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ABSTRACT ⎯ Precipitation is one of the factors that can lead to various disasters, such as droughts and floods. Ordinary 

interpolation methods, such as spatial kriging, cannot accommodate the time element, which is crucial for addressing precipitation-

related disasters. Therefore, this study applies a spatio-temporal kriging, which incorporates both spatial and temporal elements. 

The aim of this study is to develop a spatio-temporal kriging model for precipitation, serving as a basis for interpolating 

precipitation at unobserved points over various time intervals within the study domain. This model is expected to be an effective 

tool for disaster mitigation and water conservation strategies. The data used in this study comprises total monthly precipitation 

recorded at seven precipitation observation posts in East Kalimantan from 2021 to 2023. The findings indicate that the spatio-

temporal ordinary kriging model is the most suitable approach, with the best semivariogram model identified as the simple sum-

metric. The spatial semivariogram follows an exponential model, while the temporal and joint semivariograms follow Gaussian 

models. The accuracy of the chosen model yields an RMSE of 2493.687. The interpolation results reveal that West Kutai falls within 

the medium to high precipitation category, making it the district with the highest flood risk. 
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I. INTRODUCTION 

East Kalimantan has undergone a major transformation with its designation as the relocation site for the National 

Capital (IKN). This change is expected to have significant environmental impacts. The move of IKN to East Kalimantan 

is projected to trigger rapid urbanization in several areas, increasing greenhouse gas emissions due to human activities.  

This will exacerbate climate change, potentially contributing to unstable precipitation patterns and triggering extreme 

weather. Capturing the high spatiotemporal variability of precipitation is essential in urban environments, where high 

impermeability leads to rapid runoff generation [1]. Replacing forests and open land with impermeable surfaces such as 

asphalt and concrete increases stormwater runoff, potentially causing flooding during heavy rains. Deforestation also 

reduces the soil's ability to absorb water and regulate the natural hydrological cycle, decreasing clean water availability, 

worsening floods during high precipitation, and heightening drought risks during low precipitation periods [2].  

To mitigate these negative environmental impacts, comprehensive environmental planning and sustainable water 

resources management are essential. High precipitation, which has the potential to cause flooding, requires accurate 

spatial and temporal estimates to support effective mitigation strategies [3]. Precipitation variability across space and 

time is crucial to quantify streamflow magnitude and uncertainty properly, which can lead to flooding [4]. Thus, detailed 

spatio-temporal precipitation information is vital for identifying high-risk flood areas while supporting water resource 

conservation efforts. 

Kriging is a geostatistics prediction method that provides the best linear unbiased predictor (BLUP) [5]. Kriging aims 

to predict values at unobserved locations based on values at observed locations using a weighted linear combination of 

the observed locations that minimizes expected squared error derived from a semivariogram [6], [7]. The semivariogram 

defines the spatial variability of the dependent variable. With advancements in technology and the increasing need for 

complex analysis, kriging is not only applied to the spatial dimension but also to the temporal dimension. Spatio-

temporal kriging is a method that combines spatial and temporal dimensions to provide more accurate predictions for 

datasets with spatiotemporal dependencies. The spatio-temporal kriging can utilize observations to model spatio-

temporal variation and correlation [8].  

Applying spatio-temporal kriging to predict precipitation in East Kalimantan is essential to support environmental 

planning in the region. This model has proven effective in various similar studies, especially in hydrology and climate 

studies, due to its ability to predict precipitation at unobserved locations and times. Several studies have demonstrated 

that spatio-temporal kriging produces high-quality interpolation results. A study by Raja found that spatio-temporal 

kriging can capture precipitation variability patterns effectively, producing smoother and more accurate predictions than 

conventional spatial-only interpolation methods [9].  Additionally, this method has proven useful in identifying 

precipitation trends and anomalies, which are crucial for water resource planning and disaster risk management [9]. 

Similarly, a study by De Carvalho et al. concluded that spatio-temporal kriging successfully provides better estimates of 

daily precipitation with smaller mean square errors compared to kriging and cokriging [10]. This method exhibits a 

higher linear correlation between observed data and predictions and less bias than spatial kriging or cokriging. By 

applying spatio-temporal kriging, it is possible to analyze future precipitation patterns even in unobserved areas, 

enabling more effective and targeted water conservation and flood mitigation planning. 
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While these prior studies focused on evaluating the methodological superiority of spatio-temporal kriging in general 

or in broad hydrometeorological applications, this study distinguishes itself by specifically applying the method in the 

context of East Kalimantan, a region undergoing unprecedented land use transformation due to the IKN relocation. The 

spatial and temporal dynamics resulting from massive urban development and deforestation in this region have not been 

sufficiently explored in existing literature. Therefore, this research not only applies spatio-temporal kriging but also 

integrates it with the current socio-environmental changes unique to East Kalimantan to generate location-specific 

precipitation predictions for flood mitigation and water resource planning. 

Based on this description, researchers aim to interpolate precipitation in East Kalimantan using the spatio-temporal 

kriging method. The results of this study are expected to assist local authorities in managing water resources and 

mitigating flood risks, supporting sustainable development in the region. Moreover, this research may contribute to 

future studies by enhancing estimation accuracy and spatialization over time. 

 

II. LITERATURE REVIEW 
A. Spatio-Temporal Kriging 

Spatio-temporal kriging aims to predict unknown point values 𝑍(𝑠0, 𝑡0) at an unobserved point (𝑠0, 𝑡0). All available 

data regarding regional variables are used for this purpose, either at point across the domain or within neighborhoods, 

which are subsets of the domain. An example {𝒁(𝒔, 𝑡), 𝒔 ∈ 𝐷, 𝑡 ∈ 𝑇} is given with 𝐷 ⊆ ℝ2 and 𝑇 ⊆ ℝ, being random 

function spatio-temporal and it is assumed that random area values have been observed in n spatio-temporal data points 

{𝑍(𝑠1, 𝑡1), … , 𝑍(𝑠𝑛, 𝑡𝑛)}. To predict the value of a random region spatio-temporal at an unobserved point (𝑠0, 𝑡0), a linear 

predictor is used in equation (1) [11]. 

𝑍̂(𝒔0, 𝑡0) = ∑ 𝜆𝑖𝑍(𝒔𝑖 , 𝑡𝑖)𝑛
𝑖=1  (1) 

where 𝑍̂(𝒔0, 𝑡0) is the value at a location and time that is not observed, 𝜆𝑖 is a spatio-temporal kriging weights, and  𝑍(𝒔𝑖 , 𝑡𝑖) 

is the value at an observed location and time. The weights in the spatio-temporal ordinary kriging model, which assumes 

an unknown mean and stationary data, can be determined using equation (2). 

(

𝜆1

⋮
𝜆𝑛

𝛼

) = (

𝛾(𝒔1 − 𝒔1, 𝑡1 − 𝑡1) ⋯ 𝛾(𝒔1 − 𝒔𝑛, 𝑡1 − 𝑡𝑛) 1
⋮ ⋱ ⋮ ⋮

𝛾(𝒔𝑛 − 𝒔1, 𝑡𝑛 − 𝑡1) ⋯ 𝛾(𝒔𝑛 − 𝒔𝑛, 𝑡𝑛 − 𝑡𝑛) 1
1 ⋯ 1 0

)

−1

(

𝛾(𝒔1 − 𝒔0, 𝑡1 − 𝑡0)
⋮

𝛾(𝒔𝑛 − 𝒔0, 𝑡𝑛 − 𝑡0)

1

) (2) 

where 𝑛 represents the number of spatial points in 𝐷, 𝑡 represents the number of time, 𝛾(𝒔𝑖 − 𝒔𝑗 , 𝑡𝑖 − 𝑡𝑗) represents the 

semivariogram between two observed spatio-temporal data, and 𝛾(𝒔𝑖 − 𝒔0, 𝑡𝑖 − 𝑡0) represents the semivariogram 

between observed (𝒔𝑖 , 𝑡𝑖) and the unobserved (𝒔0, 𝑡0) data. 

 
B. Stationary Data 

Stasionary means that the data depend only on the spatial and temporal lags, it does not depend on the specific 

locations 𝒔𝑖 and 𝒔𝑗 or the specific times 𝑡𝑖 and 𝑡𝑗. The non-stationarity of spatio-temporal data can be checked by 

semivariogram so that trends or patterns in the data can be seen in both spatial and temporal terms  [12]. 

1) Stationarity in spatial data 

Spatial non-stationarity occurs when the data depend on their longitude and latitude. The existence of spatial 

trends can be observed through visualization of data plots against longitude and latitude for each time step [13]. To 

verify the presence of a trend in the plot, regression analysis can be performed against longitude and latitude for 

each time step. Spatial non-stationarity can be addressed using the Box-Cox transformation [14]. Data needs to be 

transformed if 𝜆 ≠ 1 or if it is not within the 95% confidence interval. 

2) Stationarity in temporal data 

This stationarity test is only performed on the temporal aspect. The test that can be used to check the non-

stationarity of panel data is the Im-Pesaran-Shin (IPS) unit root test. The IPS statistic is calculated based on the 

average value of the Dickey-Fuller statistic for the 𝑛 panel units [15]. The expected value and standard deviation for 

𝐷𝐹𝑏𝑎𝑟 are provided by Im et al.  [16]. If the data is not stationary, differencing (∆𝑍𝑡 = 𝑍𝑡 − 𝑍𝑡−1) can be performed. 
 

C. Empirical Spatio-Temporal Semivariogram 

The semivariogram estimate obtained by the moments’ method was given by equation (3) [17]. 

𝛾(𝒉(𝑙), 𝑢(𝑘)) =
1

2#𝑁(𝒉(𝑙),𝑢(𝑘))
∑ (𝑍(𝒔𝑖 , 𝑡𝑖) − 𝑍(𝒔𝑗 , 𝑡𝑗))

2

(𝒔𝑖,𝑡𝑖),(𝒔𝑗,𝑡𝑗)∈𝑁(𝒉(𝑙),𝑢(𝑘))  (3) 

where,  𝑁(𝒉(𝑙), 𝑢(𝑘)) = {(𝒔𝑖 , 𝑡𝑖)(𝒔𝑗 , 𝑡𝑗): 𝒔𝑖 − 𝒔𝑗 ∈ 𝑇(𝒉(𝑙)), 𝑡𝑖 − 𝑡𝑗 ∈ 𝑇(𝑢(𝑘))}, T(𝒉(𝑙)) is the tolerance area in ℝ𝑑 around 𝒉(𝑙) 

and T(𝑢(𝑘)) is the tolerance area in ℝ around 𝑢(𝑘). #𝑁(𝒉(𝑙), 𝑢(𝑘)) represents the number of distinct elements in 

𝑁(𝒉(𝑙), 𝑢(𝑘)), with 𝑙 = 1,2 … , 𝐿 and 𝑘 = 1,2, … , 𝐾. 
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D. Theoretical Spatial and Temporal Semivariogram 

For each dimension, a semivariogram model is identified. Some common ones for precipitation cases are 

exponential and gaussian models. In the spatial component, which uses distance 𝒉, the equation model is as 

follows. 

 
1) Exponential model 

𝛾(|𝒉|) = 𝑐0 + 𝑐 {1 − 𝑒𝑥𝑝 (−
|𝒉|

𝑎
)} (4) 

 

2) Gaussian model 

𝛾(|𝒉|) = 𝑐0 + 𝑐 {1 − 𝑒𝑥𝑝 (−
|𝒉|2

𝑎2
)} (5) 

In these formulations, 𝛾(|𝒉|) denotes the semivariance at a given lag or distance ℎ, representing the average dissimilarity 

between data points separated by that lag. The parameter 𝑐0 is the nugget, which captures spatially uncorrelated variance 

often due to measurement error or microscale variability. The parameter 𝑐 reflects the structured variability or the 

proportion of variance explained by spatial autocorrelation. The range (𝑎) defines the maximum distance at which 

observations remain correlated; beyond this distance, spatial dependence becomes negligible. The sill, given by 𝑐0 + 𝑐, 

indicates the semivariance value at which the variogram plateaus, meaning that further separation between points does 

not increase variance. These models are equally applicable to the temporal dimension by replacing the spatial lag ℎ with 

temporal lag 𝑢, allowing the analysis of temporal dependencies in addition to spatial ones. 

 
E. Theoretical Spatio-Temporal Semivariogram 

1) Product model or separable model 

Assumes that the spatio-temporal semivariogram is given by equation (6). 

𝛾(𝒉, 𝑢) = 𝐶𝑡(𝟎)𝛾𝑠(𝒉) + 𝐶𝑠(𝟎)𝛾𝑡(𝑢) − 𝛾𝑠(𝒉)𝛾𝑡(𝑢)), (𝒉, 𝑢) ∈ ℝ𝑑 × ℝ (6) 

2) Product-sum model 

The semivariogram for the product-sum model is shown in equation (7). 

𝛾(𝒉, 𝑢) = (𝑘2 + 𝑘1𝐶𝑡(𝟎))𝛾𝑠(𝒉) + (𝑘3 + 𝑘1𝐶𝑠(𝟎))𝛾𝑡(𝑢) − 𝑘1𝛾𝑠(𝒉)𝛾𝑡(𝑢) (7) 

where, 𝐶𝑠 and 𝐶𝑡 is a covariance function, 𝛾𝑠 and 𝛾𝑡 is the semivariogram, 𝑘1, 𝑘2, 𝑘3 > 0 and 𝑘1 + 𝑘2 + 𝑘3 > 0 is a 

constant that validate the model. 𝐶𝑠(𝟎) is a sill from 𝛾𝑠 and 𝐶𝑡(𝟎) is a sill from 𝛾𝑡. 

3) Metric model 

The metric model is a model whose semivariogram function is shown in equation (8). 

𝛾(𝒉, 𝑢) = 𝛾√‖𝒉‖2 + (𝑘. |𝑢|)2,   (𝒉, 𝑢) ∈ ℝ𝑑 × ℝ, 𝑐 > 0 (8) 

where ‖𝒉‖ + 𝑐|𝑢| is the distance on ℝ𝑑 × ℝ and 𝑐 is a positive contant. 

4) Sum-metric model 

In semivarogram terms, the combined metric-sum model is given by equation (9). 

𝛾(𝒉, 𝑢) = 𝛾𝑠(𝒉) + 𝛾𝑡(𝑢) + 𝛾√‖𝒉‖2 + (𝑘. |𝑢|)2, (𝒉, 𝑢) ∈ ℝ𝑑 × ℝ, 𝑐 > 0 (9) 

5) Simple sum-metric model 

The simple sum-metric model follows a separable form with the semivariogram function shown in equation (18). 

𝛾(𝒉, 𝑢) = 𝑐0 + 𝛾𝑠(𝒉) + 𝛾𝑡(𝑢) + 𝛾√‖𝒉‖2 + (𝑘. |𝑢|)2, (𝒉, 𝑢) ∈ ℝ𝑑 × ℝ, 𝑐 > 0 (10) 
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F. Cross Validation 

The best model is determined based on the resulting forecast error value. The smaller the forecast error produced by 

a model, the better it is for predicting. One criterion for evaluating forecast error is the RMSE (Root Mean Square Error), 

calculated using the formula in equation (19) [18].  

𝑅𝑀𝑆𝐸: √∑ ∑
(𝛾(𝒉(𝑙),𝑢(𝑘))−𝛾̂(𝒉(𝑙),𝑢(𝑘)))

2
 

𝑛
𝐾
𝑘=1

𝐿
𝑙=1  (11) 

with γ(𝒉(𝑙), 𝑢(𝑘)) is empirical semivariogram value at spatial distance 𝒉(𝑙) and temporal distance 𝑢(𝑘), 𝒉(𝑙) is spatial 

distance of size 𝑙, 𝑢(𝑘) is temporal distance of size 𝑘, and 𝑛 = total number of spatio-temporal pairs in the corresponding 

lags. 

 
G. Precipitation 

Precipitation is the amount of rain that falls in an area over a specific period [19]. It is the hydrological cycle’s most 

important driving force [20]. Precipitation exhibits a high causal correlation both spatially and temporally [21]. The most 

obvious results of changes in the Earth's climate system are variations in precipitation on regional and temporal scales 

[22]. Sea surface temperature has a significant influence on the amount of precipitation, especially when considering 

wind direction, season, and topography [23], [24]. This means that the closer an area is to the sea, the more water vapor 

is available for cloud formation and precipitation. During the rainy season, coastal areas can experience a significant 

increase in precipitation due to increased sea surface temperatures, which raise the rate of evaporation, resulting in more 

water vapor in the atmosphere. However, in the dry season, precipitation in coastal areas can be very low because 

evaporation decreases and clouds tend to move toward land or mountains. Therefore, precipitation on the coast tends to 

be more volatile than in hilly areas [25]. Based on topographic variations, the higher the elevation, the higher the potential 

for precipitation, making rain events more likely [26]. According to BMKG, monthly precipitation is categorized into four 

levels: low (0–100 mm), medium (100–300 mm), high (300–500 mm), and very high (>500 mm) [19]. 

 

III. METHODOLOGY 
The data used in this study are secondary data obtained from the Meteorology, Climatology, and Geophysics Agency 

(BMKG) of Samarinda. The variables used are longitude, latitude, and total monthly precipitation at seven precipitation 

observation posts that are spread across Berau, East Kutai, Kutai Kartanegara, Samarinda, Balikpapan, and West Kutai 

from January 2021 to December 2023. The method applied in this study is spatio-temporal kriging, executed through the 

following analytical steps. 

1. Ploting precipitation data to understand its distribution and characteristics. 

2. Testing the stationarity of the data spatially by forming a regression 

3. Performing a Box-cox transformation if the data is found to be non spatially stationary 

4. Testing the stationarity of the data temporally using the IPS test 

5. Applying differencing to the temporal aspect if it is not temporally stationary 

6. Constructing the empirical spatio-temporal semivariogram using equation (3) 

7. Developing the theoretical spatio-temporal semivariogram for all models using equations (4) to (10) 

8. Fitting the best semivariogram model by comparing the resulting RMSE and selecting the model with the smallest 

value using equation (11). 

9. Performing spatio-temporal kriging interpolation based on equation (1). 

10. Mapping the interpolation results. 

 

IV. RESULTS AND DISCUSSIONS 
A. Descriptive Statistics 

The precipitation at each spatial point and time step shows that the distribution pattern of precipitation is random 

and does not depend on specific locations (longitude and latitude). This indicates that, visually, there is no significant 

trend in the data, suggesting that the data are spatially stationary. This is illustrated in Figure 1, which displays 

precipitation plots based on longitude (easting) and latitude (northing) separately, using samples from October to 

December 2023. Visualization to determine spatial stationarity can also be observed from the empirical semivariogram 

in Figure 3, which shows that the semivariogram does not exhibit a spatial trend at any time. This indicates that the 

precipitation phenomenon in East Kalimantan, from a spatial perspective, is influenced solely by distance rather than the 

specific longitude and latitude of a location. Therefore, it can be concluded that precipitation in East Kalimantan is 

spatially stationary. The absence of easting and northing on precipitation is further supported by the regression results, 

which indicate that for the entire observation period, easting and northing have no significant effect. This is evidenced 

by the p-value of the easting and northing parameters, which is more than 0.05. Based on the regression results and using 

a significance level (𝛼) of 0.05, it concluded that the data is spatially stationary, meaning no data transformation is 

necessary. A significance level of 0.05 is used as an acceptable error threshold when rejecting the null hypothesis. With a 
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p-value greater than 0.05, it suggests that the probability of error from rejecting the null hypothesis exceeds the specified 

significance level (0.05), implying that the error is too large if concluding that the alternative hypothesis (which posits a 

significant effect of the parameter) is true. Conversely, if the null hypothesis is accepted, the error is small, suggesting 

that the parameter has no effect.  

 

 

Figure 1 Precipitation based on longitude (easting) and latitude (northing) 

 

Precipitation over time for each precipitation observation post, as reflected in Figure 2, shows that the data is 

temporally stationary because the overall precipitation exhibits a constant average and variation over time. With an 

average Dickey Fuller statistic of -4.80, where the expected value and standard deviation for 𝐷𝐹𝑏𝑎𝑟 provided by Im et al. 

are -1.524 and 0.780, respectively, the IPS test statistic is calculated as -9.742 with a p-value of 0. This indicates that the 

null hypotesis (𝐻0), which states that the data is not stationary, is rejected. In other words, the precipitation observation 

data in East Kalimantan is temporally stationary. Therefore, the precipitation data in East Kalimantan is stationary in 

both spatial and temporal aspects. With the average precipitation unknown, the spatio-temporal ordinary kriging model 

is the most appropriate to use. Based on the precipitation plot in Figure 2, it is known that the Long Iram precipitation 

post records higher precipitation than other observation locations. This higher precipitation may result from a 

combination of geographical and vegetation factors. Long Iram is situated in an area with higher topography than other 

regions, leading to orographic phenomena and more frequent formation of active convective clouds, which trigger higher 

precipitation. 

 

 
Figure 2 Precipitation for each observation point 
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B. Theoretical Spatio-Temporal Semivariogram 

Spatial-temporal kriging modeling uses a semivariogram to account for the variability between data points, as well 

as the relationships between spatial, temporal, and joint spatio-temporal distances. The results of matching various 

theoretical models to the empirical semivariogram produce the RMSE presented in Table 1.  The simple sum-metric 

model, where the spatial semivariogram follows an exponential model while temporal and joint semivariogram models 

follow a gaussian model, is identified as the best spatio-temporal semivariogram model, producing the lowest RMSE of 

2493.687.  

 
Table 1 RMSE Spatio-Temporal Semivariogram Model 

RMSE Spatio-Temporal Model Joint Model 
Spatial and Temporal Semivariogram Model Joint Model 

Exp+Exp Exp+Gau Gau+Exp Gau+Gau Exp Gau 

Separable ∙ 2518.211 2518.209 2520.403 2520.337 ∙ ∙ 

Product-sum ∙ 3104.620 3279.656 2983.741 2868.631 ∙ ∙ 

Metric ∙ ∙ ∙ ∙ ∙ 2523.381 2523.475 

Sum-metric 
Exp 2522.348 2522.350 2522.352 2522.349 ∙ ∙ 

Gau 2502.212 2501.695 2501.505 2493.735 ∙ ∙ 

Simple sum-metric 
Exp 2523.751 2523.756 2523.756 2523.756 ∙ ∙ 

Gau 2493.839 2493.687 2493.738 2493.721 ∙ ∙ 

*Exp+Gau means spatial semivariogram follows an exponential model and the temporal semivariogram follows a gaussian model 

 

The results of the fit semivariogram model, simple sum-metric, produce parameters on the spatial component in the 

form of partial sill of 1664.27 and a range of 56,414.54, parameters on the temporal component in the form of partial sill 

of 15,306.94 and a range of 16,599.69, parameters on the joint component in the form of partial sill of 3857.67 and a range 

of 183,974.10, nugget model of 7317.03, and anisotropy correction of 84,458.50, then the following model can be made. 

𝛾(𝒉, 𝑢) = 7317.03 + 𝛾𝑠(𝒉) + 𝛾𝑡(𝒖) + 𝛾 (√‖𝒉‖2 + (84,458.50|𝑢|)2) , (𝒉, 𝑢) ∈ ℝ𝑑 × ℝ, 𝑐 > 0 

with, 

𝛾𝑠(|𝒉|) = 1664.27 {1 − 𝑒𝑥𝑝 (−
|𝒉|

56,414.54
)} 

𝛾𝑡(𝒖) = 15,306.94 {1 − 𝑒𝑥𝑝 (−
|ℎ|2

16,599.692)} 

𝛾 (√‖𝒉‖2 + (84,458.50|𝑢|)2) = 3857.67 {1 − 𝑒𝑥𝑝 (−
‖𝒉‖2 + (84,458.50|𝑢|)2

183,974.102 )} 

Figure 3 presents the spatio-temporal empirical semivariogram, which illustrates the sample variability of 

precipitation phenomena in East Kalimantan, compared to the simple sum-metric semivariogram, identified as the best-

fitting spatio-temporal semivariogram. 

 

 

Figure 3 Empirical semivariogram and the best fitting (simple sum-metric) semivariogram 

 

In the spatial component, the partial sill of 1664.27 represents pure spatial structural variance after excluding the nugget 

effect (random noise). The range of 56,414.54 meters (56.41 km) signifies the maximum spatial correlation distance. 

Beyond this distance, two locations are considered uncorrelated. In the temporal component, the partial sill of 15,306.94 

indicates the pure temporal structural variance after excluding the nugget effect, while the range of 16,599.69 months 

suggests that the correlation between precipitation measurements at two different times diminishes significantly after 

this time interval. The same interpretation is applied to the joint component. The nugget model of 7317.03 implies 

variations that the semivariogram model cannot explain at zero distance, often attributed to measurement errors. The 

addition of nuggets and partial sills for either spatial or temporal components shows maximum variance when spatial or 
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temporal correlations are still present. Anisotropy correction is an adjustment made to handle differences in spatial or 

temporal correlation so that they have the same scale. Anisotropy correction of 84,458.50 suggests that one temporal unit 

is equivalent to a spatial distance of 84.46 km, addressing the scale disparity between spatial and temporal correlations. 

 
C. Interpolation 

Based on the interpolation visualization shown in the plot in Figure 4, the Long Iram precipitation post exhibits higher 

precipitation compared to other areas in East Kalimantan. The recorded precipitation at Long Iram precipitation post 

located in West Kutai Regency has the potential to spread to the surrounding areas. The interpolation visualization 

contour in Figure 4 shows that the entire area of West Kutai Regency experiences a high precipitation interval, with the 

highest precipitation in Long Iram District and its surrounding areas, including Long Hubung District in Mahakam Ulu 

Regency and parts of Kembang Janggut District in Kutai Kartanegara Regency. The phenomenon of higher precipitation 

in West Kutai Regency compared to coastal areas aligns with the theory that higher altitudes experience more 

precipitation due to the orographic effect. When humid air is compelled to ascend to high elevations, the air then cools 

and condenses, resulting in the formation of clouds and precipitation. Although Balikpapan's altitude is higher than West 

Kutai's, the latter experiences more precipitation due to its mountainous terrain and higher hills. These geographical 

features enhance the orographic effect, where moist air carried by the wind rises upon meeting the mountains, cools, and 

condenses, resulting in increased precipitation. In contrast, despite its higher altitude, Balikpapan lacks the complex 

topography necessary to intensify this process significantly. 

 

 
Figure 4 Spatio-temporal kriging interpolation contour 

 

In December 2022 to December 2023, average precipitation in the West Kutai and Mahakam Ulu ranged from 300 to 

370 mm per month, classifying it as high precipitation, whereas other areas experienced medium precipitation (200–300 

mm per month). Interpolation for June 2025 shows all areas in East Kalimantan falling into the medium category, with 

precipitation between 200 and 300 mm per month. Penajam Paser Utara, as the relocation district for IKN, shows medium 

precipitation with an average precipitation of 240 mm per month. Based on the interpolation results in the form of 

contours shown in Figure 4 above, there is no significant change in precipitation patterns with an average amount of 

precipitation in the East Kalimantan region of 200 to 300 mm per month. Spatially, precipitation patterns are stable over 

time, with the highest precipitation in Long Iram, West Kutai and the lowest in Sangkulirang, East Kutai. Having higher 

interval precipitation than other areas, the West Kutai area requires special attention for flood hazards mitigation because 

it is identified as a flood-prone area so further mitigation efforts need to be made. In addition, water conservation needs 

to be carried out in the area such as by improving water absorption, which can be done through effective drainage 

management, reforestation, and tree planting. 
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V. CONCLUSIONS AND SUGGESTIONS 
The simple sum-metric with an exponential spatial semivariogram and gaussian temporal and joint semivariograms 

achieves an RMSE of 2493.687, making it the most suitable spatio-temporal semivariogram model for capturing 

precipitation variability in East Kalimantan both in spatial and temporal dimensions. Mapping results indicate that until 

June 2025, West Kutai remains flood-prone areas because it has precipitation that is included in the medium to high 

precipitation category and can spread to the surrounding areas, while other areas have precipitation in the medium 

category. Special attention is needed for water conservation and flood disaster mitigation by related institutions to 

minimize flood risk and manage rainwater effectively for community welfare. 
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