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ABSTRACT ⎯ Hazard ratio (HR) estimation is fundamental in survival analysis, particularly in Cox proportional hazards models, 

where covariates influence time-to-event outcomes. When covariates are combined into composite variables, constructing 

confidence intervals (CIs) for the resulting HRs becomes challenging due to potential multicollinearity, interaction effects, and 

violations of the proportional hazards assumption. This paper presents a systematic approach for constructing confidence intervals 

for HRs associated with composite covariates, comparing standard methods such as the Wald, likelihood ratio, and bootstrap-based 

intervals. Through simulation studies for different scenarios of Cox regression models, we evaluate the performance of these 

methods in terms of bias, coverage probability, and robustness under various data conditions. The findings of this study provide 

practical recommendations for researchers dealing with composite covariates in survival analysis, ensuring reliable inference in 

epidemiological and clinical studies. 
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I. INTRODUCTION 

Survival analysis is a fundamental statistical framework used to model time-to-event data, with applications in fields 

such as medicine, epidemiology, and engineering reliability. The Cox proportional hazards model [1] remains the most 

widely used method for estimating hazard ratios (HRs) in the presence of covariates, allowing researchers to assess the 

relative risk of an event occurring across different groups. Typically, comparisons are made between two groups: one 

that receives the treatment and another that serves as the control group without treatment [2]. A critical aspect of survival 

analysis is the construction of confidence intervals (CIs) for HR estimates, which quantifies the uncertainty associated 

with these estimates and ensures reliable inference. 

 

In many applications, researchers construct composite covariates, which are derived by combining multiple predictor 

variables into a single measure [3]. Composite covariates arise in various contexts, such as principal component scores in 

dimension reduction [4], index scores in clinical risk assessments[5], and interaction terms capturing joint effects of 

multiple exposures [6]. Despite their frequent use, the theoretical properties of confidence interval estimation for hazard 

ratios involving composite covariates remain underexplored. The complexity arises due to increased correlation among 

predictors, scaling effects, and potential violations of the proportional hazards assumption when composite measures 

summarize multiple risk factors. 

 

Existing methods for constructing confidence intervals in Cox models include the Wald interval, likelihood ratio-

based interval, and score-based interval [7]. The Wald method, relying on asymptotic normality, is widely used but may 

perform poorly in small samples or when covariate effects are weak. Likelihood ratio and score-based intervals, while 

often more robust, require additional computational effort and may be sensitive to model specification. The presence of 

composite covariates further complicates inference by altering the distributional properties of parameter estimates, 

potentially leading to coverage distortions in standard interval estimation techniques. 

 

This paper aims to fill this gap by providing a rigorous theoretical framework for confidence interval estimation in 

Cox proportional hazards models with composite covariates. We systematically examine the asymptotic properties of 

different interval estimation methods, derive conditions under which they achieve nominal coverage, and explore their 

robustness under various data-generating mechanisms. Through theoretical derivations and simulation studies, we 

establish guidelines for selecting appropriate confidence interval methods when analyzing survival data involving 

composite covariates. 

 

The remainder of this paper is organized as follows. Section 2 reviews the mathematical foundation of the Cox 

proportional hazards model and introduces the concept of composite covariates. Section 3 outlines existing confidence 

interval estimation methods and their theoretical properties. Section 4 presents new results on confidence interval 

construction for composite covariates, while Section 5 provides simulation studies to assess performance under various 

scenarios. Finally, Section 6 discusses implications for applied research and directions for future work. 
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II. LITERATURE REVIEW 
 
A. Survival Analysis and Hazard Ratios 

 Survival analysis is widely used in medical research, epidemiology, and engineering to model time-to-event data, 

where the hazard function represents the instantaneous risk of an event occurring at a given time point [1]. The Cox 

proportional hazards model is one of the most used statistical methods in this field, estimating the relationship between 

explanatory variables (covariates) and the hazard function through the hazard ratio (HR). 

 

 In the context of survival analysis, researchers are often interested in understanding how certain covariates affect the 

time until an event occurs, such as death, disease progression, or equipment failure. One of the core quantities used to 

express this relationship is the hazard function, defined as 

 

ℎ(𝑡) = lim
∆𝑡→0

Pr⁡(𝑡 ≤ 𝑇 < 𝑡 ∣ 𝑇 ≥ 𝑡)

∆𝑡
, 

(1) 

 

where ℎ(𝑡) represents the instantaneous risk of an event occurring at time 𝑡, given that the individual has survived up to 

that time.  

  

 To assess the effect of covariates on the hazard function, the Cox proportional hazards model is widely applied. This 

semi-parametric model assumes the hazard function can be expressed as hazard model (Equation 2). 

 
ℎ(𝑡 ∣ 𝑋) = ℎ0(𝑡)exp⁡(𝛽1𝑋1 +⁡𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝), (2) 

 

with ℎ0(𝑡) is the baseline hazard function and 𝑋1, 𝑋2, … , 𝑋𝑝 are covariates with corresponding regression coefficients 

𝛽1, 𝛽2, … , 𝛽𝑝.  

 
B. Estimating Hazard Ratio 

 A hazard ratio (HR) quantifies the relative risk of an event occurring in one group compared to another [8]. It is 

particularly useful in clinical trials, where researchers compare treatment and control groups over time. The estimation 

of confidence intervals (CIs) for hazard ratios is essential for drawing reliable inferences about the effect of covariates on 

survival outcomes [9]. HR compares the hazard rates between two groups differing by one unit in a covariate 𝑋𝑗 , where 

𝑗 ∈ {1, 2,… , 𝑝}, all else being equal. Hence, the hazard ratio for one-unit increase in 𝑋𝑗  is 

 

𝐻𝑅 = exp(𝛽𝑗). (3) 

 

An HR greater than one (> 1) implies an increased risk, less than one implies a decreased risk, while HR equals to one 

suggests no difference in risk between the groups. 

 

 
C. Composite Covariates in Cox Regression Models 

Composite covariates refer to variables that combine multiple predictors into a single measure. Examples include 

principal component scores, interaction terms, or latent variable constructs [10]. In survival analysis, composite 

covariates are used to reduce dimensionality by combining several covariates into one reduces the number of parameters 

in the Cox model, preventing overfitting [11]. Composite covariates also improve interpretability as a well-designed 

composite covariate provides a more meaningful summary of risk factors, as seen in clinical scores [12]. Moreover, this 

strategy is effective for multicollinearity mitigation as composite covariates help manage correlation among predictors, 

ensuring better coefficient stability [13].  

When composite covariates are introduced, we define 

 
𝐶 = 𝑔(𝑋1, 𝑋2, … , 𝑋𝑝), (4) 

 

where 𝑔(∙) is a function that combines multiple predictors into a single covariate. The model in Equation (2) is then 

simplified to 

 
ℎ( 𝑡 ∣ 𝐶 ) = ℎ0(𝑡) exp(𝛾𝐶), (5) 

 

with 𝛾 is the estimated coefficient for the composite covariate. 

However, incorporating composite covariates into Cox regression models presents several statistical challenges, such 

as the distributional properties of the composite variable may differ from those of standard covariates; the scaling effect 

can influence the variance of 𝛽̂, affecting confidence interval estimation; the correlation structure among the components 

of the composite covariate may violate the proportional hazards assumption [9]. 
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D. Existing Approaches to Construct Confidence Intervals with Composite Covariates  

 The literature on constructing confidence intervals for composite covariates in survival models is limited. Existing 

studies suggest several approaches: 

 

1) Wald confidence interval 

The Wald confidence interval assumes that the estimated regression coefficient 𝛽̂ follows an approximately normal 

distribution. Given an estimated coefficient and its standard error. The Wald CI is constructed as Equation (4), which 

gives the confident interval for the hazard ratio. This method is widely used due to its simplicity but has limitations in 

small sample sizes or when the normality assumption is violated [9] Some researchers propose adjusted standard errors 

to correct for dependency structures within composite covariates. However, these corrections rely on asymptotic 

approximations and may still lead to biased results in small samples [14]. 

 

The point estimate 𝛽̂𝑗 of the log-hazard ratio us typically obtained via partial likelihood estimation. Under regularity 

conditions, 𝛽̂𝑗  is asymptotically normal, allowing the construction of confidence intervals and hypothesis tests [1], [9]. 

The standard error of 𝛽̂𝑗 plays a key role in quantifying uncertainty, especially when driving the confidence interval for 

𝐻𝑅, formulated as the following 

 

𝐶𝐼𝑊𝑎𝑙𝑑 = (exp(𝛽̂𝑗 − 𝑧𝛼
2
. 𝑆𝐸(𝛽̂𝑗)) , exp (𝛽̂𝑗 + 𝑧𝛼

2
. 𝑆𝐸(𝛽̂𝑗))). 

(6) 

 

Accurate estimation of both the point estimate and its confidence interval is essential for valid inference and decision-

making [15], especially in high-stakes domains like healthcare and public policy. 

 

 

2) Likelihood profiling methods 

An alternative and often preferred method is the likelihood ratio (LR) confidence interval, which is constructed using 

the profile likelihood function. It relies on comparing the log-likelihood values of the two models, namely the full model, 

includes the composite covariates or parameter of interest and the reduced model, which excludes the parameter of 

interest. The likelihood function for a Cox proportional hazards model is derived from the partial likelihood, which 

focuses on the ordering of event times rather than the full likelihood. Given survival times (𝑡1, 𝑡2, … , 𝑡𝑛) and covariates 

𝑋𝑖, for 𝑛 observations, the partial likelihood is  

 

𝐿(𝛽) =∏
exp⁡(𝜷T𝑿𝑓)

∑ exp⁡(𝜷T𝑿𝑘)𝑘∈𝑅𝑓𝑓∈𝐷

, 
(7) 

 

where 𝐷 is the set of individuals experiencing the event and 𝑅𝑓 is the risk set at time 𝑡𝑓, i.e. individuals still at risk just 

before 𝑡𝑓. Then taking the log-likelihood function, we obtain 

 

ℓ(𝛽) =∑ (𝜷T𝑿𝑓 − log∑ exp⁡(𝜷T𝑋𝑘)
𝑘∈𝑅𝑓

)
𝑓∈𝐷

. 
(8) 

 

The likelihood ratio test statistic takes place by comparing the two log-likelihood of full and reduced model.  

 
Λ = −2(ℓ(𝜷)𝑟𝑒𝑑𝑢𝑐𝑒𝑑 − ℓ(𝜷)𝑓𝑢𝑙𝑙) (9) 

 

Under the null hypothesis 𝐻0, that the composite covariate has no effect. The test statistic Λ follows a chi-square 

distribution with degrees of freedom (𝑑𝑓)  equal to the difference in model parameters, that is Λ ∼ 𝜒𝑑𝑓
2  [7]. A likelihood 

ratio-based confidence interval for the hazard ratio (HR) is obtained by solving  

 
−2(ℓ(𝜷∗) − ℓ(𝜷)𝑚𝑎𝑥) = 𝜒1,1−𝛼

2 . (10) 

 

So, for a 95% CI, the critical values from the ci-square distribution with 1 degree of freedom is [16] and ℓ(𝛽∗) would give 

two values of upper 𝛽𝑈 and lower 𝛽𝐿 bound in the interval [16]Hence, the CI for HR [16] is  

 
𝐶𝐼𝐿𝑅 = (exp(𝜷𝐿) , exp(𝜷𝑈)). (11) 

 

 

 

III. METHODOLOGY 



 
 174 
 

 

Department of Statistics, Institut Teknologi Sepuluh Nopember  

                   INFERENSI, Vol. 8(2), July. 2025. ISSN: 0216-308X (Print) 2721-3862 (Online) 
 

DOI: 10.12962%2Fj27213862.v8i2.22710 

 

 
A. Data Simulation Scenarios 

To evaluate the performance of confidence interval (CI) estimation for hazard ratios (HR), we simulate survival data 

under different conditions. The simulation aspects include: 

1) Sample size variation 

Here,  we analyze three different sample sizes to assess how small vs. large samples affect the precision and reliability 

of HR estimates. Small sample size is evaluated at n = 20. Medium sample is at n = 50 and large sample size is at n = 200.  

2) Effect size variation 

We vary the log-HR (𝛽) to see how different strengths of the composite covariate influence CI estimation.  A 

moderate effect at 𝛽 = 0.5 represents a weak association between the composite covariate and survival outcome. While 

a strong effect at 𝛽 = 1.5 represents a stronger relationship, expected to yield more precise HR estimates. 

3) Censoring rate variation 

Censoring in survival analysis affects the number of observed events, which impacts the reliability of HR estimation. 

There are three levels of censoring considered in this study: low censoring, where 30% are censored; moderate censoring 

(70%); and high censoring (90%).  

Therefore, we have 18 simulated data sets. On top of that, continuous and categorical composite covariates are 

introduced for data simulation assuming linear combination for both covariates, with the following composition: 

𝐶 = 0.5𝑍1 + 0.3𝑍2, (12) 

 

where 𝑍1 ∼ 𝑁(0, 1) and 𝑍2⁡ ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙⁡(𝑛, 0.5). The weights 0.5 and 0.3 were chosen arbitrarily to create a dominant effect 

from 𝑍1, making the composite covariate more heterogeneous. This approach is to ensure correlation. Instead of treating 

covariates independently, the composite covariate combines information from different sources. This also is to mimic 

many risk scores or predictive models use linear combinations of multiple variables. By making the hazard model more 

complex, we can observe how Wald and LR methods behave differently. 

 

B. Methodology and Steps of Analysis 

The analysis carried out in this study consists of: 

1) Data simulation based on the scenario illustrated in Figure 1. 

2) Model estimation to fit Cox proportional hazards model to estimate 𝛽 and obtain hazard ratio. 

3) Confidence interval calculation using Wald and likelihood-ratio methods. 

Figure 1  Simulation designs for different scenarios 
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IV. RESULTS AND DISCUSSIONS  
In this study, we evaluated the performance of Wald and Likelihood Ratio (LR) confidence intervals (CIs) for hazard 

ratio (HR) estimation in Cox proportional hazards models with composite covariates. The simulations were designed to 

assess the influence of sample size (n = 20, 50, 200), effect size (β = 0.5, 1.5), and censoring rates (low to high) on the 

accuracy and reliability of these interval estimation methods. The findings highlight critical distinctions between the two 

approaches, particularly in small sample settings and under high censoring conditions. 

 

The results indicate that sample size plays a crucial role in determining the accuracy of CI estimation. In small samples 

(n = 20), both methods exhibited high variability, but Wald intervals tended to be more unstable, occasionally producing 

excessively narrow or wide intervals. The LR method provided more consistent results, as it does not rely on large-sample 

normality assumptions. At moderate sample sizes (n = 50), the difference between Wald and LR methods was less 

pronounced, though Wald’s tendency to underestimate variance was still observed in some cases. When the sample size 

increased to n = 200, both methods converged, producing nearly identical results. This suggests that in large samples, the 

normal approximation underlying the Wald method becomes more reliable, and the likelihood surface is well-

approximated, leading to similar interval coverage. 

 

In this study, Wald intervals do not shown as be unstable in small samples due to reliance on asymptotic properties. 

The likelihood ratio method, which does not assume normality but rather constructs confidence bounds by profiling the 

likelihood function, provides a more reliable alternative in cases where sample size is limited.  

 

The magnitude of the effect size had a significant impact on CI stability. When β = 0.5, corresponding to a weaker 

association between covariates and the hazard function, confidence intervals were generally wider across all methods. 

The reduced distinguishability between treatment groups contributed to greater variability in HR estimates, with Wald 

intervals occasionally failing to cover the true HR due to underestimated uncertainty in smaller samples. 

 

Conversely, with β = 1.5, the effect of covariates on hazard became more pronounced, leading to narrower and more 

precise confidence intervals. The greater separation between risk groups resulted in more stable HR estimates, and both 

methods performed comparably when sample sizes were large. However, in smaller samples, Wald CIs still showed 

more variation, reinforcing the observation that LR confidence intervals may provide better control over interval 

coverage in cases where effect sizes are moderate to small. 

 

These results are consistent with theoretical expectations: when the effect size is large, the information content in the 

likelihood function increases, making standard error estimation more stable. However, for small effect sizes, the 

assumptions underlying the Wald method (normality of the log-HR estimates) are more likely to be violated, leading to 

potential misestimation of confidence bounds. 

 

One of the most striking differences between the two methods was observed under high censoring rates (≥70%). While 

both methods performed adequately under low (≤30%) censoring, Wald intervals became significantly narrower as 

censoring increased, often failing to adequately reflect the uncertainty in HR estimates. This is particularly concerning, 

as artificially narrow confidence intervals may lead to overconfidence in conclusions drawn from the model. 

 

In contrast, the LR method provided more stable intervals across different censoring rates. This robustness arises from 

the fact that likelihood-based methods naturally account for data sparsity by profiling the likelihood function, rather than 

relying on asymptotic standard errors. In extreme censoring conditions (e.g., 90% censored), Wald intervals were 

sometimes unrealistically narrow, while LR intervals, though still affected, provided a more appropriate representation 

of variability. 

 

Previous research has similarly noted that Wald-based standard errors tend to be underestimated in highly censored 

datasets, leading to misleadingly precise estimates. The likelihood ratio approach, which adjusts for the shape of the 

likelihood function rather than assuming symmetry, offers a more reliable alternative when censoring is substantial. 

 

The inclusion of composite covariates added an additional layer of complexity to the analysis. Unlike simple binary or 

continuous covariates, composite covariates represent a weighted combination of multiple predictors, often used in risk 

scores or prognostic models. The simulation results showed that as complexity increased, the likelihood function 

became more irregular, particularly in small samples, making the Wald approximation more susceptible to bias. 

 

For composite covariates, the LR method demonstrated greater stability across different conditions. This is likely due to 

the fact that profiling the likelihood function allows better adaptation to non-linear relationships and interactions 

between covariates. The Wald method, in contrast, assumes a fixed variance structure, which may not hold when 

composite covariates introduce additional heterogeneity in the data. 
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To evaluate whether confidence intervals reliably covered the true parameter, we calculated the empirical coverage 

probability: the proportion of the 1000 simulation replicates in each scenario for which the constructed CI contained the 

true value of 𝜷, specifically to be the number of CIs containing true 𝜷 over the number of replicates.  

 
Table 1  Empirical coverage of CIs 

Sample 

size 

Effect size 

(𝛽) 

Empirical 

coverage 

20 

0.5 0.96 

1.5 0.98 

50 

0.5 0.98 

1.5 0.94 

200 

0.5 0.92 

1.5 0.94 

 

Table 1 presents the empirical coverage probabilities of the constructed confidence intervals (CIs) for hazard ratio 

estimates across different combinations of sample size and effect size. Coverage was calculated as the proportion of 

simulated confidence intervals containing the true effect value (β), based on 1,000 replicates per scenario. These results 

provide insight into the accuracy and reliability of the interval estimation methods under varying data conditions. The 

findings indicate that empirical coverage varies slightly across scenarios. For small samples (n = 20), empirical coverage 

slightly exceeded the nominal 95% level, suggesting conservative intervals that may overstate uncertainty. In contrast, 

for larger samples (n = 200), coverage occasionally fell below 0.95, particularly for weaker effects (β = 0.5), reflecting 

potential under-coverage and underestimated uncertainty. This pattern underscores the importance of considering both 

Figure 2  Confidence intervals based on Wald and likelihood-ratio (LR) methods for different modeling scenarios and sample sizes 
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sample size and effect magnitude when interpreting confidence intervals, as standard asymptotic methods like Wald and 

likelihood-ratio intervals may yield conservative or anti-conservative results depending on data characteristics. 

 

V. CONCLUSIONS AND SUGGESTIONS 
These findings underscore the importance of adequate sample size in survival analysis, particularly when dealing with 

composite covariates and non-proportional hazards. While both the Wald and Likelihood Ratio (LR) methods are viable 

for constructing confidence intervals, their performance varies depending on the complexity of the model and available 

sample size. Future studies could explore alternative confidence interval estimation techniques and validate these 

findings using real-world data. Here, since Wald and LR methods appear to behave similarly, future studies could 

examine alternative CI construction techniques, such as bootstrap confidence interval using non-parametric which may 

flexible estimation of interval bounds, particularly in small samples. Future work might also include extending this work 

to non-proportional hazard models. This study assumes the proportional hazards (PH) assumption holds. However, in 

real-world applications, hazards may vary over time. Future research could explore time-varying coefficients in Cox 

models with flexible survival models that allow non-proportional hazard properties. 
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