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ABSTRACT ⎯ Decision tree and forest methods have become popular approaches in data science and continue to evolve. One of 

these developments is the combination of decision trees with Generalized Linear Mixed Models (GLMM), resulting in the GLMM 

Tree, which is applicable to multilevel and longitudinal data. Another model, Generalized Mixed Effect Random Forest (GMERF), 

extends the concept of decision forests with GLMM, effectively handling complex data structures with non-linear interactions. This 

study compares the performance of GLMM Tree and GMERF models in classifying poor households in South Sulawesi Province, 

characterized by imbalanced categories. GLMM Tree provides a simple, interpretable classification through tree diagrams, while 

GMERF highlights variable importance. Initial tests show all three models (GLMM, GLMM Tree, and GMERF) achieve high 

accuracy and specificity but exhibit low sensitivity. By applying oversampling, sensitivity and AUC are significantly improved, 

though this is accompanied by a decline in accuracy and specificity, revealing a trade-off. The study concludes that while GLMM, 

GLMM Tree and GMERF have their strengths, using them together offers a more comprehensive understanding of poverty 

classification. Handling imbalanced data with oversampling is effective in increasing sensitivity, but careful consideration is needed 

due to its impact on overall accuracy. 
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I. INTRODUCTION 

Decision tree and forest methods have become popular approaches in data science and continue to evolve. Decision-

tree methods are widely used in data science due to their interpretability and flexibility. These machine learning 

techniques produce rule-based structures that are easy to visualize, making them suitable for decision-making 

applications. The integration of decision trees with Generalized Linear Mixed Models (GLMM) has led to the 

development of GLMM Tree, a single-tree method capable of handling hierarchical and longitudinal data [1]. This 

approach captures variations between clusters (e.g., individuals within groups), which is particularly relevant in social 

and medical research [2,3]. Compared to ensemble methods, GLMM Trees are more interpretable [4], although their 

predictive accuracy is often lower [5]. 

To overcome this limitation, this study also employs the Generalized Mixed Effects Random Forest (GMERF), an 

ensemble model that incorporates random effects into the random forest framework [6]. By generating multiple trees and 

aggregating their results, GMERF enhances predictive accuracy and captures complex non-linear interactions in 

hierarchical data [7,8]. Empirical studies show that GMERF outperforms traditional mixed-effects models in several 

domains, including education [7], and provides more robust predictions, particularly in multilevel settings [9, 10]. 

Fokkema et al. [1] found that the GLMM Tree offers a balance between interpretability and accuracy, performing slightly 

better than random forests but slightly worse than GLMM in their study. Random forests are also known to be more 

resistant to overfitting, especially when the number of predictors is large or when interactions are complex [9]. 

Consequently, GMERF is well-suited to address these modeling challenges. 

This study aims to gain a broader understanding of the application of GLMM Tree and GMERF in the social field, 

particularly in classifying poor and non-poor households in South Sulawesi Province. The poverty line (GK) in South 

Sulawesi Province is among the lowest, set at Rp. 338,997 for urban areas and Rp. 322,223 for rural areas in 2019, which 

is below the national poverty line (BPS.go.id). This indicates that to meet basic needs, including 2,100 kilocalories per 

capita per day, less money is required compared to other provinces with higher poverty lines. The percentage of poor 

people in urban areas is relatively low, while it is significantly higher in rural areas. This condition reflects that the 

economic capacity of rural residents in the province remains relatively low. 

Government intervention to address this issue begins with the classification of poor and non-poor households. The 

classification of poor households is necessary for the implementation of various policies, such as the distribution of The 

Non-Cash Food Assistance (BPNT), Healthy Indonesia Card (KIS), and Family Hope Program (PKH), as outlined in 

Presidential Regulation No. 63 of 2017. Errors in classification can lead to misdirected policies. The risk of such errors 

increases when considering the typically imbalanced nature of poor/non-poor household categories. As Sun et al. [11] 

pointed out, class imbalance often becomes a challenge in classification tasks, especially when the minority class has very 

low representation in the data. In such conditions, classification models tend to be biased toward the majority class and 
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may even fail to predict the minority class at all. Most classifiers, including decision trees and neural networks, perform 

optimally only when the response variable is well-balanced [12].  

To address this issue, the study applies an oversampling approach (ROSE) to balance the class distribution and improve 

predictive accuracy for the minority class [13]. Oversampling artificially enlarges the minority class, thereby improving 

the model’s ability to recognize poor households. 

State of the art research shows that despite the widespread use of decision trees and forest models, the integration of 

GLMM with machine learning models like GLMM Tree and GMERF remains limited in socio-economic classification, 

especially in household poverty data. Moreover, the impact of oversampling (ROSE) on the performance of these models 

has not been systematically evaluated, particularly regarding the trade-off between sensitivity and specificity. This study 

addresses these gaps by exploring the combined use of GLMM, GLMM Tree and GMERF, along with a systematic 

evaluation of oversampling in poverty classification. 

The objectives of this study are to: 

i. Identify the influence of independent variables in the classification process of poor households using the GMERF, 

GLMM Tree, and GLMM models,  

ii. Compare the performance of GMERF, GLMM Tree, and GLMM in making predictions,  

iii. Demonstrate the impact of imbalanced data treatment on the dataset before applying decision-tree and random 

forest-based methods with random effects. 

 

II. LITERATURE REVIEW 
A. Generalized Linear Mixed Model (GLMM) 

The addition of random components to a Generalized Linear Model (GLM), which originally only had fixed effects, 

transforms it into a Generalized Linear Mixed Model (GLMM) [14]. GLMM is capable of handling various response 

variable distributions and can address scenarios where observations are clustered, such as in multilevel and longitudinal 

data. The generalized linear mixed-effects model (GLMM) can be expressed with the following equation [15]: 
𝝁𝒊 = 𝑬[𝒀𝒊|𝒃𝒊]       𝒊 = 𝟏, … , 𝒍                                                             (1) 
𝑔(𝝁𝑖) = 𝜂𝑖  
𝜂𝑖 = 𝑋𝑖𝜷 + 𝑍𝑖𝒃𝑖 
𝒃𝑖~𝑁𝑞(0, 𝜳) 𝑖𝑛𝑑 

where:  

𝑖      : group index, 𝐼 is the total number of groups  

𝑛𝑖    : number of observations in group 𝑖 and ∑ 𝑛𝑖 = 𝑗𝐼
𝑖=𝑛   

𝜂𝑖     : 𝑛𝑖- -dimensional linear predictor vector  

𝑋𝑖      : 𝑛𝑖 ×  (𝑝 + 1) matrix of fixed-effect regressors for observations in group 𝑖  

𝜷      : (𝑝 + 1)-dimensional vector of fixed-effect coefficients,  

𝑍𝑖      : 𝑛𝑖 × 𝑞 matrix of random-effect regressors,  

𝒃𝑖     : (𝑞 + 1) dimensional vector of random-effect coefficients  

𝚿     : 𝑞 × 𝑞 within-group covariance matrix of random effects. 

Fixed effects are identified by parameters that apply to the entire population, while random effects are identified by 

parameters specific to individual groups. 

 
B. Generalized Linear Mixed Model Tree (GLMM Tree) 

In the GLMM Tree framework, the fixed effects 𝛽𝑗  are modeled as local parameters, meaning their values vary across 

terminal nodes of the tree, while the random effects remain global, shared across all groups in the data. To estimate this 

model, the fixed-effect component is replaced by a GLM Tree, where constant fits are assigned to terminal nodes, while 

random effects are estimated similarly to a standard GLMM [16]. 

The estimation process follows an EM-like iterative procedure, consisting of the following steps:: 

Step  0:  Set the initial value of  𝑟 and all values of 𝑏̂(𝑟) to 0. 

Step  1:  Set 𝑟 =  𝑟 + 1. Estimate the GLM Tree using 𝑧𝑖
𝑇𝑏̂(𝑟 − 1) as the offset value. 

Step 2:  Fit a mixed-effects model 

𝑔(𝝁𝑖𝑗) = 𝑋𝑖
𝑇𝜷𝑗 + 𝑧𝑖

𝑇𝒃                                                                    (2) 

with terminal nodes 𝑗(𝑟) from the GLM Tree estimated in Step 1. Calculate the posterior prediction 𝑏̂(𝑟) based 

on the estimated model. 

Step  3:  Repeat Steps 1 and 2 until convergence. 

In this algorithm, random effects are estimated globally across all clusters and are not part of the partitioning process. 

Only the fixed effects are estimated locally within each terminal node. This structure allows GLMM Trees to combine the 

interpretability of decision trees with the flexibility of mixed models in handling clustered or hierarchical data [17,18]. 

 
C. Generalized Mixed Effect Random Forest (GMERF) 

The GMERF algorithm, according to Pellagatti et al. [7] , integrates the strengths of random forests and generalized 

linear mixed models (GLMM) to handle hierarchical or clustered data. It estimates model parameters through the 

following key steps: 
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i. Initialization: The response vector (𝑦) and covariates (𝑐𝑜𝑣) are used as inputs, along with the group variable (𝑔𝑟) 

as random effects. The covariates are initialized as both fixed and random effects. 

ii. Initial Model Fitting: A Generalized Linear Model (GLM) is employed to predict the initial values of 𝜂𝑖𝑗  which 

represents the linear component of the model.. 

iii. Iteration: 
• At each iteration, the algorithm computes the target (𝜂 − 𝑍 × 𝑏), where 𝑏 denotes the random effect. 

• A random forest (RF) model is applied to predict the fixed effects 𝑓(𝑋). 

• The Generalized Linear Mixed Model (GLMM) is then estimated to obtain the random effects 𝑏𝑖 using the 

results from the RF model and GLMM. 

iv. Convergence: The iterative process continues until the parameter estimates stabilize or until the maximum 

number of iterations is reached. 

v. Final Output: The final model produces the predictions for 𝜂̂𝑖𝑗 = 𝑓(𝑋𝑖𝑗) + 𝑍𝑖𝑗𝑏𝑖, and the response predictions are 

obtained by applying the inverse link function according to the distribution of the data. 

This hybrid algorithm combines the nonparametric flexibility of random forests for modeling fixed effects with the 

structured estimation of random effects from GLMM, making it well-suited for complex hierarchical data with non-linear 

relationships [6,3,18,7]. 

 
D. Model Performance Evaluation 

One of the standard methods for evaluating the performance of a classification system is the confusion matrix, which 

presents the number of correct and incorrect predictions compared to the actual class labels. It provides detailed insight 

into the types of classification errors made by the model. The structure of a binary classification confusion matrix is shown 

in Table 1. 

 
Table 1 Confusion Matrix 

Predicted Class 
Actual Class 

Class = 0 Class = 1 

Class = 0 A B 

Class = 1 C D 

 

Accuracy in classification refers to the percentage of correctly classified data after testing the classification results. The 

higher the accuracy level, the more effective the classification model is considered to be [19]. The values for accuracy, 

sensitivity, and specificity can be calculated using the following formulas:  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐴 + 𝐷

 𝐴+𝐵+𝐶+𝐷
; 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝐴

 𝐴 + 𝐶
;    (3) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐷

𝐵 + 𝐷
 

The information in the confusion matrix can also be used to construct a Receiver Operator Characteristic (ROC) curve. 

The ROC curve is a probability curve that plots the True Positive Rate (TPR) against the False Positive Rate (FPR) at 

various threshold values, essentially separating 'signal' from 'noise'. Additionally, the Area Under the Curve (AUC) is a 

measure of the classifier's ability to distinguish between response variable categories and serves as a summary of the 

ROC curve. 
 𝑇𝑃𝑅 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 𝑅𝑎𝑡𝑒) = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ;     (4) 

 𝐹𝑃𝑅 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑓 𝑅𝑎𝑡𝑒) =
𝐵

𝐵 +  𝐷
= 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

The higher the AUC value for a classifier, the better its ability to distinguish between positive and negative classes 

[20,21]. When AUC = 1, the classifier perfectly distinguishes the classes. However, if AUC = 0, the classifier predicts all 

negatives as positives and all positives as negatives. An AUC = 0.5 indicates that the classifier cannot distinguish between 

positive and negative classes, implying that it predicts all data points randomly. 

 
E. Handling Imbalanced Data 

One of the most widely used approaches to handle imbalanced datasets is oversampling, in which synthetic data points 

are generated to augment the minority class. In this study, the Random Over-Sampling Examples (ROSE) method is 

selected over other oversampling techniques for several important reasons. 

ROSE employs a smoothed bootstrap technique, generating synthetic examples by drawing from a kernel-based 

estimate of the predictor distribution conditional on the class label [22]. This allows ROSE to produce more diverse and 

realistic synthetic data that reflect the underlying structure of the minority class, even when the predictor variables are a 

mix of categorical and continuous types. 

Compared to other popular techniques like SMOTE (Synthetic Minority Over-sampling Technique) and ADASYN 

(Adaptive Synthetic Sampling), ROSE offers greater flexibility and distributional realism. SMOTE generates new samples 

by interpolating between nearest-neighbor minority instances [23], while ADASYN focuses on generating more samples 

in harder-to-classify regions by weighting minority instances with higher classification difficulty [24]. However, both 

SMOTE and ADASYN are generally limited to numerical predictors, as interpolation is not well-defined for categorical 

data. ROSE, on the other hand, can accommodate mixed-type features, making it especially suitable for socio-economic 
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survey data. 

In the context of this study—classifying poor and non-poor households using poverty survey data—ROSE was chosen 

due to the heterogeneous nature of the predictors, which include socio-economic and demographic variables with both 

numerical and categorical formats. ROSE provides greater flexibility in synthesizing realistic minority class samples 

without relying solely on instance pairings, and it helps the model learn more balanced patterns by preserving the overall 

distribution of the data. 

Nonetheless, as with other oversampling techniques, ROSE is not without limitations. Since the generated samples are 

synthetic, they may introduce distributional distortion or overfitting if not validated properly. To mitigate this, the study 

employs cross-validation and evaluates performance on naturally imbalanced test data [25].  

 

III. METHODOLOGY 
A. Data 

This study utilizes household sample data from the March 2019 National Socioeconomic Survey (Susenas) conducted 

by Statistics Indonesia (BPS) for the South Sulawesi Province. Households are classified as poor or non-poor by 

comparing their monthly per capita expenditure with the poverty line (PL) applicable to each district or city [26]. A 

household is categorized as poor if its per capita expenditure falls below the PL of its respective district. 

The classification model uses the household’s poverty status as the response variable, one random variable, and twelve 

candidate fixed-variable predictors. The district or city is modeled as a random variable to account for unobserved 

heterogeneity, given that households within the same area often share similar socio-economic characteristics due to local 

policy, environment, and access to public services. This approach aligns with the structure of multilevel or hierarchical 

data modeling [27]. 

The twelve candidate fixed-effect variables include characteristics related to housing conditions and the household 

head. These are termed “candidate variables” because not all may be included in the final model—some may be excluded 

based on statistical insignificance, model fit criteria, or convergence issues during estimation. 

 
Table 2 Research Variables 

Code Variable (and Reference) Scale Factor 

Y Household Classification (Poor/Non-Poor) Nominal - 

V District/City Nominal Random 

X1 Number of families living in the census building/house Ratio Fixed 

X2 Ownership status of the occupied residence  Nominal Fixed 

X3 Floor area of the residential building exist Ratio Fixed 

X4 Main material of the largest roof area  Nominal Fixed 

X5 Main material of the largest floor area Nominal Fixed 

X6 Main water source used for drinking  Nominal Fixed 

X7 Main lighting source for the household  Nominal Fixed 

X8 Main fuel type used for cooking  Nominal Fixed 

X9 Land ownership  Nominal Fixed 

X10 Number of household member Ratio Fixed 

X11 Highest diploma/certificate held by the household head Ordinal Fixed 

X12 Type of occupation/industry sector Nominal Fixed 

 
B. Data Analysis Procedures 

The data analysis follows a structured series of steps comprising data preparation, modeling, and evaluation: 

1) Data preprocessing, including household poverty classification based on per capita expenditure relative to the 

district/city poverty line, followed by data merging and case selection. 

2) Descriptive analysis to provide a brief overview of poverty conditions in South Sulawesi Province. 

3) Variable selection to identify relevant predictors through theoretical consideration and diagnostic checks (e.g., 

multicollinearity, convergence, and significance). 

4) Model development using GMERF, GLMM Tree, and GLMM based on selected variables. 

5) Data partitioning into 80% training and 20% testing sets using stratified sampling to preserve class distribution. 

6) Prediction on the test set using the models trained in step 4. 

7) Model evaluation based on accuracy, sensitivity, specificity, and AUC [20,21]. 

8) Performance comparison across the three models using the test results. 

9) Class balancing by applying the ROSE oversampling method to the training set [22]. 

10) Re-evaluation by repeating steps 5 to 8 with the resampled training data. 

11) Final comparison of model performance on datasets with and without oversampling. 
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IV. RESULTS AND DISCUSSIONS 
A. Overview of Poverty Rate in South Sulawesi Province 

Based on Figure 1, it can be observed that all regencies and cities in South Sulawesi Province have a poverty rate 

hovering around 10%. The lowest poverty rate is found in Makassar City at 4.28%, while the highest is in Jeneponto 

Regency at 14.88%. The average poverty rate across the province is 9.43%. 

 

 
 

This distribution indicates a clear class imbalance between poor and non-poor households, which becomes a critical 

issue when developing classification models to identify poverty status based on socio-economic predictors. A dominant 

majority class (non-poor) may bias the learning process of many classification algorithms, potentially leading to poor 

detection performance for the minority class (poor households). Therefore, data imbalance handling is essential to 

improve model performance, particularly in terms of sensitivity or recall for the minority class [13,23]. 

In this study, the imbalance issue is addressed through an oversampling technique, aiming to enhance the classifier's 

ability to recognize poor households while maintaining an acceptable trade-off with overall model accuracy. 

 
B. Independent Variable Selection 

The data processing was conducted using the R programming language, employing the core functions glmerTree, 

glmer, and gmerf. Notably, the gmerf function is not currently distributed as a formal R package but was implemented 

using custom source code. 

Initially, all independent variables were included in the GLMM, GLMM Tree, and GMERF models. However, none of 

these models produced convergent estimates, likely due to the inclusion of irrelevant or collinear predictors, as well as 

the complexity of interactions among variables. To address this issue, a variable selection process was performed. The 

first step involved fitting a Generalized Linear Model (GLM) to identify statistically significant predictors. This step 

serves as an efficient screening mechanism before fitting more complex models [28]. Variables found to be significant in 

the GLM were subsequently evaluated within the GLMM framework to confirm their contribution in the presence of 

random effects. 

To further refine the model, Generalized Variance Inflation Factor (GVIF) diagnostics were applied to assess 

multicollinearity among the selected predictors. GVIF is an extension of the standard VIF that is suitable for categorical 

variables with multiple levels [29]. Only predictors with acceptable GVIF thresholds (typically GVIF < 5) were retained. 

As a result, the final set of independent variables used across all models included: the floor area of the residential building 

(X3), the main source of household lighting (X7), land ownership (X9), the number of household members (X10), the 

highest diploma/certificate held by the household head (X11), and the type of employment/industry of the household 

head (X12).. 

 
C. GLMM Modeling 

The initial Generalized Linear Mixed Model (GLMM) included all candidate predictors but resulted in a non-positive 

definite Hessian matrix, indicating instability in parameter estimation and potential multicollinearity or model 

overfitting [30]. To address this, non-significant variables were removed, and the model was refitted using only the 

significant predictors identified in the previous steps. The estimation results, presented in Table 3, show that the final 

model includes six significant predictors: X3 (floor area of the residence), X7 (main lighting source), X9 (land ownership), 

X10 (household size), X11 (education level of household head), and X12 (employment sector). 

Figure 1 Percentage of Poor and Non-Poor Population by District in South Sulawesi Province, 2019 
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Table 3 Estimation of Parameters in the GLMM 

Variable* Estimate 𝜷 Std. Error z value Sig. 𝑬𝒙𝒑(𝜷) 𝟏/𝑬𝒙𝒑(𝜷) 

(Intercept) 2.253 0.209 10.770 < 2e-16 9.519 0.105 

floor_area 0.842 0.065 12.984 < 2e-16 2.322 0.431 

lighting2 -0.611 0.105 -5.798 6.70E-09 0.543 1.842 

lighting3 -1.029 0.149 -6.914 4.71E-12 0.357 2.800 

lighting4 -1.112 0.222 -5.004 5.61E-07 0.329 3.039 

land_ownership5 -0.191 0.100 -1.909 0.0563 0.826 1.210 

household_members -0.781 0.033 -23.648 < 2e-16 0.458 2.185 

education1 0.581 0.108 5.401 6.63E-08 1.789 0.559 

education2 0.701 0.110 6.376 1.82E-10 2.017 0.496 

education3 0.791 0.132 5.974 2.32E-09 2.206 0.453 

education4 1.269 0.136 9.336 < 2e-16 3.556 0.281 

education5 2.413 0.313 7.722 1.14E-14 11.170 0.090 

employment_field1 0.177 0.097 1.827 0.0677 1.194 0.838 

employment_field2 0.688 0.110 6.241 4.35E-10 1.990 0.502 

Note: The main source of lighting consists of lighting1 (baseline) metered PLN electricity, lighting2 unmetered 

PLN electricity, lighting3 non-PLN electricity, and lighting4 non-electricity. Education consists of education0 

(baseline) never attended school, education1 did not complete elementary school, education2 completed 

elementary school or equivalent, education3 completed junior high school or equivalent, education4 

completed senior high school or equivalent, education5 college/university. 

 

From the model output, it can be concluded that all selected predictors have statistically significant effects, with many 

variables exhibiting strong associations with poverty status. For categorical variables, the Exp(β) values facilitate 

interpretation in terms of odds ratios. For instance, households headed by individuals with a university-level education 

(education5) are 11.17 times more likely to be classified as non-poor compared to those who never attended school. 

Conversely, households using non-electric lighting (lighting4) are 3.04 times more likely to be poor compared to those 

using metered PLN electricity (lighting1). These findings underscore the role of educational attainment and infrastructure 

access in poverty classification. 

 
D. GLMM Tree Modeling 

During the initial modeling phase, the glmertree function failed to produce convergent results. This convergence issue 

was likely due to an overly complex tree structure, where the default splitting criteria (e.g., low minsplit and minbucket) 

led to terminal nodes with insufficient sample sizes. In such cases, the estimation of random effects within very small 

subsets becomes unstable or even undefined, especially when combined with non-linear link functions and hierarchical 

data structures. To address this issue, the optimization and tree-building settings were adjusted. Specifically, the 

optimizer was changed from the default (Nelder_Mead) to bobyqa, which is more robust for complex likelihood 

landscapes and has been recommended for mixed models in the lme4 package [30]. Additionally, the maxfun parameter 

was increased to 30,000 iterations, allowing the optimizer more opportunity to converge.  

Moreover, the tree complexity was constrained by setting minsplit = 800, minbucket = 400, and maxdepth = 5. These 

adjustments limited the growth of the tree to ensure that each split occurred only when sufficient data were available, 

and that each terminal node retained enough observations for reliable estimation. These changes reduced model variance 

and improved convergence stability [16]. After implementing these changes, the model successfully converged, 

indicating that convergence issues in GLMM Trees can often be mitigated through careful tuning of both the optimizer 

parameters and tree growth constraints. 

As illustrated in Figure 2, several terminal nodes represent groups with a notably higher proportion of poor households. 

In particular, nodes 14 and 6 exhibit poverty rates approaching 20%, substantially higher than other nodes. Node 14 is 

characterized by households with more than four members and household heads with junior high school education or 

less. Similarly, node 6 represents households with fewer than four members, residential floor area below  70 m², low 

education, and no access to metered electricity. A common thread between these nodes is low educational attainment, 

suggesting that this variable is a strong indicator of household poverty. 

An insightful finding from this analysis is that the splitting variables in the GLMM Tree—which determine partitioning 

structure—correspond to the significant predictors in the GLMM. This alignment reinforces the validity of both modeling 

approaches and suggests that GLMM and GLMM Tree can be integrated to enrich interpretation, offering both inferential 

strength and intuitive subgroup analysis [16]. 
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E. Modeling with GMERF 

One of the distinctive outputs of the GMERF (Generalized Mixed Effect Random Forest) model is the variable 

importance metric, which is quantified using Increase in Node Purity (IncNodePurity). This metric indicates how much 

each variable contributes to reducing heterogeneity (impurity) in the model's terminal nodes. Variables with higher 

IncNodePurity values are considered more influential in predicting the response [31]. 

As shown in Table 4, the education level of the household head had the highest IncNodePurity value (4,770.82), 

suggesting that it is the most important predictor of household poverty in this model. This result is consistent with 

previous research, which shows that lower educational attainment is strongly associated with poverty risk due to its 

impact on employment opportunities and income-generating potential [32]. Households led by individuals with limited 

education often face structural barriers in accessing well-paying or formal sector jobs. 

 
Table 4 Variable Importance in the GMERF Model 

Variable 
Increase in Node 

Purity 

Floor Area of the Residential Building 4513.11 

Main Source of Household Lighting 1535.28 

Number of Household Members 3032.93 

Highest Diploma/Certificate Held by the Household Head 4770.82 

Type of Employment/Industry 1718.33 

 

The floor area of the residential building also emerged as a strong distinguishing factor (4,513.11), reflecting material 

living conditions and indirectly capturing household wealth. Other important variables include the number of household 

members, type of employment, and main lighting source, all of which contribute meaningfully to classifying household 

poverty status within the GMERF framework. 

 
F. Model Comparison on Imbalanced Data (before data treatment) 

This section presents a comparative analysis of the predictive performance of the three models—GLMM, GMERF, and 

GLMM Tree—when applied to the original dataset with an imbalanced distribution between poor and non-poor 

households. 

Initial modeling on the full dataset shows that the GLMM model yields the highest AUC value (0.5392), indicating a 

marginally better ability to distinguish between classes. However, all models exhibit poor classification performance for 

the minority class. To statistically evaluate the robustness of these models, a repeated random sub-sampling validation 

was conducted: 80% of the data were randomly selected as training sets and the remaining 20% as test sets, repeated over 

30 iterations. For each iteration, accuracy, sensitivity, specificity, and AUC were computed, resulting in 30 observations 

per metric per model. 

 

Figure 2 GLMM Tree for Classifying Poor/Non-Poor Households in South Sulawesi Province, 2019 

 
 

Note.:  The lighting is coded as (1) metered PLN electricity, (2) unmetered PLN electricity, (3) 

non-PLN electricity, and (4) non-electricity. Education is coded as (0) never attended 

school, (1) did not complete elementary school, (2) completed elementary school or 

equivalent, (3) completed junior high school or equivalent, (4) completed senior high 

school or equivalent, (5) college/university. 
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The summary results show that all three models consistently produce high average accuracy (~0.92) and specificity 

(~0.99). However, sensitivity remains alarmingly low (< 0.1) across all models. This means that the models fail to correctly 

identify more than 90% of households actually classified as poor, instead misclassifying them as non-poor. Furthermore, 

the average AUC values hover around 0.5, indicating that the models are no better than random guessing in 

distinguishing between classes [20]. This confirms a key theoretical issue in imbalanced data classification: standard 

classifiers tend to favor the majority class, leading to misleading accuracy and specificity values that mask poor recall on 

the minority class [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

To statistically assess model differences, an ANOVA test was conducted for each performance metric, and significant 

differences were observed in accuracy, sensitivity, specificity, and AUC across the three models. Follow-up Tukey post-

hoc tests (α = 0.05) revealed the nature of these differences, summarized in Table 5. The same column indicates that there 

is no significant difference based on the Tukey test. 

 
Table 5 Results of the Tukey Mean Difference Test (alpha = 0.05) 

Measure Model 
Mean and Comparison Order 

Conclusion 
1 2 3 

Accuracy 
GLMM  

0.92479 
 

GLMM Tree accuracy is significantly lower 

than the other models 

  

 

GMERF  
0.92403 

 

 GLMMTree 0.92133 
  

Figure 3 Comparison of ROC (Receiver Operating Characteristic) Curves between the Models (a) GLMM, 
(b) GMERF, and (c) GLMM Tree 

 

Figure 4 Boxplot diagram of accuracy, sensitivity, specificity, and AUC distribution on imbalanced data using the 
models (a) GLMM, (b) GMERF, and (c) GLMM Tree 
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Measure Model 
Mean and Comparison Order 

Conclusion 
1 2 3 

Sensitivity GLMM   
0.08426 Sensitivity of all three models differs 

significantly, with GLMM the highest 

 GMERF 0.01219 
  

  GLMMTree  
0.03169 

 

Specificity  GLMM 0.99459 
  

GMERF specificity is significantly higher 

than the other models 

 GMERF  
0.99976 

 

  GLMMTree 0.99459 
  

AUC GLMM   
0.53943 AUC differs significantly across all three 

models, with GLMM being the highest 

 GMERF 0.50597 
  

  GLMMTree  
0.51314 

 
 

From the Tukey test results, it can be concluded that: 

• GLMM Tree has the lowest accuracy, likely due to over-partitioning and sensitivity to small node sizes in imbalanced 

datasets. 

• GMERF achieves the highest specificity, suggesting it is more conservative in predicting poor households, which can 

be attributed to its ensemble-based averaging nature. 

• GLMM demonstrates the highest sensitivity and AUC, making it the most reliable model for identifying poor 

households in an imbalanced context. 

These findings align with existing literature which suggests that GLMMs perform well when the model structure 

captures key hierarchical effects, and that ensemble models such as GMERF may prioritize specificity due to aggregation 

effects [16]. However, the overall low sensitivity and AUC values across all models highlight a critical limitation: standard 

modeling approaches, without addressing class imbalance, fail to capture the minority class effectively. This reinforces 

the necessity of applying data balancing strategies—such as oversampling—to improve model fairness and minority-

class prediction performance. 

 
G. Model Comparison on Balanced Synthetic-Data (after data treatment) 

To address class imbalance, the ROSE (Random Over-Sampling Examples) technique was applied to the training data. 

The resulting synthetic dataset was adjusted to reflect a 30:70 ratio between poor and non-poor households, effectively 

increasing the representation of the minority class by a factor of three. All models—GLMM, GMERF, and GLMM Tree—

were then trained on this adjusted dataset, while predictions were evaluated using the untouched, naturally imbalanced 

test data. 

As in the previous analysis, GLMM Tree initially failed to converge, which is consistent with known challenges in 

fitting complex mixed-effect models to small or unevenly distributed data subsets. Convergence was achieved only after 

adjusting key model parameters—specifically by increasing the minsplit, minbucket, and maxdepth values, and by using 

the bobyqa optimizer (see Section D). Possible causes of convergence failure include data structures that are not easily 

separable using linear boundaries, difficulties in estimating random effects in sparse cells [16], nd the optimizer’s 

sensitivity to convergence tolerances or iteration limits [30]. 

As shown in Figure 5, the oversampling approach led to marked improvements in model sensitivity, with values 

increasing from below 0.1 to over 0.4 across all models. AUC values also improved significantly, rising from 

approximately 0.5 (before treatment) to above 0.6, indicating enhanced discriminatory ability. However, these 

improvements came with notable trade-offs: accuracy dropped from above 0.92 to around 0.88, and specificity declined 

from approximately 0.99 to 0.89. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5 Boxplot diagram of the distribution of accuracy, sensitivity, specificity, and AUC values on 
balanced-synthetic data (after data treatment) using the models (a) GLMM Tree and (b) GLMM 
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These findings reflect the well-documented trade-off in imbalanced learning: as sensitivity improves due to better 

detection of minority class instances, the model tends to misclassify more majority class cases as positive, thereby 

reducing specificity and overall accuracy [11]. 

To statistically test performance differences across models, ANOVA followed by Tukey's HSD post-hoc tests (α = 0.05) 

were conducted on the 30 repeated iterations. The results are summarized in Table 6. The same column indicates that 

there is no significant difference based on the Tukey test. 

 
Table 6 Results of the Tukey Mean Difference Test (alpha = 0.05) 

Measure Model 
Mean and Comparison Order 

Conclusion 
1 2 3 

Accuracy 
GLMM 

 
0.8630 

 
GMERF accuracy is significantly higher than 

the other models  

GMERF  
 

0.8815 

  GLMMTree 0.8493 
  

Sensitivity GLMM  0.5110 
 Sensitivity of GLMM is the highest 

 GMERF 0.4196 
  

  GLMMTree 0.4230 
 

 

Specificity  GLMM 

 
0.8922 

 
GMERF specificity is significantly higher 

than the other models 

 GMERF 

  
0.9198 

  GLMMTree 
0.8847 

  

AUC GLMM   
0.7016 AUC differs significantly across all three 

models, with GLMM being the highest 

 GMERF 
 

0.6697  

  GLMMTree 0.6538 
 

 
 

Based on these results, we conclude the following:: 

• GMERF yields the highest accuracy and specificity, reflecting its conservative nature in classifying positive (poor) 

cases—likely a result of its ensemble averaging mechanism. 

• GLMM achieves the highest sensitivity and AUC, indicating superior performance in detecting poor households 

despite a higher rate of false positives. 

• GLMM Tree performs lowest across most metrics, suggesting it is less robust—particularly when trained on synthetic 

data. 

These results are consistent with prior literature, which suggests that GLMMs offer greater flexibility in modeling 

correlated hierarchical structures, whereas ensemble-based models such as GMERF tend to provide more stable and 

generalizable predictions[33, 16]. 

 
H. Oversampling Implications and Mitigation Strategies 

Oversampling methods such as ROSE are effective in improving sensitivity on imbalanced datasets; however, they 

inherently modify the training data distribution and may introduce bias, overfitting, and distorted feature relationships  

[13, 22]. Specifically, ROSE employs smoothed bootstrap sampling to generate synthetic minority-class instances, which 

can deviate from the true joint distribution of predictors [25]. These alterations pose three major risks: (i) model overfitting 

to synthetic patterns, (ii) reduced generalizability to real-world data, and (iii) distortion of inter-feature correlations. 

To mitigate these risks, this study implemented several safeguards. First, validation isolation was applied: 

oversampling was restricted to the training set, and model evaluation was conducted on a separate, unaltered test set to 

avoid contamination. Second, a repeated sub-sampling validation procedure (30 iterations) was used to reduce variance 

and sampling bias. Third, multi-metric evaluation—including accuracy, sensitivity, specificity, and AUC—was adopted 

to capture the nuanced trade-offs in model performance. 

The results show that oversampling substantially improved sensitivity and AUC, particularly for GLMM. However, 

this came at the cost of reduced specificity and overall accuracy—highlighting a well-known trade-off in imbalanced 

learning [34]. Additionally, since this study did not apply probability calibration or class reweighting, the predicted 

probabilities should be interpreted cautiously, particularly in policy contexts. 

Importantly, these safeguards were designed to ensure that enhanced detection of the poor (minority class) through 

synthetic oversampling does not lead to misleading conclusions or excessive compromise in generalizability. This is 

especially critical in poverty classification tasks, where false positives could result in misallocation of limited policy 

resources, while false negatives may lead to the exclusion of those most in need. 

As a key limitation, this study did not incorporate post-hoc calibration or cost-sensitive learning strategies. Future 

research should explore probability calibration techniques (e.g., Platt scaling or isotonic regression), cost-sensitive loss 

functions, and hybrid resampling methods to achieve more balanced, robust, and policy-relevant model performance 

[33, 35]. 
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V. CONCLUSIONS AND SUGGESTIONS 
This study evaluated the performance of three classification models—GLMM, GLMM Tree, and GMERF—for 

identifying poor households, with a particular focus on addressing class imbalance in poverty data from South Sulawesi 

Province. The integration of machine learning approaches with Generalized Linear Mixed Models (i.e., GLMM Tree and 

GMERF) did not consistently outperform the conventional GLMM model in terms of classification metrics, under both 

imbalanced and balanced data conditions. Nonetheless, each model offered unique interpretative advantages that 

complement one another. 

The GLMM Tree model provides an intuitive and interpretable tree structure that visually highlights key variables 

distinguishing poor households. In contrast, the GLMM model quantifies the statistical significance and effect size of 

independent variables, making it particularly well-suited for inferential analysis. GMERF, while also providing variable 

importance measures, demonstrated superior performance to GLMM Tree in several settings, particularly in terms of 

predictive accuracy and sensitivity after resampling. 

Across all three models, the identified key predictors were generally consistent, indicating robustness in variable 

selection. Accordingly, employing these models in a complementary manner may enhance interpretability, providing 

both rigorous statistical inference and visually guided exploratory insights. 

On the original imbalanced dataset, all models achieved high overall accuracy and specificity (exceeding 90%), but 

sensitivity remained critically low (below 10%), with area under the ROC curve (AUC) values approaching 0.5—

reflecting limited effectiveness in detecting the minority class. Tukey’s post-hoc tests confirmed statistically significant 

differences among the models, with GLMM yielding the highest sensitivity and AUC. 

To mitigate the effects of class imbalance, the ROSE oversampling technique was applied. This led to a substantial 

improvement in sensitivity across all models, although it also resulted in marked reductions in both accuracy and 

specificity—highlighting the inherent trade-off in imbalanced learning scenarios. On the resampled data, GMERF 

achieved better accuracy and sensitivity than GLMM, suggesting its potential advantage under balanced conditions. 

Future research should further investigate the convergence properties of the GLMM Tree model and extend its 

application to datasets characterized by nonlinear relationships to fully leverage the potential of machine learning-based 

approaches. Additionally, comprehensive evaluation of model stability, interpretability, and integration within the 

broader framework of mixed-effects modeling is recommended to inform policy-relevant decision-making and advance 

methodological development. 
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