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ABSTRACT ⎯ Analyzing high-dimensional data is a considerable challenge in statistics and data science. Issues like 

multicollinearity and outliers often arise, leading to unstable coefficients and diminished model effectiveness. Continuum 

regression is a useful method for calibration models because it effectively handles multicollinearity and reduces the number of 

dimensions in the data. This method condenses data into autonomous latent variables, resulting in a more stable, precise, and 

reliable model. It is possible to use the dimensionality reduction method without losing any important information from the original 

data. This makes it a useful tool for making calibration models work better. In the initial phase, minimizing dimensions via variable 

selection is crucial. The study aims to build and test the Continuum Regression calibration model using LASSO and SIR-LASSO 

variable selection preprocessing methods. SIR-LASSO is a method that integrates SIR with the variable selection capabilities of 

LASSO. This technique aims to handle high-dimensional data by identifying relevant low-dimensional structures. LASSO improves 

variable selection by applying a penalty to regression coefficients, reducing the impact of less significant or redundant variables. 

The integration improves SIR's efficacy in assessing high-dimensional data while also enhancing model stability and 

interpretability. This approach seeks to address the issues of multicollinearity and model instability. We conducted simulations 

using both low-dimensional and high-dimensional datasets to assess the efficacy of CR LASSO and CR SIR-LASSO. RStudio 

version 4.1.3 was used for the analysis. The "MASS" package was used to create data with a multivariate normal distribution. The 

"glmnet" package was used for LASSO variable selection, and the "LassoSIR" package was used for SIR-LASSO variable selection. 

In the simulation itself, LASSO surpasses SIR-LASSO in variable selection by yielding the lowest RMSEP value in every scenario. 

On the other hand, SIR-LASSO becomes less stable as the number of dimensions increases, which suggests that it is sensitive to 

large changes in variables. As shown by lower median RMSEP values across a range of sample sizes and situations, CR LASSO is 

usually better at making predictions than SIR-LASSO. The RMSEP distributions for LASSO are consistently tighter, which means 

that its performance is more stable and reliable compared to SIR-LASSO, whose data has more outliers and more variation. Even 

with a growing sample size, LASSO maintains its advantage, particularly when setting the value at 0.5. SIR-LASSO, although 

occasionally competitive, generally yields more variable results, particularly with larger sample sizes. Overall, LASSO appears to 

be a more reliable option for the CR model with pre-processed variable selection. 

Keywords⎯ continuum regression, High-dimensional, LASSO, SIR-LASSO, variable selection. 
 

 

I. INTRODUCTION 
 

In regression analysis, the Ordinary Least Squares (OLS) method is a prevalent technique employed to describe the 

relationship between independent variables and dependent variables. Nonetheless, it is frequently necessary to address 

multicollinearity and outliers when implementing Ordinary Least Squares (OLS) [1]. Multicollinearity arises when two 

or more independent variables in a model exhibit a strong connection, resulting in unstable and difficult-to-interpret 

estimates of the regression coefficients [2]. These behaviours can induce biases in estimation and interpretation, hence 

diminishing the reliability of the regression model. Consequently, it is essential to consider the estimating method 

employed to enhance the reliability and accuracy of the analytical results. 

Continuum Regression (CR) is an advancement of Least Squares Regression (LSR), Partial Least Squares Regression 

(PLSR), and Principal Component Regression (PCR) techniques, designed to address multicollinearity issues by 

diminishing the number of independent variables. This is achieved by condensing the data into new, independent latent 

variables with significantly reduced dimensions [3]. Introduce new variables in CR by optimizing the variance of 

independent variables and the covariance between the independent variable and the response variable. CR is 

implemented to finalize the calibration model in several case studies utilizing cross-validation index criteria, juxtaposed 

with varying adjustment parameters 𝛿; the conclusion indicates that CR outperforms the findings of LSR, PLSR, and PCR 

[4]. Research by Setiawan investigated calibration models employing the CR approach, determining that CR offers 

advantages over PCR and PLSR in addressing multicollinearity issues across diverse independent variable matrix 

configurations [5]. Occasionally, when the dimensions of the data are very large, or when the number of observations is 

smaller than predictors induces singularities in the matrix structure of the independent variables, leading to 

computational issues [6]. Thus, dimensionality reduction entails decreasing the quantity of input variables to enhance 

efficiency. Initially, it is essential to diminish the dimensions from the original high-dimensional space (𝑛𝑥𝑝) to a lower-
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dimensional space (𝑛𝑥ℎ), where ℎ<(𝑛−1)<𝑝, while preserving the majority of the pertinent information from the original 

data; this procedure is referred to as preprocessing [7]. 

Common data compression techniques include Principal Component Analysis (PCA), Fourier transformation, 

wavelet transformation, pursuit projection, and the Least Absolute Shrinkage and Selection Operator (LASSO) [8]. 

LASSO is a pre-processing method used to select variables by shrinking the regression coefficients [9]. The LASSO process 

provides an alternative for variable selection and for reducing linear regression model coefficients to zero [10]. Another 

method for data compression is Sliced Inverse Regression (SIR), which replaces the original variables with a low-

dimensional linear combination of predictors without losing information and without requiring model assumptions [11]. 

The study by Arwini on rainfall estimation using Continuum Regression (CR) with LASSO variable selection 

preprocessing showed that this approach enhances precision and yields fairly accurate predictions compared to using 

PCA preprocessing [8]. However, LASSO has limitations when the number of observations is smaller than predictors, as 

it only selects p variables to include in the model [12]. The LASSO model is also prone to bias and can be difficult to 

interpret due to information loss, particularly when an irrelevant predictor variable has a weak correlation with the 

response variable [10]. In contrast, the Sliced Inverse Regression (SIR) method has advantages over LASSO in identifying 

general patterns in high-dimensional data. SIR can reduce data dimensionality, capture nonlinear structures, address 

multicollinearity issues, enhance computational efficiency in high-dimensional data, and produce models that are easier 

to interpret [13].  Further developed the SIR method by incorporating a LASSO penalty into the SIR least squares 

formulation, resulting in the SIR-LASSO method [14]. SIR approach can be associated with many other dimension 

reduction methods, such as PCA, principal component regression, and PLS, as well as their derivatives  [15]. The usual 

SIR, however, cannot work with problems where the number of predictors, p, exceeds the sample size, n, and can suffer 

when there is high collinearity among the predictors [16].  

This research aims to enhance the Continuum Regression models by incorporating the LASSO variable selection 

preprocessing technique and the SIR-LASSO method. By adopting this approach, the study seeks to address the issue of 

multicollinearity, which is common in high-dimensional data, thereby improving the stability and accuracy of the 

regression model. The implementation of the SIR method is anticipated to boost computational efficiency and improve 

model interpretation by reducing data dimensions and capturing non-linear structures. Existing approaches to regression 

modeling in high-dimensional contexts, such as Principal Component Regression (PCR) and Partial Least Squares 

Regression (PLSR), have been thoroughly investigated but often struggle with addressing multicollinearity and fall short 

in simultaneously managing variable selection and capturing non-linear relationships. Although the LASSO technique is 

well-known for its effectiveness in selecting relevant variables, its application alongside dimension reduction methods 

like SIR has been insufficiently explored, particularly within continuum regression models. This lack of integrated studies 

combining LASSO and SIR-LASSO underscores a critical gap in optimizing model accuracy and interpretability for high-

dimensional data challenges. Recent developments in high-dimensional regression modeling focus on hybrid techniques 

that merge variable selection with dimension reduction. Approaches such as Sparse Partial Least Squares (SPLS) and 

Elastic Net have been introduced to address multicollinearity and enhance interpretability. However, these methods 

often require balancing trade-offs between predictive performance and computational efficiency. The integration of 

LASSO and SIR-LASSO offers a novel solution, combining the strengths of both methods to effectively manage 

multicollinearity while capturing key data structures. This research aims to push the boundaries of current 

methodologies by applying this combination to continuum regression, establishing an efficient framework for high-

dimensional regression modeling.  

 

II. LITERATURE REVIEW 
A. Continuum Regression 

Continuum regression is one method used to overcome multicollinearity [17]. Let X be a matrix of data of size (𝒏 × 𝒑), 

and y is a vector of response variables of size (𝒏 × 𝟏). Continuum regression was developed based on the classical linear 

regression model with a β parameter of size (𝒑 × 𝟏). Mathematically, it can be expressed in the following equation: 

𝒚 = 𝑿𝛽 + 𝜀 (1) 

where ε is an error vector of size (n × 1). The new (latent) variable in continuum regression is formulated in the model 

in the following equation and is formulated in the model as in the following equation: 

𝒚 = 𝑻ℎ𝜉 + 𝜀 (2) 

with 𝑻𝒉 = 𝑿𝑾𝒉  and 𝑾𝒉 = (𝒘𝟏, 𝒘𝟐, … , 𝒘𝒉), the matrix contains h columns of variables with 𝒉 < 𝒑 and is called the 

weighting matrix [18]. Where p is the number of independent variables, and h is the number of new variables from LASSO 

and SIR-LASSO selection. Stone and Brooks [4] formulate the vector (𝒘𝒊 = 𝒊 = 𝟏, 𝟐, … , 𝒉) as in the following equation: 

𝒘𝒊 = arg 𝑚𝑎𝑥 {𝐶𝑜𝑣(𝒙𝑤 , 𝑦)2(𝑉𝑎𝑟(𝒙𝑤))[𝛿/(1−𝛿)]−1} (3) 

with the constraints ‖𝒘𝑖‖ = 1 and 𝐶𝑜𝑣(𝒙𝑤𝑖 , 𝒙𝑤𝑗) = 0 for 𝑖 < 𝑗 = 1,2, … , ℎ , the adjustment parameter 𝛿 is real number 0 ≤

0.5 < 1. Equation (2) can be obtained with the values 𝛿 = (0, 0.5, 1), each of which is a generalization of the least squares, 

partial least squares, and PCR methods. 

The estimation of the parameter ξ in equation (2) is carried out using the least squares method, which is formulated as 

follows: 
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𝜉 = (𝑻𝒉
𝑇𝑻𝒉)−1𝑻𝒉

𝑇𝑦 (4) 

�̂� = 𝑾(𝑻𝒉
𝑇𝑻𝒉)−1𝑻𝒉

𝑇𝑦 (5) 

�̂� = 𝑿𝑾ℎ𝜉 (6) 

 
B. Least Absolute and Shrinkage Selection Operator 

The Least Absolute Shrinkage and Selection Operator (LASSO), introduced by [9], is widely used for constructing 

models that yield accurate results. LASSO serves as an alternative to the least squares method, offering a penalty 

approach that aids in variable selection and helps mitigate overfitting issues [19]. The Lagrangian equation also expresses 

the coefficient estimator, LASSO, as follows: 

 

�̂�𝐿𝐴𝑆𝑆𝑂 = arg 𝑚𝑖𝑛 {∑ (𝒀𝑖 − ∑ 𝛽𝑗𝑿𝑖𝑗

𝑝

𝑗=1
)

2

+ 𝜆 ∑ |𝛽𝑗|
𝑝

𝑗=1

𝑛

𝑖=1
} ;  𝜆 ≥ 0 

 

(7) 

with 𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑝)
𝑇
 and 𝜆 is a penalty parameter (regularizer) that controls the amount of shrinkage. If 𝜆 = 0 then 

the LASSO estimator gives the same results as the least squares estimator. If 𝜆 → ∞ then forces all the coefficients to be 

zero. If λ is large enough then the estimated coefficient will be exactly zero, so it can function as a selection variable. One 

way to find the optimal λ value is to use the Cross Validation (CV) method with a minimum CV value. 
 

C. Sliced Inverse Regression (SIR) 

Li introduced the Sliced Inverse Regression (SIR) model, which is one of the most general models for estimating 

adequate dimension reduction [11]. For a regression problem, a general nonlinear model can summarize the relationship 

between observations 𝑦𝑛×1 and predictor 𝑥𝑛×𝑝 as: 

𝑦 = 𝑓(𝒙𝛽1, 𝒙𝛽2, … , 𝒙𝛽𝑘 , 𝜀) (8) 

Where 𝛽𝑠 , 𝑠 = 1, … , 𝑘, are unknown vector denoting the contribution of each predictor in 𝒙, 𝑘(𝑘 < 𝑝) is the dimension 

we aim to reduce 𝒙 to, 𝑓(. ) is a an unknown nonlinear function of  𝑘 inputs, and 𝜀 denotes zero-mean random noise 

independent to 𝒙 via 𝑘 linear combinations of predictors: 

𝑦 ≡ (𝒙|𝑃𝑠𝒙), 𝑆 = 𝑠𝑝𝑎𝑛(𝛽1, … , 𝛽𝑘) (9) 

Where 𝑃𝑠 denotes the projection operator onto the 𝑘-dimensional subspace 𝑆. Therefore, we only need to estimate 𝑆 

generated by 𝛽𝑠 to effectively reduce dimensionality. The efficient dimension reduction (e.d.r) for (8) can be estimated by 

the SIR method by finding an inverse regression curve 𝐸(𝒙|𝑦) . It was proved in Li that if 𝒙 has been standardized to have 

zero mean and identity covariance, the inverse regression curve will fall into the e.d.r space. SIR can estimate the inverse 

regression curve 𝐸(𝒙|𝑦) as the sliced mean value of 𝒙 , which is obtained by slicing y into several groups and partitioning 

𝒙 into several slices according to the values of 𝑦. Equation (8) shows the model when the response variable Y depends on 

the p-dimension. The SIR method divides the model into several slices based on the Y value, then combines information 

from all slices. SIR can be calculated through several conversion and arithmetic methods [20]. The following are the 

calculation stages of the SIR method using conversion and arithmetic: 

Stage 1: Standardize 𝒙 and estimate the sample mean �̅� =
𝟏

𝒏
∑ 𝒙𝑖

𝑛
𝑖=1  and the sample covariance matrix �̂�𝒙 =

1

𝑛−1
∑ (𝒙𝑖 − �̅�)𝑇(𝒙𝑖 − �̅�)𝑛

𝑖=1  . 

Stage 2: Bin 𝑦 into 𝑚 slices, 𝐺1, … , 𝐺𝑚 , and calculate the proportion of 𝒚𝑖 that falls into the slice 𝐺𝑗  , 𝑗 = 1, … , 𝑚 , as �̂�𝑗 =
1

𝑛
∑ 𝜉𝑗

𝑛
𝑖=1 (𝒚𝑖) , where 𝜉𝑗(𝒚𝑖) equals 1 or 0 depending on whether 𝑦𝑖 falls into the 𝑗th slice or not.  

Stage 3: For each slice, calculate the sliced mean �̅�𝑗 =
1

 �̂�𝑗
∑ 𝒙𝑖 and weighted covariance �̂�𝑊 =

1

(𝑛−1) �̂�𝑗
∑ (𝒙𝑖 − �̅�)𝑇(𝒙𝑖 −𝑛

𝑖=1

�̅�) for the sliced means. 

Stage 4: Conduct a weighted PCA for �̂�𝒙 and �̂�𝑊 in the following way: �̂�𝑊�̂�𝑠 = �̂�𝑠�̂�𝒙�̂�𝑠 , where 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑘. By 

solving this generalized eigen-decomposition problem. SIR directions 𝛽𝑠 can be estimated. 

In Stages 2 and 3, we can obtain the estimates of the standardized inverse regression curve 𝐸(𝒙|𝑦). It should be 

noticed that we only need to transform the sliced 𝐺𝑗 to �̅�𝑗 become PCA, rather than to transform all 𝒙𝑖.  

 

D. SIR-LASSO 

The SIR approach provides a method for estimating low-dimensional subspaces that contain the most important 

information about the relationship between predictor and response variables. This subspace is represented by Span(β̂), 

where the elements of β̂ ∈ Rp×d are often not equal to zero. When we have many predictors (especially highly correlated 

ones, we do not need to use them all to predict the response variable accurately. What needs to be done is to select a 

subset of predictors that is informative and not redundant. This is done to overcome problems such as multicollinearity 

and overfitting, which occur when using to many predictors [21]. 

Lin introduced LASSO with SIR with the aim of replacing the Ordinary Least Squares (OLS) estimator in the SIR 
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algorithm with the LASSO estimator, and ∑ |βjl|
p
l=1 ≤ τ is the Lasso restriction, βjl is the lth coordinate of βj, and 𝜏 is the 

shrinkage factor [14]. SIR-LASSO can be generalized to the multiple index model (8). Let �̂�𝑖 , 1 ≤ 𝑖 ≤ 𝑑, be the d-top 

eigenvalues Ʌ̂𝐻 and �̂� = �̂�1, … , �̂�𝑑 be the corresponding eigen-vectors. We define a multivariate pseudo response  

 

�̃� =
1

𝑐
𝑴𝑴𝑇𝑿𝑇�̂� 𝑑𝑖𝑎𝑔(

1

�̂�1

, … ,
1

�̂�𝑠

) 

 

(10) 

Then apply the LASSO on each column of the pseudo response matrix to produce the corresponding estimate. For each 

1 ≤ 𝑖 ≤ 𝑑, solve the LASSO optimization problem  

�̂�𝑆𝐼𝑅−𝐿𝐴𝑆𝑆𝑂 = arg 𝑚𝑖𝑛 ℒ𝛽,𝑖 (11) 

Where ℒ𝛽,𝑖 =
1

2𝑛
‖�̃�∗,𝑖 −‖

2

2
+ 𝜇𝑖‖𝛽‖1 and 𝜇𝑖 = 𝐶√

log (𝑝)

𝑛�̂�𝑖
 for sufficiently large constant C. The following are the 

stages of SIR via LASSO: 

Stage 1: Determine the values of τ, then initial 𝛽𝑗 = �̂�𝑗. 

Stage 2: Find 𝑡(𝑦) = (�̂�(𝑋|𝑦1), �̂�(𝑋|𝑦2), … , �̂�(𝑋|𝑦𝑛))
𝑇

𝛽𝑗 , �̂�(𝑋|𝑦𝑖) refers to the estimated sample evaluated at 𝑦𝑖 , 𝑖 =

1,2, … , 𝑛. 

Stage 3: 𝛽𝑗 updated as LASSO solution with 𝑡(𝑦) as a response, X predictor, and shrinkage factor τ. 

Stage 4: 𝛽𝑗 normalized as 𝛽𝑗 = 𝛽𝑗 |𝛽𝑗|⁄ . If 𝑗 > 1, 𝛽𝑗 orthonomalized in such a way 𝛽𝑗
𝑇𝛽𝑗 = 1 and 𝜂𝐾

𝑇 �̂�𝑥𝛽𝑗 = 0, with �̂�𝑘 =

1,2, … , 𝑗 is the first estimated SIR 𝑗 − 1. 

Stage 5: Stage 2-4 are repeated until 𝛽𝑗 convergen. 

 

III. METHODOLOGY 
This research uses simulation data analyzed by RStudio 4.1.3 software. The simulation data generate several levels 

correlation (r). This research refers to [14], with some adjustments of the correlation level (𝑟 = 0.5; 0.9). This study’s 

optimal 𝛿∗ value in Continuum Regression between (0 < 𝛿∗ < 1) is 𝛿∗ = 0.5. A small 𝛿∗, such as 0.5, reaches the optimal 

value faster than a larger 𝛿∗ value can extract more relevant information from the independent variables (the results of 

the experiment 𝛿∗ between the values 0 to 1) [22]. When 𝛿∗ = 0 Continuum Regression includes Least Square Regression, 

𝛿∗ = 0.5 Continuum Regression includes Partial Least Squares Regression, and 𝛿∗ = 1 Continuum Regression includes 

Principal Component Regression. This simulation was conducted on low low dimensional data (𝑛 = 75, 𝑝 = 50) and high 

dimensional data (𝑛 = 75, 𝑝 = 100; 150). The simulation study consists of the following stages: 

1. Determine the number of the observations 𝑛 = 75 and the number of explanatory variables 𝑝 = 50; 100; 150 

2. Generating a p-dimensional vector of explanatory variables for the ith observation 𝒙𝑖 = (𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑝𝑖)
𝑇

through a 

multivariate normal distribution 𝒙𝑖~𝑁𝑝(0, 𝛴) where is the covariance matrix 𝛴 = 𝑟𝑝×𝑝; 𝑟𝑗𝑘 = 𝜌|𝑗−𝑘|; 𝑟 = {0.5; 0.9} and 

𝑖 = 1,2,3, … , 𝑛; 𝑗, 𝑘 = 1,2,3, … , 𝑝 
3. Generate regression model: 𝑦 = 𝑋𝛽 + 𝜀, where 𝜀~𝑁(0,1) for 𝑝 = 5 (ordered significant variables). 

4. Perform preprocessing with LASSO and SIR-LASSO variable selection 

�̂�𝐿𝑎𝑠𝑠𝑜 = arg 𝑚𝑖𝑛 {∑ (𝑌𝑖 − ∑ 𝛽𝑗𝑿𝑖𝑗

𝑝

𝑗=1
)

2

+ 𝜆 ∑ |𝛽𝑗|
𝑝

𝑗=1

𝑛

𝑖=1
}  

�̂�𝐿𝐴𝑆𝑆𝑂−𝑆𝐼𝑅 = 𝑎𝑟𝑔𝑚𝑖𝑛 {
1

2𝑛
‖�̃�∗,𝑖 − 𝑿𝑇𝛽‖

2

2
+ 𝜇𝑖

‖𝛽‖1}  
 

Where 𝑌𝑖 is the observed value of the response variable at the i-th observation 𝑿𝑖 = (𝑿1𝑖 , … , 𝑿𝑖𝑗), 𝛽𝑗𝑿𝑖𝑗 is the predicted 

value for the i-th observation, obtained by multiplying the vectors feature 𝑿𝑖 with regression coefficient vector 𝛽 [9]. 

�̃�𝑖 is multivariate pseudo response at the i-th observation 𝑿, 𝑿𝑇𝛽 is the predicted value for the i-th observation, 

obtained by multiplying the vectors feature 𝑿 with the regression coefficient vector 𝛽. The selection of independent 

variables LASSO and SIR-LASSO selection based on the optimum lambda (𝜆) with a minimum value of Mean 

Squared Error Cross-Validation (MSECV) [23]. The procedure for k-fold cross-validation is as follows: 

a. Randomly divides data into k parts into k subsamples. 

b. For each k subsamples, one subsample will be used as testing data and (k-1) subsamples as training data. 

c. The optimum 𝜆 is obtained based on the minimum MSECV value [24]  

𝑀𝑆𝐸𝐶𝑉 =
1

𝑘
∑(𝑦𝑖 − �̂�−𝑘(𝑥𝑖))2

𝑁

𝑘=1

 (12) 

�̂�−𝑘(𝑥𝑖 is the predicted response value for 𝑥𝑖 when the model is obtained from data without involving the k-th 

subsample, and 𝑦𝑖 is the i-th response variable in the testing data.  

d. Repeat steps (b) to (d) k times to obtain the minimum CV. Selection of predictor variables is based on selecting 

the optimum lambda value with the smallest cross-validation value.  

5. Use the CR approach to model using selection variables LASSO and SIR-LASSO 
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𝒚 = 𝑻ℎ𝜉 + 𝜀  

6. Repeat steps 2 through 7 to 1000 times. 

7. Calculate the Root Mean Square Error of Prediction (RMSEP) and 𝑅2 value: 

𝑅𝑀𝑆𝐸𝑃 = √
∑ (𝑦𝑖 − �̂�𝑖)𝑛

𝑖=1
2

𝑛
 (13) 

𝑅2 = 1 − √
∑ (𝑦𝑖 − �̂�𝑖)𝑛

𝑖=1
2

∑ (𝑦𝑖 − �̅�𝑖)𝑛
𝑖=1

2 
(14) 

𝑦𝑖 is the observed value for the i-th data, and �̂�𝑖 is the predicted value for the i-th data obtained from the prediction 

model. �̅�𝑖 is the average of the actual observation values, ∑ (𝑦𝑖 − �̂�𝑖)𝑛
𝑖=1

2
 is the sum of squares of residuals, and 

∑ (𝑦𝑖 − �̅�𝑖)𝑛
𝑖=1

2
 is the total sum of squares. 

8. Compare the model CR LASSO and CR SIR-LASSO obtained by the RMSEP and 𝑅2 values. 

 

V. RESULTS AND DISCUSSIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The boxplot comparison reveals that the LASSO method generally outperforms SIR-LASSO in terms of predictive 

accuracy, as indicated by lower median RMSEP values across varying sample sizes and conditions. LASSO consistently 

tighter distributions of RMSEP, suggesting more stable and reliable performance compared to SIR-LASSO, which exhibits 

greater variability and more outliers in its results. Despite the increasing sample size, LASSO maintains its advantage, 

particularly under the condition marked the value 0.5. SIR-LASSO, while sometimes competitive, tends to produce more 

variable outcomes, especially at larger sample size. Overall, LASSO seems to more dependable choice for predictive 

modelling in the scenarios depicted in Figure 1. 

 

We assessed the goodness-of-fit of the CR LASSO and CR SIR-LASSO models using their RMSEP and  𝑅2 values. 

RMSEP is a metric that assesses the accuracy of a prediction model. The lower the RMSEP number, the lower the average 

model prediction error. 𝑅2 or coefficient of determination, is a statistical measure that indicates how well the observed 

data matches the model expectations. The greater the  𝑅2 score, the better the model produces [25]. Table 1 compares the 

RMSEP and 𝑅2 values for LASSO and SIR-LASSO preprocessing in different settings. 

 

 

 

 

Figure 1  Boxplot RMSEP value on CR  
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Table 1  Average RMSEP and R2 

Method r p 
Evaluation 

RMSEP R2 

LASSO 
0.5 

50 

0.830 0.953 

SIR-LASSO 0.924 0.943 

LASSO 
0.9 

0.840 0.968 

SIR-LASSO 1.007 0.955 

LASSO 
0.5 

100 

0.750 0.961 

SIR-LASSO 0.953 0.940 

LASSO 0.9 0.815 0.970 

SIR-LASSO  1.025 0.952 

LASSO 
0.5 

150 

0.705 0.965 

SIR-LASSO 0.993 0.935 

LASSO 
0.9 

0.907 0.972 

SIR-LASSO 1.041 0.950 

 
Average RMSEP (Root Mean Square Error of Prediction) and R2 values for two methods, LASSO and SIR-LASSO, 

across different scenarios defined by the parameters r (with values of 0.5 and 0.9) and p representing sample sizes of 50, 

100, and 150. Generally, LASSO outperforms SIR-LASSO in terms of RMSEP, consistently achieving lower error values 

across all scenarios. Specifically, LASSO shows a noticeable advantage in both the (r = 0.5) and (r = 0.9) conditions, with 

RMSEP values remaining below 1 in every case, whereas SIR-LASSO tends to have higher RMSEP values, especially as 

the sample size increases. 

In terms of R2, which measures the proportion of variance in the dependent variable that is predictable from the 

independent variables, both methods perform well, with R2 values generally above 0.94. LASSO tends to achieve slightly 

higher R2 values across most conditions, indicating a marginally better fit and predictive accuracy. The consistency of R2 

values across different conditions suggests that both methods can explain a significant portion of the variability in the 

data, but LASSO offers a more robust and reliable model with better generalization across different sample sizes and 

conditions.  

Nonetheless, practical implementations may provide more difficulties, including nonlinear connections and 

heteroscedasticity, which could affect model efficacy. Future research may investigate alternate hybrid methodologies, 

the adaptive calibration of SIR-LASSO parameters, or the evaluation of CR with other variable selection techniques. 

Implementing these strategies on actual datasets, whether genetic, financial, or environmental data, would further 

substantiate their efficacy in practical applications. 

 

V. CONCLUSIONS AND SUGGESTIONS 

Continuum Regression (CR) is a good way to solve these problems, especially when used with variable selection 

methods like LASSO and SIR-LASSO. LASSO improves model stability by penalizing less significant variables, while 

SIR-LASSO integrates dimension reduction with feature selection. Simulations indicated that CR LASSO consistently 

outperformed CR SIR-LASSO by yielding lower RMSEP values and displaying more stable predictions across various 

conditions. SIR-LASSO, though sometimes competitive, exhibited heightened unpredictability and sensitivity to changes 

in dimensionality. LASSO is the more reliable option for preprocessing in CR calibration models. 

To make Continuum Regression (CR) work better with high-dimensional data and outliers, future research could 

look into hybrid methods that combine the best parts of both LASSO and SIR-LASSO. Although LASSO demonstrates 

more stability and reliability, incorporating adaptive approaches or refining parameter selection in SIR-LASSO should 

alleviate its susceptibility to dimensional variations and the impact of outliers. Furthermore, integrating CR with other 

sophisticated variable selection techniques, such as elastic net or robust principal component analysis (PCA), may 

augment resilience to outliers and elevate model efficacy. Evaluating these methodologies across many datasets and 

practical applications would enhance the generalizability of the results. 
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