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ABSTRACT  This study aims to estimate the prevalence of Stunting and Wasting in Sumatra in 2022 using nonparametric 

regression methods, specifically the Nadaraya-Watson Kernel and Penalized Spline regression models. Both models were applied 

to assess the relationship between these two correlated response variables and various predictor variables, such as low birth weight, 

sanitary facilities, poor population, and exclusive breastfeeding. The results showed that the Nadaraya-Watson Kernel regression, 

particularly using the Gaussian kernel, provided the best fit with minimal prediction error, as indicated by its low Generalized 

Cross-Validation (GCV) value of 0.024 and high R-squared values (0.9992 for Stunting and 0.9995 for Wasting). In contrast, the 

Epanechnikov kernel and Biweight kernel produced higher GCV values (0.110 and 0.356, respectively), indicating less optimal 

performance. For the Penalized Spline model, optimal parameters were determined with a smoothing parameter λ of 5 and 3 knots, 

which balanced model flexibility and smoothness. This research underscores the potential of nonparametric regression techniques 

in capturing complex relationships in health data and provides insights for improving interventions aimed at addressing child 

malnutrition in Indonesia.  
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I.  INTRODUCTION 

Regression analysis is a method used to explain how one or more response variables depend on one or more predictor 

variables. There are three approaches to estimating the regression curve: parametric, nonparametric, and semiparametric 

regression. If the pattern of the relationship between the predictor and response variables is known, parametric regression 

modeling can be applied [1]. However, in practice, not all data follow specific patterns. When the relationship between 

the predictor and response variables is unknown, nonparametric regression is the appropriate model for modeling the 

relationship between these variables [1]. Nonparametric regression analysis is not only for uniresponse but also for 

bivariate and multivariate responses. Bivariate analysis involves two correlated response variables [2]. Functions used in 

nonparametric regression include spline, kernel, local polynomial, Fourier series, wavelets, and MARS [3]. Kernel 

regression, or local averaging regression, is often applied when data points are unevenly spaced or predictor variables 

are random. The kernel estimator estimates the function without imposing linear or parametric assumptions [1]. This 

method is flexible, computationally easy, and converges quickly [4]. Nadaraya-Watson Kernel estimation is one approach 

with high flexibility in modeling variable relationships [5]. Compared to spline regression, kernel offers advantages in 

flexibility and adaptability. 

Spline is a model that offers both statistical and visual interpretations that are highly specific and effective[1]. Spline 

regression involves polynomial functions that are segmented and continuous [6], [7]. It uses connecting points called 

knots, providing flexibility in capturing complex data patterns [8]. In spline regression, besides the location and number 

of knots, another key consideration is finding the optimal value of λ, with its use in nonparametric regression known as 

Penalized Spline regression. Research on kernel and spline has been widely applied. [9]conducted a study on forecasting 

regional PM₂.₅ concentration using a new model based on empirical orthogonal function analysis and the Nadaraya-

Watson Kernel regression estimator. The results showed that the average prediction accuracy of the model was 74.38%, 

with more than 92% of cumulative variance and varying bandwidth values for each season. A subsequent study by 

[10]focused on outlier identification using Penalized Spline regression to model the poverty depth index as a response 

variable. The study achieved an R-square value of 69.10% with optimal knots for each predictor variable being 1, 2, 4, 1, 

5, 3, and 1, respectively. 

The development of nonparametric regression methods has become increasingly popular in statistics due to their 

ability to capture complex relationships between variables without requiring a specific pattern of relationship. Among 

these methods, the bivariate approach with kernel and spline has advantages in providing more flexible estimation, 

especially in the analysis of data with two correlated response variables. For example, in children's health studies, 

Stunting and Wasting often occur simultaneously and reflect poor nutritional conditions, making simultaneous analysis 

of these two indicators crucial. In general, malnutrition in toddlers is classified into Wasting (low weight-for-height), 

Stunting (low height-for-age), and underweight (low weight-for-age) [11]. According to the Ministry of Health in 2022, 

Stunting is a growth disorder caused by chronic malnutrition and long-term infections, resulting in toddlers appearing 

shorter than their age peers. Meanwhile, Wasting is a condition where a toddler's weight continues to decline significantly 

over time, causing their weight to fall far below the growth curve standards based on height. 
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II. LITERATURE REVIEW 
A.  Kernel Nonparametric Regression 

Kernel nonparametric regression, also known as local averaging regression, is an approach commonly used in cases 

where data points are unevenly spaced or when predictor variables are random. This method utilizes a kernel estimator 

to estimate the regression function without imposing assumptions of linearity or a specific parametric form on the data 

[1]. Nonparametric regression relies on the weighted average of the response variable, involving weights that represent 

the distance between the observed predictor variables, measured by bandwidth (h). Kernel nonparametric regression 

originates from local polynomial regression, which is considered a specific form of polynomial regression of degree 0, 

known as the local constant approach. In this approach, the regression function is locally approximated by a constant, 

with the kernel acting as a weight on the data points closest to the estimation point. One of the nonparametric regression 

estimation techniques is the Nadaraya-Watson Kernel estimator, which is more flexible than other nonparametric 

techniques [5]. With the following functions: 

𝒎̂(𝒕𝒊)    =

𝑲(∑
𝒕𝒈 − 𝒕𝒈𝒊
𝒉𝒈

𝑮
𝒈=𝟏 )𝒚𝒊

𝟏
𝒏
∑ 𝑲(∑

𝒕𝒈 − 𝒕𝒈𝒊
𝒉𝒈

𝑮
𝒈=𝟏 )𝒏

𝒊=𝟏

 
(1) 

 

 = 𝑾𝒉(𝒕𝒊)𝒚𝒊 (2) 
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The weight 𝑊ℎ(𝑡𝑖) can be defined in the following matrix form: 

𝑾𝒉 = [

𝑾𝒉(𝒕𝟏) 𝟎 ⋯ 𝟎

𝟎 𝑾𝒉(𝒕𝟐) ⋮ ⋮
𝟎 ⋮ ⋱ 𝟎
𝟎 ⋯ 𝟎 𝑾𝒉(𝒕𝒏)

] 
(3) 

 

B.  Spline Nonparametric Regression 

Spline regression involves polynomial functions that are segmented and continuous[12]. The Penalized Spline 

nonparametric regression model has high flexibility in estimating the function y, assuming that the function is smooth 

and defined in the Sobolev space 𝑉2
′′(𝑎, 𝑏) [4]. The use of connecting points or knots in spline regression allows the model 

to capture significant changes in data patterns. Determining the number and location of knots is crucial in spline 

regression, with the optimal value of λ playing a role in controlling the smoothness of the function estimate [12]. 

Penalized Spline regression uses the smoothing parameter λ to avoid overfitting and provide more accurate estimates by 

capturing smoother data patterns. In general, the spline function with order m and the jth knot for each response can be 

expressed as follows [13] 

𝒈(𝒕𝒊) = 𝜹𝟎
 +∑ ∑ (𝜹𝒎𝒈

 𝒕𝒈𝒊
𝒎 +∑𝝓𝒈𝒌

 (𝒕𝒈𝒊 − 𝝃𝒈𝒌)+
𝒎

𝑲

𝒌=𝟏

)

𝑴

𝒎=𝟏

𝑮

𝒈=𝟏

 
(4) 

 

C.  Weighting Matrix 
Based on the initial concept of bivariate regression that must have a significant relationship between response 

variables, that relationship can be measured using correlation analysis. One method that can be used is Pearson 

correlation analysis. Pearson correlation is denoted by 𝜌̂, which will always be within the interval −1 ≤ 𝜌̂ ≤ 1and can be 

calculated using the equation (5) as follows: 

𝝆̂ =  
𝒔𝒚(𝟏)𝒚(𝟐)

𝒔𝒚(𝟏)𝒔𝒚(𝟐)
 

(5) 

 

The hypothesis testing stages for Pearson correlation are as follows: 

a) Hypothesis: 
𝐻0: 𝜌 = 0  
𝐻1: 𝜌 ≠ 0   

b) Required quantities 

 Significance level, number of observations, degrees of freedom, table statistic 

c) Test statistic [14]: 

𝐭 − 𝐭𝐞𝐬𝐭 = |
𝝆̂√𝒏 − 𝟐

√𝟏 − 𝝆̂𝟐
| 

(6) 

 

d) Decision criteria 

 Reject 𝐻0 if 𝑡ℎ𝑖𝑡𝑢𝑛𝑔 ≥ 𝑡𝛼
2
;𝑛−2 or P-value ≤  𝛼 

e) Conclusion 
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 Based on the test, a conclusion is drawn regarding the relationship between response variables, which is a key 

condition for performing bivariate regression. Weight matrices play an important role in determining parameter 

estimates in bivariate nonparametric regression models. The advantage of involving weight matrices is their ability to 

address correlation between responses within the same observation. In nonparametric regression with two responses, 

there is correlation between errors in the first response and errors in the second response. The covariance matrix for each 

observation can be represented as follows [15]: 

𝑾 = [
𝒔
𝒚(𝟏)
𝟐 𝑰 (𝒔

𝒚(𝟏)𝒚(𝟐)
 )𝑰

(𝒔
𝒚(𝟐)𝒚(𝟏)
 )𝑰 𝒔𝒚(𝟐)

𝟐 𝑰
]

−𝟏

  
(7) 
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(8) 

 

D.  Nadaraya-Watson Kernel Birespon Nonparametric Regression 
Bivariate nonparametric regression Kernel Nadaraya-Watson is a statistical approach used to model the relationship 

between two response variables and one or more predictor variables without requiring specific distributional 

assumptions for the data. Kernel not only functions to smooth the relationship between predictor and response variables 

but also involves weight functions designed to provide different contributions to each observation. This weighting 

reflects the level of impact that each observation has on the regression estimator, based on its proximity to the prediction 

point. In this approach, two response variables are analyzed simultaneously, particularly when the correlation between 

the two needs to be considered, such as in health, economic, or social analyses [16]. Therefore, an additional weight 

function is used to optimally capture the relationship between the response variables and provide the best contribution 

to the regression estimator. By involving these two weight functions, the bivariate nonparametric regression estimator 

Kernel Nadaraya-Watson is capable of capturing random relationships between the predictor variables and the two 

response variables. So that the Nadaraya-Watson Kernel Birespon Nonparametric Regression estimation function can be 

written as follows [17]. 

𝜷̂ (𝒕𝟎) =∑

[(𝒛
𝒚(𝟏)
𝟐 + 𝟐𝒛

𝒚(𝟐)𝒚(𝟏)
 + 𝒛

𝒚(𝟐)
𝟐 ) (𝑲(∑ (

𝒕𝒈 − 𝒕𝒈𝒊
𝒉𝒈

)𝑮
𝒈=𝟏 ) 𝒚𝒊

(𝒓)
)]

𝟏
𝒏
∑ [(𝒛𝒚(𝟏)
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 + 𝒛𝒚(𝟐)
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𝒏
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(9) 

 

To determine the optimal kernel function and bandwidth, the common approach is minimizing the Generalized 

Cross-Validation (GCV). The advantage of GCV lies in its asymptotic optimality, making it effective in various data 

conditions [18]. The bandwidth parameter plays a key role in adjusting the smoothness of the kernel estimate. As the 

bandwidth increases, the estimate becomes smoother but may increase bias and cause underfitting. Conversely, reducing 

the bandwidth increases fluctuation in estimates but reduces bias and may lead to overfitting. The optimal bandwidth 

can be defined as follows [18]: 

𝑮𝑪𝑽(𝒉𝒐𝒑𝒕) =
𝑴𝑺𝑬(𝒉𝒐𝒑𝒕)

(𝟏 − 𝟐𝒏−𝟏𝒕𝒓(𝑩))
𝟐 

(10) 

 

E.  Spline-penalized Birespon Nonparametric Regression 

Nonparametric Regression with Penalized Spline explains the relationship between one or more response variables 

and one or more predictor variables using the Penalized Spline estimator. This model uses paired data (𝑡1, 𝑡2, … , 𝑡𝐺). The 

PWLS estimator, which employs smoothing parameters to control the roughness of the function, can be applied in 

nonparametric regression models to estimate parameters by incorporating weights in the form of the inverse covariance 

matrix of the response variable. This model can be expressed by Equation (11). 

𝒚𝒊
(𝒓)
= 𝜹𝟎

(𝒓)
+∑(𝜹𝒎𝒈

(𝒓) 
𝒕𝒈𝒊
𝒎

 

(𝒓)
+∑𝝓𝒈𝒌

(𝒓)
(𝒕𝒈𝒊 − 𝝃𝒈𝒌)+

𝒎 

𝑲𝒈

𝒌=𝟏

)

𝑮

𝒈=𝟏

+ 𝜺𝒊
(𝒓)
;  𝒓 = 𝟏, 𝟐 

(11) 

 

After obtaining the estimator 𝛿𝑚𝑔
(𝑟) 

, the next step is to explain the role and location of the knots as well as the smoothing 

parameter 𝜆 in the Penalized Spline model. The knot (𝜉𝑘) is the point where the behavior of a function changes over 

different intervals. Penalized Spline regression applies knots located at quantile points, which represent unique values 

of predictor variables once the data is sorted. The location of the knots can be determined using Penalized Spline 

regression and is expressed as follows [19]: 
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𝜉𝑘 =
𝑗

𝐾 + 1,
, 𝑘 = 1,2,3, . . , 𝐾 

(12) 

 

In determining the optimal smoothing parameter 𝜆 as well as the number and location of knots, the commonly used 

method is Generalized Cross Validation (GCV) which minimizes [20]. The advantage of the GCV method is its asymptotic 

optimality [18]. The smoothing parameter 𝜆 controls the roughness penalty. When the value of 𝜆 increases, the function 

estimate becomes smoother, while a decrease in 𝜆 results in a rougher estimate. The GCV method can be defined as 

follows [13]: 

𝐺𝐶𝑉(𝜉𝑜𝑝𝑡, 𝜆𝑜𝑝𝑡) =
𝑀𝑆𝐸(𝜉𝑜𝑝𝑡, 𝜆𝑜𝑝𝑡)

(1 − 2𝑛−1𝑡𝑟(𝑨))
2 

(13) 

 

F. Goodness of Evaluation Model 

 Estimated models provide many benefits for researchers and society in decision-making. To assess how well the 

model meets its objectives, R-Squared and Root Mean Squared Error (RMSE) are used. R-Squared indicates how well the 

model explains the variance in the data, ranging from -∞ (worst) to +1 (best). A value closer to 1 shows a strong model. 

It is calculated as [21]: 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

∑ (𝑦𝑖
 − 𝑦̂𝑖

 )2𝑛
𝑖=1

∑ (𝑦𝑖
 − 𝑦̅ )

2𝑛
𝑖=1

 
(14) 

 

 RMSE is used to measure the level of prediction error. It calculates the square root of the average squared differences 

between observed and predicted values, optimal when errors follow a normal distribution. The RMSE formula is [22]: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖

 − 𝑦̂𝑖
 )
2

𝑛

𝑖=1

 
(15) 

 

G. Indicator of Nutritional Status of Toddlers   

 Nutritional status according to the Indonesian Ministry of Health and WHO is a condition caused by the balance 

between the intake of nutrients from food and the necessary nutritional needs. Meanwhile, nutritional status indicators 

are signs that can be recognized to describe a person's nutritional level. Indicators of nutritional status in toddlers are 

measures or parameters used to assess the nutritional condition of children under the age of five. According to the 

Regulation of the Minister of Health of the Republic of Indonesia (2020), indicators that can be used for children under 5 

years of age are body weight for age (BB/U), body height for age (TB/U), and body weight for height (BB/TB). These three 

indicators can show whether a person has a nutritional status that is deficient, stunting, wasting, and obese.  

 Stunting, according to the [23], is a condition of impaired growth and development in children due to malnutrition, 

repeated infections, and inadequate psychosocial stimulation. Children are considered stunted if their height for age is 

below two standard deviations of the WHO Child Growth Standards. This condition can lead to cognitive delays, reduced 

productivity in adulthood, and an increased risk of chronic diseases. In Indonesia, stunting is caused by various factors 

including family and household conditions, infectious diseases, and poor sanitation [24]. Efforts to prevent stunting 

include improving nutrition, access to clean water, and healthcare services to ensure better growth and development of 

children. 

 Wasting, as defined by UNICEF, is a severe form of malnutrition characterized by low body weight relative to height. 

This condition is often caused by inadequate nutrition or repeated infections. Risk factors for wasting include lack of 

exclusive breastfeeding, improper complementary feeding, and poor access to healthcare and sanitation services. 

Children suffering from wasting are at a higher risk of stunting and cognitive impairment. In Indonesia, malnutrition 

remains a serious issue, affected by various factors, and efforts must focus on early detection and proper intervention to 

prevent and manage wasting in children [25]. 

III. METHODOLOGY 
This study covers 10 provinces with 154 districts/cities as observation locations. The variables used include the 

prevalence of Stunting (Y₁) and Wasting (Y₂), as well as predictor variables such as the percentage of Low Birth Weight 

(T₁), Sanitary Facilities (T₂), Poor Population (T₃), and Infants Receiving Exclusive Breastfeeding (T₄). All variables are 

measured in percentage, with data sources from Health Profiles and the Central Bureau of Statistics. The steps in this 

study using the Kernel Nadaraya-Watson and Penalized Spline estimator are as follows: 

1. Collect and determine data on Stunting and Wasting, along with suspected factors based on previous theories and 

research. 

2. Measure the correlation between response variables using Pearson correlation. 

3. Visualize data using scatterplots between response and predictor variables to determine the relationship pattern. 

4. Estimate the Kernel Nadaraya-Watson function. 

a.  Define the kernel function to be used. 

b.  Determine the upper and lower bounds, and the increment value of the bandwidth. 

c.  Define the local data points. 
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d.  Construct the weight matrix involving the inverse of the variance and covariance values, along with the kernel 

function. 

e. Estimate the function using the kernel function and the optimal bandwidth value obtained in step (a). 

5. Estimate the model using the PWLS estimator. 

a. Determine the maximum order to be used. 

b. Set the upper and lower bounds, and the increment value for lambda. 

c. Determine the maximum number of knots to be used. 

d. Determine the order, location of knots, and the number of knots, as well as vary the value of lambda to obtain 

the optimal lambda value based on the minimum GCV. 

e. Estimate the PWLS model using the order, location of knots, and optimal number of knots and lambda value 

obtained in step (a). 

6. Evaluate model performance using R-squared and RMSE. 

7. Segment the model and interpret segmentation results. 

IV. RESULTS AND DISCUSSIONS 
A.  Correlation between Response Variables 

The relationship between two response variables can be measured using Pearson correlation, the results of testing the 

two response variables are as follows: 
Table 1  Correlation output of 𝒀(𝟏) and 𝒀(𝟐) 

𝐻0: 𝜌 = 0 

Statistics Value 

𝜌̂ 0.216 

t-test 2.735 

t-crit 2.264 

p-value 0.007 

Based on Table 1, the value of t-test = 2.735 > t-crit = 2.264. Therefore, at the 0.05 significance level, we can reject 𝐻0 

and conclude that there is a strong and significant correlation of 0.216 between the response variables, namely the 

prevalence of Stunting and Wasting in Sumatra in 2022. Thus, the assumption of correlation is fulfilled, confirming the 

significant relationship between Stunting and Wasting prevalence.
B.  Visualization of Relationship Pattern of Response Variable and Each Predictor Variable 

Scatter plot is used to see and identify the pattern of relationship between response variables and predictor variables. 

The purpose of this analysis is to provide an initial picture of the pattern of the relationship between the predictor 

variables and the response variable seen before proceeding to further modeling stages. 

Based on Figure 1, the two scatter plots show the relationship between each predictor and Y₁ (Prevalence of Stunting) 

and Y₂ (Prevalence of Wasting). The data points are scattered randomly without a clear pattern, indicating that each 

predictor does not have a strong or consistent relationship with the two response variables. Although there are some 

points with high values of each predictor associated with high Y₁ or Y₂ values, the data distribution remains random. 
C.  Nadaraya-Watson Kernel Birespon Nonparametric Regression 

 The bivariate nonparametric regression using the Nadaraya-Watson Kernel is employed to model two response 

variables without assuming any specific distribution, utilizing distance-based weighting of predictors. This study uses 

the Epanechnikov, Gaussian, and Biweight kernels, and determines the optimal bandwidth within the range of 5 to 100 

with an increment of 5 based on the minimum GCV criterion. The local estimation points are taken from the latest 

observation data to calculate the weighted average of the response values based on the proximity of the predictors. The 

next step is to estimate the regression function using the kernel functions determined in the previous stage. The 

estimation is performed by applying the selected kernel functions, namely Epanechnikov, Gaussian, or Biweight, to the 

predictor variables. The following is the formula of the kernel function that will be used by memorizing 𝒖𝒊 = ∑ (
𝒕𝒈−𝒕𝒈𝒊

𝒉𝒈
)𝟒

𝒈=𝟏 : 

 

 

Figure 1  Scatter pattern of the relationship between stunting and wasting prevalence and their predictor 
variables in Sumatra, 2022. 
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1. Epanechnikov 

𝒎̂𝑬(𝒖) =∑

[(𝒛
𝒚(𝟏)
𝟐 + 𝟐𝒛

𝒚(𝟐)𝒚(𝟏)
 + 𝒛

𝒚(𝟐)
𝟐 ) ((

𝟑
𝟒
(𝟏 − (𝒖𝒊)

𝟐)) (𝒚𝒊
(𝒓)))]

𝟏
𝟏𝟓𝟒

∑ [(𝒛𝒚(𝟏)
𝟐 + 𝟐𝒛𝒚(𝟐)𝒚(𝟏)

 + 𝒛𝒚(𝟐)
𝟐 ) (

𝟑
𝟒
(𝟏 − (𝒖𝒊)

𝟐))]𝟏𝟓𝟒
𝒊=𝟏

𝟏𝟓𝟒

𝒊=𝟏

 

 

(16) 

 

2. Gaussian 

𝒎̂𝑮(𝒖) =∑

[(𝒛
𝒚(𝟏)
𝟐 + 𝟐𝒛

𝒚(𝟐)𝒚(𝟏)
 + 𝒛

𝒚(𝟐)
𝟐 )((

𝟏

√𝟐𝝅 
𝒆−

𝒖𝒊
𝟐

𝟐 ) (𝒚𝒊
(𝒓)))]

𝟏
𝟏𝟓𝟒

∑ [(𝒛𝒚(𝟏)
𝟐 + 𝟐𝒛𝒚(𝟐)𝒚(𝟏)

 + 𝒛𝒚(𝟐)
𝟐 ) (

𝟏

√𝟐𝝅 
𝒆−

𝒖𝒊
𝟐

𝟐 )]𝟏𝟓𝟒
𝒊=𝟏

𝟏𝟓𝟒

𝒊=𝟏

 

(17) 

 

3. Biweight 

𝒎̂𝑩(𝒖) =∑

[(𝒛
𝒚(𝟏)
𝟐 + 𝟐𝒛

𝒚(𝟐)𝒚(𝟏)
 + 𝒛

𝒚(𝟐)
𝟐 ) ((

𝟏𝟓
𝟏𝟔
(𝟏 − 𝒖𝒊

𝟐)
𝟐
) (𝒚𝒊

(𝒓)))]

𝟏
𝟏𝟓𝟒

∑ [(𝒛𝒚(𝟏)
𝟐 + 𝟐𝒛𝒚(𝟐)𝒚(𝟏)

 + 𝒛𝒚(𝟐)
𝟐 ) (

𝟏𝟓
𝟏𝟔
(𝟏 − 𝒖𝒊

𝟐)𝟐)]𝟏𝟓𝟒
𝒊=𝟏

𝟏𝟓𝟒

𝒊=𝟏

 
(18) 

 

The estimation results based on the three kernel functions are obtained as follows: 

Table 2 Comparison of GCV Values of Kernel Functions 

Kernel Function GCV Combination Number 
Optimal Bandwidth 

𝒕𝟏, 𝒕𝟐, 𝒕𝟑, 𝒕𝟒 

Epanechnikov 0.110 159987 35,100,100,100 

Gaussian 0.024 159987 35,100,100,100 

Biweight 0.356 159988 40,100,100,100 

Based on Table 2, the GCV values for the three kernel functions used in Nonparametric Bivariate Regression 

estimation (Epanechnikov, Gaussian, and Biweight) show that the smaller the GCV value, the better the kernel function 

is at providing optimal estimation. The table shows that the Gaussian kernel has the smallest GCV value (0.024), 

compared to Epanechnikov (0.110) and Biweight (0.356). This indicates that the Gaussian kernel produces the best 

estimation, as it optimally balances bias and variance in the Nonparametric Bivariate Regression model. Therefore, the 

Gaussian kernel is chosen as the best kernel function for regression estimation in this study. Based on the estimated 

functions 𝑦(1) and 𝑦(2), the prediction results can be plotted against the actual data, as shown in Figure 2.  
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D.  Spline-penalized Birespon Nonparametric Regression 

After applying the Kernel Nadaraya-Watson estimator, the analysis is continued using the Penalized Spline estimator 

to model the relationship between the response variables and predictors without assuming a specific functional form. 

Parameter estimation is performed using Penalized Weighted Least Squares to improve model accuracy. In bivariate 

nonparametric regression using Penalized Spline, the selection of polynomial order, lambda value, and number of knots 

greatly determines the model's flexibility. The maximum order is limited to 3, with combinations of order 1 (linear), order 

2 (quadratic), and order 3 (cubic), where the optimal order is selected based on the minimum GCV value. Lambda values 

are tested within the range of 5 to 100 with increments of 5 to achieve the best smoothing level based on GCV. Meanwhile, 

the number of knots is limited to a maximum of 3 to maintain a balance between model flexibility and the risk of 

overfitting, with the optimal number also determined based on the minimum GCV value.The next step is to determine 

the optimal combination of order, knot locations, number of knots, and lambda values which is summarized in the 

following table: 

Table 3 Optimal Knot Location 

𝝃𝟏 𝝃𝟐 𝝃𝟑 𝝃𝟒 

0.810 70.087 6.816 39.280 

2.600 81.240 9.415 57.800 

4.505 89.103 13.350 72.220 

𝑂𝑟𝑑𝑒 (3,3) 

𝜆 = 5 

𝐺𝐶𝑉 = 6.960 × 10−5 

Figure 3 shows the relationship between 𝜆 and GCV. As 𝜆 increases, it indicates that larger values of 𝜆 cause the model 

to become too smooth (underfitting) and lose data patterns. The optimal selection of 𝜆 is generally done by finding the 

minimum GCV value. However, in this graph, GCV continues to increase as 𝜆 becomes smaller. It is advised to avoid 

over-smoothing.  

Figure 2 Actual and predicted values of 𝒀₁ and 𝒀₂ obtained using the Nadaraya–Watson kernel estimator. 
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Based on the optimal combination of order, knot locations, number of knots, and lambda value, the bivariate 

nonparametric Penalized Spline regression models for both response variables are obtained as follows: 

𝑦̂𝑖
(1) = 32.410 − 1.660 × 100𝑡1𝑖 + 8.115 × 10

−1𝑡1𝑖
2 − 5.621 × 10−2𝑡1𝑖

3 + 2.384 × 10−5(𝑡1𝑖 − 0.810)+
3 

+ 5.195 × 10−4(𝑡1𝑖 − 2.600)+
3 − 2.221 × 10−3(𝑡1𝑖 − 4.505)+

3 − 1.276 × 100𝑡2𝑖 + 3.013 × 10
−2𝑡2𝑖

2

− 2.146 × 10−4𝑡2𝑖
3 + 7.906 × 10−4(𝑡2𝑖 − 70.087)+

3 + 1.604 × 10−3(𝑡2𝑖 − 81.240)+
3 

− 1.627 × 10−2(𝑡2𝑖 − 89.103)+
3 + 2.740 × 100𝑡3𝑖 − 2.496 × 10

−1𝑡3𝑖
2 + 6.942 × 10−3𝑡3𝑖

3

+ 3.268 × 10−3(𝑡3𝑖 − 6.816)+
3 − 8.398 × 10−4 (𝑡3𝑖 − 9.415)+

3 − 1.808 × 10−2(𝑡3𝑖 − 13.350)+
3 

+ 6.837 × 10−1𝑡4𝑖 + 2.773 × 10
−2𝑡4𝑖

2 − 3.058 × 10−4𝑡4𝑖
3 + 4.846 × 10−4(𝑡4𝑖 − 39.280)+

3 

− 4.155 × 10−4(𝑡4𝑖 − 57.800)+
3  

+8.274 × 10−4(𝑡4𝑖 − 72.220)+
3   

𝑦̂𝑖
(2) = −3.301 × 100 − 2.849 × 10−1𝑡1𝑖 + 8.057 × 10

−2𝑡1𝑖
2 − 1.105 × 10−3𝑡1𝑖

3 − 1.573 × 10−4(𝑡1𝑖 − 0.810)+
3 

+ 2.438 × 10−3(𝑡1𝑖 − 2.600)+
3 + 8.997 × 10−3(𝑡1𝑖 − 4.505)+

3 − 2.190 × 10−1𝑡2𝑖 + 6.073 × 10
−3𝑡2𝑖

2

− 4.643 × 10−5𝑡2𝑖
3 + 5.255 × 10−4(𝑡2𝑖 − 70.087)+

3 − 1.912 × 10−3(𝑡2𝑖 − 81.240)+
3 

+ 5.205 × 10−3(𝑡2𝑖 − 89.103)+
3 + 4.091 × 100𝑡3𝑖 − 6.091 × 10

−1𝑡3𝑖
2 + 2.867 × 10−2𝑡3𝑖

3

− 1.585 × 10−2(𝑡3𝑖 − 6.816)+
3 − 2.349 × 10−2(𝑡3𝑖 − 9.415)+

3 + 1.653 × 10−2(𝑡3𝑖 − 13.350)+
3 

+ 3.147 × 10−1𝑡4𝑖 − 7.297 × 10
−3𝑡4𝑖

2 + 5.469 × 10−5𝑡4𝑖
3 − 5.131 × 10−5(𝑡4𝑖 − 39.280)+

3 

+ 8.787 × 10−5(𝑡4𝑖 − 57.800)+
3  

+4.101 × 10−4(𝑡4𝑖 − 72.220)+
3  

After establishing the PWLS model for the Stunting and Wasting case study in the Sumatra region in 2022, the next 

step is to segment the population based on predictor variables and interpret the regression coefficients to understand the 

relative influence of each variable on children's nutritional status. Through this analysis, it is expected to gain a deeper 

understanding of the factors affecting nutritional status, serving as a basis for more effective decision-making and policy 

planning. The segmentation results for each variable are presented as follows. 

𝑓(1)(𝑡1𝑖) = −1.660𝑡1𝑖 + 8.115 × 10
−1𝑡1𝑖

2 − 5.621 × 10−2𝑡1𝑖
3 + 2.384 × 10−5(𝑡1𝑖 − 0.810)+

3 + 

5.195 × 10−4(𝑡1𝑖 − 2.600)+
3 − 2.221 × 10−3(𝑡1𝑖 − 4.505)+

3   

𝑓(1)(𝑡1𝑖) =

{
 
 

 
 −1.660𝑡1𝑖 + 0.8115𝑡1𝑖

2 − 0.05621𝑡1𝑖
3 .

−1.659𝑡1𝑖 + 0.8114𝑡1𝑖
2 − 0.05618𝑡1𝑖

3 − 0.00002.  

−1.649𝑡1𝑖 + 0.8074𝑡1𝑖
2 − 0.05566𝑡1𝑖

3 − 0.009.

−1.784𝑡1𝑖 + 0.8374𝑡1𝑖
2 − 0.05788𝑡1𝑖

3 − 0.194.

        0 < 𝑡1𝑖 ≤ 0.810
0.810 < 𝑡1𝑖 ≤ 2.600
2.600 < 𝑡1𝑖 ≤ 4.505
                 𝑡1𝑖 > 4.505

 

Based on the segmentation results of the Low Birth Weight Percentage variable, the effect of one-unit 𝒕𝟏𝒊 on LBW shows 

a varied pattern in each segment. In Segment I, a one-unit increase in 𝒕𝟏𝒊causes a decrease in 𝒚(𝟏), which means that more 

babies born with low birth weight will reduce the prevalence of stunting. Entering Segment II, a one-unit increase in 𝒕𝟏𝒊 

causes a decrease in 𝒚(𝟏), which means that the more babies born with low body weight, the lower the prevalence of 

stunting. In Segment III, a one-unit increase in 𝒕𝟏𝒊 causes a decrease in 𝒚(𝟏), which means that the more babies born with 

low body weight, the lower the prevalence of stunting. However, in Segment IV, a one-unit increase in 𝒕𝟏𝒊 causes a 

decrease in 𝒚(𝟏), which means that the more babies born with low birth weight, the lower the prevalence of stunting.  

𝑓(1)(𝑡2𝑖) = −1.276𝑡2𝑖 + 3.013 × 10
−2𝑡2𝑖

2 − 2.146 × 10−4𝑡2𝑖
3 + 7.906 × 10−4(𝑡2𝑖 − 70.087)+

3 + 

1.604 × 10−3(𝑡2𝑖 − 81.240)+
3 − 1.627 × 10−2(𝑡2𝑖 − 89.103)+

3  

𝑓(1)(𝑡2𝑖) =

{
 
 

 
 −1.276𝑡2𝑖 + 0.003𝑡2𝑖

2 − 0.00002𝑡2𝑖
3 .

10.374𝑡2𝑖 + 0.163𝑡2𝑖
2 − 0.0007𝑡2𝑖

3 − 272.188.  

42.133𝑡2𝑖 − 0.228𝑡2𝑖
2 − 0.0009𝑡2𝑖

3 − 1132.219.

−345.486𝑡2𝑖 + 4.121𝑡2𝑖
2 − 0.017𝑡2𝑖

3 − 10377.495.

            0 < 𝑡2𝑖 ≤ 70.087
70.087 < 𝑡2𝑖 ≤ 81.240
81.240 <  𝑡2𝑖 ≤ 89.103
                      𝑡2𝑖 > 89.103

 

Figure 3 Relationship between the smoothing parameter (λ) and the Generalized Cross-Validation (GCV) 
value in the Penalized Spline model. 
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Based on the segmentation results of the percentage of proper sanitation variable, the effect of 𝒕𝟐𝒊 on the percentage of 

proper sanitation shows a varied pattern in each segment. In Segment I, a one-unit increase in 𝒕𝟐𝒊 causes a decrease in 

𝒚(𝟏), which means that the higher the percentage of proper sanitation, the lower the prevalence of stunting. Entering 

Segment II, an increase in 𝒕𝟐𝒊  causes an increase in 𝒚(𝟏), which means that the higher the percentage of proper sanitation, 

the higher the prevalence of stunting. In Segment III, an increase in 𝒕𝟐𝒊 causes an increase in 𝒚(𝟏), which means that the 

higher the percentage of proper sanitation, the higher the prevalence of stunting. However, in Segment IV, a one-unit 

increase in 𝒕𝟐𝒊 causes a decrease in 𝒚(𝟏), which means that the higher the percentage of proper sanitation, the lower the 

prevalence of stunting.  

𝑓(1)(𝑡3𝑖) = 2.740𝑡3𝑖 − 2.496 × 10
−1𝑡3𝑖

2 + 6.942 × 10−3𝑡3𝑖
3 + 3.268 × 10−3(𝑡3𝑖 − 6.816)+

3  

−8.398 × 10−4 (𝑡3𝑖 − 9.415)+
3 − 1.808 × 10−2(𝑡3𝑖 − 13.350)+

3  

𝑓(1)(𝑡3𝑖) =

{
 
 

 
 2.740𝑡3𝑖 − 0.249𝑡3𝑖

2 + 0.007𝑡3𝑖
3 .

3.195𝑡3𝑖 − 0.316𝑡3𝑖
2 − 0.004𝑡3𝑖

3 − 1.035.  

2.972𝑡3𝑖 − 0.292𝑡3𝑖
2 − 0.005𝑡3𝑖

3 − 0.334.

−6.695𝑡3𝑖 − 0.432𝑡3𝑖
2 − 0.023𝑡3𝑖

3 + 42.683.

            0 < 𝑡3𝑖 ≤ 6.816
  6.816 < 𝑡3𝑖 ≤ 9.415
   9.415 <  𝑡3𝑖 ≤ 13.350
                      𝑡3𝑖 > 13.350

 

Based on the segmentation results of the percentage of poor people variable, the effect of t_3i on the percentage of poor 

people shows a varied pattern in each segment. In Segment I, a one-unit increase in 𝒕𝟑𝒊 causes an increase in 𝒚(𝟏), which 

means that the higher the percentage of poor people, the higher the prevalence of stunting. Entering Segment II, an 

increase in 𝒕𝟑𝒊 causes an increase in 𝒚(𝟏), which means that the higher the percentage of poor people, the higher the 

prevalence of stunting. In Segment III, an increase in 𝒕𝟑𝒊 causes an increase in 𝒚(𝟏), which means that the higher the 

percentage of poor people, the higher the prevalence of stunting. However, in Segment IV, a one-unit increase in 𝒕𝟑𝒊 

causes a decrease in 𝒚(𝟏), which means that the higher the percentage of poor people, the lower the prevalence of stunting.  

𝑓(1)(𝑡4𝑖) = 6.837 × 10
−1𝑡4𝑖 + 2.773 × 10

−2𝑡4𝑖
2 − 3.058 × 10−4𝑡4𝑖

3 + 4.846 × 10−4(𝑡4𝑖 − 39.280)+
3  

−4.155 × 10−4(𝑡4𝑖 − 57.800)+
3 + 8.274 × 10−4(𝑡4𝑖 − 72.220)+

3  

𝑓(1)(𝑡4𝑖) =

{
 
 

 
 0.684𝑡4𝑖 + 0.027𝑡4𝑖

2 − 0.0003𝑡4𝑖
3 .

2.927𝑡4𝑖 − 0.085𝑡4𝑖
2 + 0.0002𝑡4𝑖

3 − 29.369.  

−1.237𝑡4𝑖 − 0.013𝑡4𝑖
2 − 0.0006𝑡4𝑖

3 + 50.864.

11.709𝑡4𝑖 − 0.192𝑡4𝑖
2 + 0.00023𝑡4𝑖

3 − 260.801.

            0 < 𝑡4𝑖 ≤ 39.280
39.280 < 𝑡4𝑖 ≤ 57.800
57.800 <  𝑡4𝑖 ≤ 72.220
                      𝑡4𝑖 > 72.220

 

Based on the segmentation results of the percentage of ASI-E variable, the effect of 𝒕𝟒𝒊 on the percentage of ASI-E shows 

a varied pattern in each segment. In Segment I, a one-unit increase in 𝒕𝟒𝒊 causes an increase in 𝒚(𝟏), which means that the 

higher the percentage of ASI-E, the higher the prevalence of stunting. Entering Segment II, an increase in 𝒕𝟒𝒊 causes an 

increase in 𝒚(𝟏), which means that the higher the percentage of breastfeeding-E, the higher the prevalence of stunting. In 

Segment III, an increase in 𝒕𝟒𝒊 causes an increase in 𝒚(𝟏), which means that the higher the percentage of breastfeeding-E, 

the higher the prevalence of stunting. However, in Segment IV, a one-unit increase in 𝒕𝟒𝒊 causes a decrease in 𝒚(𝟏), which 

means that the higher the percentage of E-breastfeeding, the lower the prevalence of stunting. Response function 

estimation results 1 as followed: 

 
 

𝑓(2)(𝑡1𝑖) = −2.849 × 10
−1𝑡1𝑖 + 8.057 × 10

−2𝑡1𝑖
2 − 1.105 × 10−3𝑡1𝑖

3 − 1.573 × 10−4(𝑡1𝑖 − 0.810)+
3 

+ 2.438 × 10−3(𝑡1𝑖 − 2.600)+
3 + 8.997 × 10−3(𝑡1𝑖 − 4.505)+

3  

𝑓(2)(𝑡1𝑖) =

{
 
 

 
 −0.285𝑡1𝑖 + 0.0806𝑡1𝑖

2 − 0.0011𝑡1𝑖
3 .

−0.285𝑡1𝑖 + 0.0809𝑡1𝑖
2 − 0.0013𝑡1𝑖

3 + 0.000084.  

−0.2355𝑡1𝑖 + 0.0618𝑡1𝑖
2 + 0.0011𝑡1𝑖

3 − 0.0428.

0.3123𝑡1𝑖 − 0.0598𝑡1𝑖
2 + 0.0101𝑡1𝑖

3 − 0.8654.

        0 < 𝑡1𝑖 ≤ 0.810
0.810 < 𝑡1𝑖 ≤ 2.600
2.600 < 𝑡1𝑖 ≤ 4.505
                 𝑡1𝑖 > 4.505

 

Figure 4 Estimated 𝒚(𝟏)spline function showing the relationship between the actual and 

predicted values for 𝒀₁. 
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Based on the segmentation results of the Low Birth Weight Percentage variable, the effect of one-unit 𝑡1𝑖 on LBW shows 

a varied pattern in each segment. In Segment I, a one-unit increase in 𝑡1𝑖causes a decrease in 𝑦(2), which means that more 

babies born with low birth weight will reduce the prevalence of wasting. Entering Segment II, a one-unit increase in 

𝑡1𝑖  causes a decrease in 𝑦(2), which means that the more babies born with low body weight, the lower the prevalence of 

wasting. In Segment III, a one-unit increase in 𝑡1𝑖 causes a decrease in 𝑦(2), which means that the more babies born with 

low body weight, the lower the prevalence of wasting. However, in Segment IV, an increase in 𝑡1𝑖 causes an increase in 

𝑦(2), which means that the more babies born with low weight will increase the prevalence of wasting.  

𝑓(2)(𝑡2𝑖) = −2.190 × 10
−1𝑡2𝑖 + 6.073 × 10

−3𝑡2𝑖
2 − 4.643 × 10−5𝑡2𝑖

3 + 5.255 × 10−4(𝑡2𝑖 − 70.087)+
3  

−1.912 × 10−3(𝑡2𝑖 − 81.240)+
3 + 5.205 × 10−3(𝑡2𝑖 − 89.103)+

3  

𝑓(2)(𝑡2𝑖) =

{
 
 

 
 −0.219𝑡2𝑖 + 0.006𝑡2𝑖

2 − 0.000052𝑡2𝑖
3 .

7.525𝑡2𝑖 − 0.1044𝑡2𝑖
2 + 0.00048𝑡2𝑖

3 − 180.919.  

−30.332𝑡2𝑖 + 0.362𝑡2𝑖
2 − 0.0114𝑡2𝑖

3 + 844.255.

93.641𝑡2𝑖 − 1.029𝑡2𝑖
2 − 0.0062𝑡2𝑖

3 − 2837.863.

            0 < 𝑡2𝑖 ≤ 70.087
70.087 < 𝑡2𝑖 ≤ 81.240
81.240 <  𝑡2𝑖 ≤ 89.103
                      𝑡2𝑖 > 89.103

 

Based on the segmentation results of the percentage of proper sanitation variable, the effect of 𝑡2𝑖 on the percentage 

of proper sanitation shows a varied pattern in each segment. In Segment I, a one-unit increase in 𝑡2𝑖 causes a decrease in 

𝑦(2), which means that the higher the percentage of proper sanitation, the lower the prevalence of wasting. Entering 

Segment II, an increase in 𝑡2𝑖 causes an increase in 𝑦(2), which means that the higher the percentage of proper sanitation, 

the higher the prevalence of wasting. In Segment III, an increase in 𝑡2𝑖 causes a decrease in 𝑦(2), which means that the 

higher the percentage of proper sanitation, the lower the prevalence of wasting. However, in Segment IV, a one-unit 

increase in 𝑡2𝑖 causes an increase in 𝑦(2), which means that the higher the percentage of proper sanitation, the higher the 

prevalence of wasting.  

𝑓(2)(𝑡3𝑖) = 4.091𝑡3𝑖 − 6.091 × 10
−1𝑡3𝑖

2 + 2.867 × 10−2𝑡3𝑖
3 − 1.585 × 10−2(𝑡3𝑖 − 6.816)+

3  

−2.349 × 10−2(𝑡3𝑖 − 9.415)+
3 + 1.653 × 10−2(𝑡3𝑖 − 13.350)+

3  

𝑓(2)(𝑡3𝑖) =

{
 
 

 
 4.091𝑡3𝑖 − 0.609𝑡3𝑖

2 + 0.0087𝑡3𝑖
3 .

1.882𝑡3𝑖 − 0.285𝑡3𝑖
2 − 0.0071𝑡3𝑖

3 + 5.109.  

1.257𝑡3𝑖 − 0.218𝑡3𝑖
2 − 0.0095𝑡3𝑖

3 + 6.979.

10.095𝑡3𝑖 − 0.880𝑡3𝑖
2 + 0.0070𝑡3𝑖

3 − 32.350.

            0 < 𝑡3𝑖 ≤ 6.816
  6.816 < 𝑡3𝑖 ≤ 9.415
   9.415 <  𝑡3𝑖 ≤ 13.350
                      𝑡3𝑖 > 13.350

 

Based on the segmentation results of the percentage of poor people variable, the effect of 𝑡3𝑖 on the percentage 

of poor people shows a varied pattern in each segment. In Segment I, a one-unit increase in 𝑡3𝑖 causes an increase in 𝑦(2), 

which means that the higher the percentage of poor people, the higher the prevalence of wasting. Entering Segment II, 

an increase in 𝑡3𝑖  causes an increase in 𝑦(2), which means that the higher the percentage of poor people, the higher the 

prevalence of wasting. In Segment III, an increase in 𝑡3𝑖  causes an increase in 𝑦(2), which means that the higher the 

percentage of poor people, the higher the prevalence of wasting. However, in Segment IV, a one-unit increase in 𝑡3𝑖  causes 

an increase in 𝑦(2), which means that the higher the percentage of poor people, the higher the prevalence of wasting.  

𝑓(2)(𝑡4𝑖) = 3.147 × 10
−1𝑡4𝑖 − 7.297 × 10

−3𝑡4𝑖
2 + 5.469 × 10−5𝑡4𝑖

3 − 5.131 × 10−5(𝑡4𝑖 − 39.280)+
3  

+8.787 × 10−5(𝑡4𝑖 − 57.800)+
3 + 4.101 × 10−4(𝑡4𝑖 − 72.220)+

3  

𝑓(2)(𝑡4𝑖) =

{
 
 

 
 0.315𝑡4𝑖 + 0.0073𝑡4𝑖

2 − 0.00005𝑡4𝑖
3 .

0.0772𝑡4𝑖 − 0.001𝑡4𝑖
2 + 0.000003𝑡4𝑖

3 − 3.109.  

0.958𝑡4𝑖 − 0.016𝑡4𝑖
2 − 0.00009𝑡4𝑖

3 − 20.077.

0.958𝑡4𝑖 − 0.016𝑡4𝑖
2 − 0.00009𝑡4𝑖

3 − 20.077.

            0 < 𝑡4𝑖 ≤ 39.280
39.280 < 𝑡4𝑖 ≤ 57.800
57.800 <  𝑡4𝑖 ≤ 72.220
                      𝑡4𝑖 > 72.220

 

Based on the segmentation results of the percentage of ASI-E variable, the effect of 𝑡4𝑖 on the percentage of ASI-E 

shows a varied pattern in each segment. In Segment I, a one-unit increase in 𝑡4𝑖  causes an increase in 𝑦(2), which means 

that the higher the percentage of ASI-E, the higher the prevalence of wasting. Entering Segment II, an increase in 

𝑡4𝑖  causes an increase in 𝑦(2), which means that the higher the percentage of breastfeeding-E, the higher the prevalence 

of wasting. In Segment III, an increase in 𝑡4𝑖  causes an increase in 𝑦(2), which means that the higher the percentage of 

breastfeeding-E, the higher the prevalence of wasting. However, in Segment IV, a one-unit increase in 𝑡4𝑖 causes a 

decrease in 𝑦(2), which means that the higher the percentage of breastfeeding-E, the lower the prevalence of wasting. 

Response function estimation results 2 as followed: 
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E.  Model Selection and Accuracy 

The best model between Kernel Nadaraya-Watson and Penalized Spline is selected based on the minimum Mean 

Squared Error (MSE). The Kernel Nadaraya-Watson model shows a significantly lower MSE (0.024) compared to the 

Penalized Spline model (19.917), indicating that it provides better predictions. Based on the evaluation in section 5.6, the 

Kernel model is chosen as the optimal model for regression estimation, as it effectively captures data patterns with 

minimal error. 

The accuracy of the model is further validated using R-Squared and Root Mean Squared Error (RMSE). The Kernel 

Nadaraya-Watson model demonstrated superior performance with high R-Squared values (0.9992 for response 1 and 

0.9995 for response 2) and lower RMSE, indicating excellent predictive capability. These results confirm that the Kernel 

model is highly effective in explaining data variance and making accurate predictions, making it the preferred model for 

further analysis and decision-making. 

V. CONCLUSIONS AND SUGGESTIONS 
This study highlights the importance of nonparametric regression techniques, specifically Nadaraya-Watson Kernel 

and Penalized Spline regression, in modeling the relationship between two correlated response variables: Stunting and 

Wasting. These models offer flexibility and adaptability in capturing complex patterns in data, particularly in health 

studies where such relationships are prevalent. The analysis indicates that these models, especially the Kernel method, 

provide more accurate predictions and better explain the variance in the data, with the Gaussian kernel showing the best 

performance. The findings emphasize the significance of addressing the factors influencing children's nutritional status, 

such as birth weight, sanitation, and breastfeeding, which are crucial for formulating effective interventions to reduce 

malnutrition in Indonesia. Future studies could explore further refinements in these models and extend their applications 

to other health and social determinants. 
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