-Biplot visualization [26]. 

Based on Figure 5, the regencies/cities in Quadrant 1 are characterized by indicators X6, X7, X14, X17 and X19. Therefore, 

regencies/cities in Quadrant 1 have relatively higher values for their characteristic indicators. The regencies/cities in 

Quadrant 2 are characterized by indicators X5, X12, X15, and X16. Therefore, regencies/cities in Quadrant 2 have relatively 

higher values for their characteristic indicators. The regencies/cities in Quadrant 3 are characterized by indicators X3, X4, 

X11, and X20. Therefore, regencies/cities in Quadrant 3 have relatively higher values for their characteristic indicators. The 

regencies/cities in Quadrant 4 are characterized by indicators X1, X2, X8, X9, X10, and X18. Therefore, regencies/cities in 

Quadrant 4 have relatively higher values for their characteristic indicators. The total cumulative variance of information 

from the data that can be explained by GPCA-Biplot is 52.56%. The regency/city that are close in the biplot have similar 

characteristics based on the principal components obtained from GPCA. For example, regencies/cities such as Jayapura 

City, Nabire, and Marauke show similarities in the dimensions of human development. 

Based on Figure 6, the regencies/cities in Quadrant 1 are characterized by indicators X6, X9, X13, X14, X16 and X19. 

Therefore, regencies/cities in Quadrant 1 have relatively higher values for their characteristic indicators. The 

regencies/cities in Quadrant 2 are characterized by indicators X4, X5, X8, X11, X12, X15 and X20. Therefore, regencies/cities 

in Quadrant 2 have relatively higher values for their characteristic indicators. The regencies/cities in Quadrant 3 are 

characterized by indicators X2, X3, X10 and X18. Therefore, regency/city in Quadrant 3 have relatively higher values for 

their characteristic indicators. The regencies/cities in Quadrant 4 are characterized by indicators X1, X7 and X17. Therefore, 

regency/city in Quadrant 4 have relatively higher values for their characteristic indicators. The total cumulative variance 

of information from the data that can be explained by GPCA-Biplot is 51.87%. The regency/city that are close in the biplot 

have similar characteristics based on the principal components obtained from GPCA. For example, regencies/cities such 

as Belitung, Bangka Tengah, and Bangka show similarities in the dimensions of human development. 
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Based on Figure 7, the regencies/cities in Quadrant 1 are characterized by indicators X3, X6, X7, X9, X12 and X14. Therefore, 

regencies/cities in Quadrant 1 have relatively higher values for their characteristic indicators. The regencies/cities in 

Quadrant 2 are characterized by indicators X1, X2, X10, X18 and X19. Therefore, regencies/cities in Quadrant 2 have 

relatively higher values for their characteristic indicators. The regencies/cities in Quadrant 3 are characterized by 

indicators X4, X16, X17 and X20. Therefore, regencies/cities in Quadrant 3 have relatively higher values for their 

characteristic indicators. The regencies/cities in Quadrant 4 are characterized by indicators X5, X8, X11, X13 and X15. 

Therefore, regencies/cities in Quadrant 4 have relatively higher values for their characteristic indicators. The total 

cumulative variance of information from the data that can be explained by GPCA-Biplot is 52.17%. The regencies/cities 

that are close in the biplot have similar characteristics based on the principal components obtained from GPCA. For 

example, regencies/cities such as Yalimo, Membramo Raya and Jayawijaya show similarities in the dimensions of human 

development. 

Figure 5 Visualization of GPCA Results in Biplot from 2019 Data 

 

Figure 6 Visualization of GPCA Results in Biplot from 2020 Data 
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Based on Figure 8, the regencies/cities in Quadrant 1 are characterized by indicators X3, X4, X10 and X20 Therefore, 

regencies/cities in Quadrant 1 have relatively higher values for their characteristic indicators. The regencies/cities in 

Quadrant 2 are characterized by indicators X1, X2, X8, X11 and X17. Therefore, regencies/cities in Quadrant 2 have relatively 

higher values for their characteristic indicators. The regencies/cities in Quadrant 3 are characterized by indicators X5, X6, 

X7, X9, X12, X13, X14 and X19 Therefore, regencies/cities in Quadrant 3 have relatively higher values for their characteristic 

indicators. The regencies/cities in Quadrant 4 are characterized by indicators X15 and X16. Therefore, regencies/cities in 

Quadrant 4 have relatively higher values for their characteristic indicators. The total cumulative variance of information 

from the data that can be explained by GPCA-Biplot is 52.68%. The regencies/cities that are close in the biplot have similar 

characteristics based on the principal components obtained from GPCA. For example, regencies/cities such as Buol, Sigi 

and Banggai show similarities in the dimensions of human development. 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Visualization of GPCA Results in Biplot from 2021 Data 

 

Figure 8 Visualization of GPCA Results in Biplot from 2022 Data 
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In 2019, Nduga Regency was in Quadrant 4. Indicators X1, X2, X8 and X9 are close to Nduga regency. This shows that 

the Nduga regency has adequate access to the indicators of X1 (households with clean drinking water sources) and X2 

(households that have access to adequate drinking water). Apart from that, indicators of X8 (Gross participation rates 

level ES/MI) and X9 (Gross participation rates level JHS/MTs) are high in the Nduga regency. The indicators far from 

Nduga regency are X12, X15, and X16. This shows that the X12 (net participation rates level JHS/MTS) is low, X15 (percentage 

of poor people), and X16 (open unemployment rate) are high. The long distance from Nduga regency to indicators X2, X8, 

and X9 in 2020 shows no significant increase in these indicators. In 2020, Nduga Regency is close to X7. This shows an 

increase in X7 (school enrollment rates 16-18 years). Indicators X12, X15, and X16 remain far from Nduga Regency in 2020, 

the same as in 2019. In 2021, Nduga is very close to the indicators X7 and X9. This shows a significant improvement in the 

X7 (school enrollment rates 16-18 years) and X9 (Gross participation rates level JHS/MTs) compared to 2020. Nduga 

Regency also showed an increase in the X12 (Net participation rates level JHS/MTs) and X14 (percentage of formal workers) 

in 2021. This shows that the indicators X12 and X14 have improved. Apart from that, other indicators are still very far from 

Nduga Regency, which means there is no improvement in these indicators. In 2022, several indicators, such as X12 and 

X14, decline. However, there is an improvement in the indicators X2 and X8. 

Overall, human development in Nduga Regency from 2019 to 2022 shows significant fluctuations. Despite progress in 

some indicators, especially in 2021, major challenges remain, and the focus of development is shifting from one dimension 

to another without improvements in all areas. More consistent and integrated efforts are needed to ensure sustainable 

and equitable progress across all dimensions of human development in the Nduga Regency. In the same way, the growth 

of human development in another regency/city can be described. 

V. CONCLUSIONS AND SUGGESTIONS 
The application of GPCA in this study is different from other studies that discuss GPCA. This study applies GPCA to 

analyze human development growth by reducing the dimensions of observations and dimensions of variables in the data 

set. Based on the analysis and discussion above, it can be concluded that GPCA works well in terms of its ability to reduce 

the dimensions of data from correlated observations and correlated variables. This conclusion is based on the results 

obtained from simulation studies and empirical studies. Based on the simulation study results, the dimensions of the 

low-dimensional data are by the correlation structure of the designed data. The range of RMSE values around 1.80 to 2.05 

indicates that the results of dimensionality reduction by GPCA are consistent, with small error variations between 

repetitions. The results of the Procrustes analysis show that the original data estimates are similarity to the original data. 

Based on empirical studies, GPCA stops at the sixth iteration with an RMSE value of 3.392. The results of the Procrustes 

analysis show that the original data estimates are similarity to the original data, with the R-square value of each data pair 

of more than 87%. The dimensions of the low-dimensional data are 30x6. Based on the results of the GPCA-Biplot 

visualization, the growth of human development in Nduga Regency from 2019 to 2022 showed significant fluctuations. 

Although some indicators show progress, especially in 2021, major challenges remain, and the focus of development is 

shifting from one dimension to another without any improvement in all areas. In the same way, the growth of human 

development in each regency/city can be analyzed based on the GPCA-Biplot visualization. Thus, government policy 

focuses on real problems in the field. 

Based on our findings, the empirical data contains outliers. Thus, this study suggests reducing the dimension of data 

containing outliers, especially in the GPCA. Another research suggestion is how to reduce the dimension of data 

containing missing data, especially in the GPCA. 
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