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ABSTRACT ⎯ Tourism planning, infrastructure growth, and economic stability. This study presents an extensive comparative 

evaluation of Random Forest (RF), Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM), and a novel Hybrid 

RF-XGBoost model in the prediction of monthly international tourist arrivals. A full time series dataset of a ten-year period (2014–

2024) from the Central Bureau of Statistics of Bali was used for training and testing the models. Hyperparameter optimization using 

Grid Search with cross-validation (Grid Search CV) was used for all the machine learning models to obtain best predictive 

performance. Two robust metrics, Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE), were used to 

assess forecasting accuracy. Results show that the Random Forest model outperforms all competitors with lowest RMSE (41,772.68) 

and MAPE (6.30%), indicating high forecasting precision and robustness, especially during structural breaks such as the COVID-19 

pandemic. The hybrid model also performs well, with LSTM indicating higher error rates, illustrating its shortcomings on small-to-

medium-scale tourism time series. Besides, the study provides six-month ahead predictions (January–June 2025) with 95% prediction 

intervals, showing an ongoing trend of recovery. The findings affirm the superiority of bagging-based ensemble methods over 

polynomial-based methods in capturing nonlinearity, seasonality, and exogenous shocks in tourist demand. The study plugs the 

growing amount of data-driven tourism analytics by offering a reproducible, high-precision forecasting model for developing 

countries and seasonally driven destinations. 
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I. INTRODUCTION 

Tourism is a significant contributor to Bali's economy, with international tourist arrivals influencing various economic 

sectors. Reliable forecasting of tourist arrivals enables strategic planning and enhances the effectiveness of policy 

formulation. Traditional time series forecasting methods, such as ARIMA or Holt-Winters, often struggle with capturing 

nonlinear patterns in complex datasets. In contrast, machine learning models such as Random Forest (RF) and Extreme 

Gradient Boosting (XGBoost) have shown superior performance in modeling complex relationships in time series data 

[1]. 

Recent studies over the past five years have increasingly applied machine learning algorithms for tourism forecasting 

with notable success. For example, [2] have been employed to predict tourism demand by incorporating various 

predictors such as international COVID-19 cases, tourist arrivals, and quarantine policies. These models outperform 

traditional models like ARIMA and neural networks in accuracy. In Italy, RF and Gradient Boosting models have been 

used to predict international tourists' Length of Stay (LoS. These models excel in identifying complex data patterns and 

provide actionable insights for tourism policymakers, enhancing strategic planning and optimizing services [3]. For 

tourist emotions analysis, XGBoost has been utilized to analyze tourists' emotional changes in natural forest landscapes 

across different seasons. This model, combined with SHapley Additive exPlanations (SHAP), helps in understanding the 

nonlinear impact of landscape indicators on tourist emotions, aiding in sustainable tourism development [4].  

While there have been significant improvements in using machine learning for tourism demand prediction, empirical 

studies on Indonesia, Bali, a globally significant island tourism destination, have been limited and not methodologically 

sound. Most prior studies employ individual models such as RF or XGBoost, omit hyperparameter tuning, or work with 

data from non-Indonesian contexts with different tourism features. This study bridges these critical gaps by conducting 

a comprehensive, grid search-optimized comparison of four advanced models: Random Forest, XGBoost, LSTM, and a 

novel Hybrid RF-XGBoost model, using a high-quality, decade-long time series of monthly international tourist arrivals 

to Bali. All models are subjected to systematic hyperparameter tuning via GridSearchCV with cross-validation to ensure 

reproducibility, fairness, and maximum predictive performance. 

The initial aim of this research is to establish the most accurate and dependable machine learning model of forecasting 

tourist arrivals in Bali under optimal available conditions. By measuring model performance on training and test data 

with RMSE and MAPE, this study not only contrasts algorithmic performance but also examines the capability for 

generalization under the presence of structural breaks—such as the COVID-19 pandemic. The study provides a 

replicable, data-driven forecasting model to suit seasonally volatile and shock-prone tourism economies that can provide 

added practical application for regional policy makers and add to the body of work on machine learning applications in 

emerging tourism markets. 
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II. LITERATURE REVIEW 
A. Random Forest 

Random Forest in machine learning is categorized as an ensemble method. This algorithm consists of a collection of 

regression trees built from a number of input variables and data sampled randomly from the original dataset [5]. Random 

Forest is well-regarded for its ability to process complex, non-linear data effectively. It constructs multiple decision trees 

and aggregates their predictions, which enhances its capability to manage diverse datasets, including those with high 

dimensionality and missing values  [6]. 

The general principle of Random Forest is to combine a collection of randomly generated decision trees. Random Forest 

reduces variance by averaging the results of multiple trees, which decreases the model's sensitivity to the specific data 

on which it was trained. This averaging process also helps in reducing bias, leading to more accurate and stable 

predictions [7]. In addition, Random Forest is particularly effective in handling large datasets. It can manage high-

dimensional data and datasets with missing values without requiring extensive preprocessing, making it well-suited for 

applications in fields such as bioinformatics, finance, and crime prediction [8]. 

The prediction calculation in Random Forest for the regression case is obtained by averaging the predictions from each 

regression tree, as expressed in Equation 1. 

ℎ ̂(𝑥) =
1

𝑞
∑ ℎ ̂(𝑥, Θℓ)

𝑞

ℓ=1

 

where 𝑞 is the number of regression trees generated, and ℎ ̂(𝑥, Θℓ) represents the prediction from the ℓ regression tree. 
 

B. Extreme Gradient Boosting (XGBoost)  

XGBoost is a powerful machine learning algorithm widely used for both regression and classification tasks, including 

time series forecasting. However, to apply XGBoost effectively to time series data, it is essential to first transform the 

sequential data into a supervised learning format. This transformation begins with feature extraction, where relevant 

statistical features such as moving averages, seasonal components, and trend indicators are computed to reflect the 

distribution and temporal structure of the data. These features provide meaningful inputs that help the model understand 

time-dependent patterns [9]. 

The predictive model in this study uses the XGBoost algorithm. XGBoost is well-regarded for its robustness and 

generalization capabilities. It handles noisy and incomplete data efficiently, making it highly suitable for real-world 

forecasting scenarios such as power quality disturbance detection and GNSS time series modeling. Altogether, these 

capabilities make XGBoost a highly versatile and effective tool for time series forecasting [9]. For a dataset consisting of 

n observations and m variables, the ensemble tree model can be expressed as follows: 

𝑦𝑙̂ = 𝜙(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ ℱ

𝑘

𝑘=1 

 

In Equation (2), 𝑦𝑙̂ represents the predicted value, and 𝑓𝑘 denotes the kkk-th regression tree in the set of regression trees 

ℱ. Next, the objective function is calculated. 

 

ℒ(𝜙) = ∑ 𝑙(𝑦̂𝑙 , 𝑦𝑖) +

𝑖

 ∑ Ω𝑓𝑘

𝑘

 

𝑙 represents the loss function, which indicates the difference between the predicted value and the actual value. 𝛺𝑓𝑘 

denotes the regularization term that reflects the model complexity. At each step of the XGBoost training process, the 

objective function is minimized by generating a new regression tree model based on the previously existing models. The 

optimal objective function, which displays the predicted values at each leaf node, is presented in the following equation: 

 

ℒ𝑠𝑝𝑙𝑖𝑡 =
1

2
[

(∑ 𝑔𝑖𝑖𝜖𝐼𝑗
)

2
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)
2
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+ 
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)
2

∑ ℎ𝑖 + 𝜆𝑖𝜖𝐼
] − 𝛾 

 
C. Model Goodness Measures 

 The accuracy level of a forecasting model can be assessed by comparing the projected values with the actual data. The 

accuracy of a forecasting model is determined by the smallest error value from each accuracy measurement method—

the smaller the value, the more accurate the model is in making predictions. The Root Mean Square Error (RMSE) is used 

to evaluate the developed model [10], while the Mean Absolute Percentage Error (MAPE) is used to evaluate the forecast 

results. RMSE and MAPE provide insights into model performance: RMSE gives an overall picture of the prediction error 

magnitude and is more sensitive to outliers. It is calculated using the following formula [11]. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

  

(1) 

(2) 

(3) 

(4) 

(5) 
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MAPE is the percentage that reflects the forecasting results relative to the actual data over a specific period, 

calculated by taking the absolute error in each period divided by the actual value, then averaging it over the total number 

of periods [12]. 

MAPE =
1

𝑛
∑ |

𝑦𝑖 − 𝐹𝑖

𝑦𝑖
| × 100%

𝑛

𝑖=1
 

Explanation: 

𝑦𝑖 = actual time series value  

𝐹𝑖 = forecasted value  

𝑛 = number of time series data points 

The interpretation of MAPE calculation results [28] is as follows: 1). < 10 % : highly accurate forecasting, 2). 10% - 20% : 

good forecasting, 3). 20% - 50% : reasonable forecasting, dan 4). >50%: weak and inaccurate predictability 

 

III. METHODOLOGY 
A. Data Sources and Research Variables 

The data used in this study is secondary data obtained from the official publications of the Bali Provincial Statistics 

Agency (Badan Pusat Statistik Provinsi Bali, 2025). The dataset contains information on the number of international 

tourists visits to Bali Province, recorded on a monthly basis over the period from 2014 to 2024. Structurally, the data 

consists of three variables: month, year, and number of tourists. The month and year variables represent the time 

dimension indicating the visit period, while the number of tourists variable indicates the total number of international 

tourist arrivals in Bali each month. 

All data is presented on a ratio scale, with the exception of the time variables—month, which is ordinal, and year, 

which is interval. The data is time series in nature, making it highly relevant for analysis aimed at identifying trend 

patterns, seasonal fluctuations, and the impact of special events on the dynamics of tourism in Bali. The data source 

originates from the official website of BPS Bali Province, which consistently provides valid and methodologically 

accountable sectoral statistical data. Therefore, this dataset is considered highly reliable to support the analytical needs 

of this study. 

 
B. Data Analysis Stages 

The data analysis phase in this study took place through a thorough, multi-step process that included effective 

methods in machine learning time series forecasting. Each step was planned carefully to ensure strong analysis, 

reproducibility, and validity of the findings. The stages are outlined in detail below [14]: 

1. Data Collection 

This study began with the collection of monthly tourist arrival data to Bali for the period 2014 to 2024. The data was 

obtained from the official publications of the Bali Provincial Statistics Agency (BPS) and served as the main dataset 

for the modeling process. 

2. Determining Characteristics and Descriptive Statistics 

Before modeling, the data was analyzed descriptively to identify general characteristics such as minimum, 

maximum, average, and standard deviation. This analysis also aimed to evaluate the data distribution and detect 

seasonal patterns and trends within the time series data. 

3. Data Splitting (Train-Test Split) 

The dataset was divided into two parts: 80% for the training set and 20% for the testing set. The purpose of this split 

is to train the model using historical data and to test the model’s performance on unseen data. 

4. Hyperparameter Tuning 

In this stage, optimal parameter tuning (hyperparameter tuning) was carried out for the three main models: 

a. Random Forest, a bagging ensemble method 

b. XGBoost, a boosting-based gradient tree algorithm 

c. LSTM 

The tuning was performed on the training set using the GridSearchCV technique to obtain the best parameter 

combination for each model. The goal of this process is to improve model accuracy and generalizability. 

5. Hybrid Model Development 

After each individual model was successfully tuned, a hybrid model was built. This hybrid model was created by 

combining the predictions of Random Forest and XGBoost using a simple averaging approach. The aim is to leverage 

the strengths of each model and enhance the stability of the prediction results. 

6. Forecasting on Training Data 

Each model (Random Forest, XGBoost, LSTM, and Hybrid RF + XGB) was used to forecast the training data. This 

step was conducted to evaluate the initial performance of the models and to assess how well each model fits the 

historical data patterns. 

7. Model Performance Evaluation 

The predictions from each model were evaluated using the following performance metrics: 

a. Root Mean Squared Error (RMSE) 

(6) 
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b. Mean Absolute Percentage Error (MAPE) 

This evaluation assesses the level of error and accuracy of each model in forecasting the training data. 

8. Selection of the Best Model 

The model with the smallest error values (RMSE and MAPE) was selected as the best model. This model was then 

used to make predictions on the testing data, as it was considered to have the most accurate predictive capability. 

9. Prediction Using Testing Data 

The best model was applied to the testing data (20%) to predict the number of tourist arrivals not used during model 

training. This aims to evaluate the model’s performance on new, unseen data. 

10. Final Results 

The prediction results on the testing data serve as the main indicator to assess the model’s generalization capability. 

The accuracy at this stage forms the basis for concluding the model’s effectiveness in forecasting future tourist 

arrivals. 

The entire analytical procedure described above can be visually represented through the following flowchart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

Figure 1. Flowchart of the Research Process 
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IV. RESULTS AND DISCUSSIONS 
A. Descriptive Statistics  

Descriptive statistics serve to provide a comprehensive overview of the dataset. In this study, descriptive analysis 

was performed through the construction of time series plots to identify and illustrate underlying trends in the data. 

Figure 2 illustrates the monthly arrivals of international tourists to Bali, covering the period from January 2014 to 

December 2024. The graph exhibits a repeating seasonal oscillation, characterized by predictable peaks aligned with 

global holiday calendars. A steep, extended drop is evident from early 2020 to mid-2021, clearly indicating the severity 

of the COVID-19 pandemic on international travel. Yet, a consistent upward trajectory begins in late 2021, with arrivals 

progressively climbing and projected to approach the levels seen before the pandemic by late 2024. Such observations 

underscore the importance of employing advanced machine learning techniques that can accommodate both nonlinear 

growth patterns and sudden structural breaks. 

 
Figure 2 Monthly international tourist arrivals to Bali from 2014 to 2024 

 Table 1 presents the results of descriptive analysis on the number of international tourist visits to Bali during the 

period from January 2014 to December 2024. The average number of visits was 345,240 people per month. The maximum 

value recorded was 625,665 people, while the minimum was only 1 person, indicating the presence of extreme disruptions 

in tourist arrivals—particularly during the COVID-19 pandemic, which led to the closure of entry access for international 

travelers. The standard deviation of 193,321 reflects a high level of dispersion in the data, indicating that tourist arrivals 

fluctuated significantly from month to month. Meanwhile, the median (50th percentile) was 379,021, with the first quartile 

(25%) and third quartile (75%) at 278,607 and 487,295, respectively. This suggests that the data distribution is relatively 

wide, with the majority of values falling within that range.  

 These findings indicate that the dynamics of tourist visits are non-linear and are heavily influenced by seasonal 

patterns as well as external factors such as global health crises. Therefore, this study recommends the use of advanced 

analytical approaches capable of capturing these characteristics more comprehensively, such as nonlinear time series 

models or machine learning algorithms that can accommodate both seasonal patterns and unexpected structural events. 
Table 1 Descriptive Analytics 

Descriptive Analysis  Monthly Tourist Arrivals to Bali 

Mean 345240 

Std 193321 

Min 1 

25% 278607 

50% 379021 

75% 487295 

Max 625665 

 
B. Model Performance Comparison 

In this study, four machine learning algorithms were employed as predictive models for time series data, namely 

Random Forest, Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM), and a Hybrid Random Forest–

XGBoost model. Prior to the modeling stage, the dataset was divided into two parts: 80% for training and 20% for testing. 

This proportion was chosen to ensure that the models could learn sufficient information from historical data to build 

representative predictive patterns while still providing adequate test data for performance evaluation. The training 

process began with two primary models, Random Forest and XGBoost, selected for their ability to capture non-linear 

patterns and their effectiveness in various time series prediction tasks. To achieve optimal configurations, 

hyperparameter tuning was conducted using the GridSearchCV method, which systematically searches for the best 

parameter combinations through a cross-validation scheme. The hyperparameter configurations for each model are 

presented in Table 2. 
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Table 2. Parameter Random Forest dan XGBoost 

Model Parameter  Value 

Random Forest n-estimators 100, 200 

max_depth 5, 10, None 

min_samples_split 2, 5 

XGBoost n-estimators 100, 200 

learning_rate 0.05, 0.1, 0.2 

max_depth 3, 5, 7 

LSTM Learning rate 0.003, 0.004, 0.001 

 Batch size 8, 16, 32, 64 

 

In the Random Forest algorithm, tuning was performed on three main parameters. The first is n_estimators, which 

refers to the number of trees in the ensemble, with values set at 100 and 200. The second is max_depth, representing the 

maximum depth of each tree, set at 5, 10, and None to control the model's ability to learn complex patterns. The third 

parameter is min_samples_split, the minimum number of samples required to split an internal node, varied at 2 and 5, 

which helps regulate the granularity of node splits to maintain efficiency and avoid excessively deep trees. 

Meanwhile, in the XGBoost model, tuning was also carried out on several key parameters. The n_estimators 

parameter was set at 100 and 200, indicating the number of boosting rounds. The learning_rate parameter, tested at values 

of 0.05, 0.1, and 0.2, was used to control the convergence speed of the model toward the global minimum and to avoid 

error spikes from overly aggressive learning. Lastly, max_depth was set at 3, 5, and 7 to adjust the complexity of each 

tree, aiming to strike a balance between model bias and variance. 

For the LSTM (Long Short-Term Memory) model, hyperparameter tuning was conducted on two primary 

parameters. The first is the learning rate, tested at values of 0.003, 0.004, and 0.001. This parameter determines the step 

size used by the optimizer when updating network weights during training. A smaller learning rate allows for more 

stable convergence but requires more epochs, whereas a larger value accelerates learning but risks overshooting the 

optimal point. The second parameter is the batch size, varied at 8, 16, 32, and 64, which defines the number of samples 

processed before the model updates its internal parameters. Smaller batch sizes typically provide more frequent updates 

and can help capture fine-grained temporal dynamics in time series data, while larger batches improve computational 

efficiency and gradient stability. These hyperparameters were optimized to achieve a balance between model accuracy, 

training stability, and computational cost. 

 
Table 3 Best Parameters from Grid Search 

Model Parameter  Value 

Random Forest n-estimators 100 

max_depth 10 

min_samples_split 5 

XGBoost n-estimators 100 

learning_rate 0.1 

max_depth 3 

LSTM Learning rate 0.001 

 Batch size 16 

 

Table 3 presents the results of hyperparameter tuning using the GridSearchCV technique for the Random Forest and 

XGBoost models. For Random Forest, the best-performing parameters were found to be n_estimators = 100, max_depth 

= 10, and min_samples_split = 5. Meanwhile, for XGBoost, the optimal configuration was n_estimators = 100, 

learning_rate = 0.1, and max_depth = 3. These parameter combinations were selected because they provided the best 

predictive performance on the training data and were subsequently used to build the final models. 

Once the optimal configurations of both primary models were obtained, the process continued with the development 

of the LSTM model, a deep learning algorithm specifically designed to recognize sequential patterns and long-term 

dependencies in time series data. The fourth model developed was the Hybrid Random Forest–XGBoost, which combines 

the strengths of both ensemble models with the goal of improving predictive accuracy and reducing the weaknesses of 

individual models. 

For the LSTM model, which was optimized separately through grid search due to its deep learning architecture, the 

best parameters were determined to be a learning rate of 0.001 and a batch size of 16. This configuration achieved the 

most stable convergence and lowest validation loss among all tested combinations. The selected learning rate allowed 

the optimizer to update the model weights gradually, avoiding oscillations in loss values, while the batch size of 16 

provided a balanced trade-off between computational efficiency and gradient stability. These optimal hyperparameters 
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were then applied in the final LSTM model to capture temporal dependencies and nonlinear relationships in the 

sequential data effectively. 

 
Figure 3. Actual vs. Forecasted Tourist Arrivals Using Multiple Models (Train + Test Period) 

 Figure 3 compares actual international tourist arrivals to Bali with predictions from four models: Random Forest (RF), 

XGBoost (XGB), LSTM, and the Hybrid XGB+RF. This covers the full time period from 2014 to 2024, including both 

training and testing sets. This timeline allows us to assess each model’s reliability through changing data dynamics: the 

steady pre-pandemic period, the sharp decline during the pandemic, and the subsequent recovery. 

 

1. Pre-COVID-19 Stability (2014-2019) 

 During the pre-pandemic period, all models perform well. Random Forest, XGBoost, and the Hybrid version 

track actual arrivals nearly interchangeably. They effectively follow the overlapping seasonal peaks and long-term 

growth, showing their strength in handling non-linear, cyclical time series. Random Forest and the Hybrid model 

slightly outperform XGBoost by providing tighter predictions at each peak, especially during the busiest months. 

LSTM, while consistent, shows a slight lag. This model's design, which focuses on learning from longer 

dependencies, has difficulty quickly adjusting to the tighter seasonal variations. 

2. Structural Break and Crisis Phase (2020–2021)   

 In early 2020, the COVID-19 pandemic brought an unprecedented shock that almost stopped international 

arrivals to Bali. All models capture this change because of the sharp drop in historical values. However, XGBoost 

performs poorly during this phase and fails to adjust its predictions effectively. This issue arises from XGBoost’s use 

of residual-based additive modeling, which does not handle sudden, one-time structural changes well. In contrast, 

Random Forest and the Hybrid XGB+RF models show better adaptability and closely follow the actual data. Their 

ensemble bagging structure likely makes them stronger against outliers and sudden shifts, allowing them to be more 

resilient during crises. The LSTM model struggles during this time, overestimating tourist numbers because its 

memory-based prediction method may overfit trends from before the crisis [2], [15]. 

3. Post-Pandemic Recovery (2022–2024) 

 As tourism picked up after COVID, thanks to relaxed travel rules and recovery policies, the differences between 

the models became clearer. Random Forest and the Hybrid model consistently track the strong upward trend and 

cyclical recovery accurately. The Hybrid model shows a slightly better ability to follow sharp reversals. This 

improvement likely comes from its combination of error correction and variance reduction. LSTM again struggles to 

capture the speed of recovery, producing forecasts that are delayed and muted. This issue highlights a major 

drawback of deep learning methods in small to medium-sized time series data. They need long training sequences 

and a lot of variability in training signals to adjust well to new data patterns [16]. 

 
C. Quantitative Evaluation of Forecasting Performance 

To complement the visual inspection of model performance, Table 4 presents a numerical comparison based on two 

widely accepted evaluation metrics: Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). 

These metrics serve as important indicators of prediction accuracy and generalization ability across. 
 

Table 4. Comparative Forecasting Performance of Machine Learning Models. 

 MODEL RMSE MAPE 

Random Forest 41772.68 6.30 

XGBoost 43605.77 6.51 

LSTM 66859.49 12.81 

Hybrid XGB+RF 42202.32 6.41 



 
 258 
 

 

Department of Statistics, Institut Teknologi Sepuluh Nopember  

                   INFERENSI, Vol. 8(3), November. 2025. ISSN: 0216-308X (Print) 2721-3862 (Online) 
 

DOI: 10.12962%2Fj27213862.v8i3.23334 

 

 
 

1. Random Forest: The Best Performing Model 

Among all the models tested, Random Forest (RF) achieved the lowest RMSE of 41,772.68 and MAPE of 6.30%. 

This shows it has better predictive accuracy and consistency across the dataset. RF uses bagging to handle high 

variance and prevent overfitting. This is important for datasets that contain noise, non-linearity, and seasonal 

patterns, which are common in tourism time series. Its ability to divide the feature space and average multiple 

decorrelated decision trees adds to its stability and precision. This performance matches previous research that 

Random Forest stands out as a highly effective predictive model across various fields, including healthcare, 

education, business, and safety. Its high accuracy, ability to handle complex data, and flexibility make it a preferred 

choice for many predictive tasks. However, considerations around computational resources and model complexity 

should be taken into account to optimize its use [17], [18], [19], [20]. 

2. XGBoost: Competitive but Less Stable 

 Extreme Gradient Boosting (XGBoost) showed a slightly higher RMSE of 43,605.77 and MAPE of 6.51% 

compared to RF. While the difference seems small, it indicates that XGBoost’s boosting setup can make it sensitive 

to data changes, especially during structural shocks like the COVID-19 pandemic. Unlike RF, XGBoost builds trees 

one after another, which makes it more likely to pass on errors if the residuals are not consistent. Still, its performance 

is highly competitive algorithm with exceptional predictive capabilities across various domains. However, its 

stability can be less reliable due to issues like overfitting and the need for extensive hyperparameter tuning. 

Practitioners should consider these factors and possibly employ hybrid models or additional regularization 

techniques to mitigate stability concerns[21], [22].  

3. LSTM: Poor Generalization Despite High Model Complexity 

 Long Short-Term Memory (LSTM), a deep learning model designed for sequential data, had the highest RMSE 

of 66,859.49 and MAPE of 12.81%. This shows it did not fit the dataset well. This result highlights a common issue 

with deep learning in low-to-medium scale time series forecasting. Without enough training data, extensive tuning, 

and a clear signal, while LSTMs are powerful tools for predictive tasks, their high model complexity often leads to 

poor generalization. Addressing these challenges requires a combination of regularization techniques, optimized 

architectures, hybrid models, and advanced optimization methods [23], [24], [25], [26] 

4. Hybrid XGB + RF: Trade-Off Between Accuracy and Complexity  

 The hybrid model that combines XGBoost and Random Forest (XGB+RF) produced an RMSE of 42,202.32 and 

MAPE of 6.41%. This is slightly below RF but better than both XGBoost and LSTM. This model takes advantage of 

XGBoost’s strength in capturing residual patterns while using RF’s capability to handle non-linearities and variance. 

The hybrid XGB + RF model offers significant improvements in prediction accuracy and robustness across diverse 

applications. However, these benefits come with increased complexity, including longer training times, higher 

computational costs, and the need for extensive hyperparameter tuning. Balancing these trade-offs is crucial for 

effectively leveraging hybrid models in practical scenarios [27].  

Based on the evaluation results using the Root Mean Square Error (RMSE) and Mean Absolute Percentage Error 

(MAPE) metrics, the Random Forest model demonstrated the most optimal predictive performance compared to the 

other models. Considering the accuracy and stability of the predictions produced, this model was subsequently selected 

as the basis for forecasting the number of tourist visits to Bali for the next six periods.

 
Figure. 4 Random Forest Forecast (training, testing and 6 future periods) 

     Figure. 4 Performance of the Random Forest in predicting a time series data set in three different ranges (training, 

testing and future prediction (×6 periods ahead). The black solid line is the true data, while the Random Forest predictions 

for both training and test are in green dashed line. The six periods ahead of future forecast is shown in blue, the 

corresponding 95% confidence interval is shown in the shaded light blue. During training and testing, Random Forest 

shows a good fit with the actual data, reflecting good in-sample fitting and out-of-sample accuracy. A high fit between 

the true (black) and predicted (green dashed) lines demonstrates the ability of the model to incorporate the underlying 

non-linear trends, seasonality, and chamges in structure of the data. The generalization is evidenced by the small variance 
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and spread of the prediction error during testing. The time series exhibits a number of structural breaks: Steep decline 

between 2020 and early 2021, probably due to exogenous factors such as the COVID-19 pandemic. This disturbance is 

reflected in the actual and forecast lines, demonstrating the model’s responsiveness to abrupt structural changes. The fast 

post-pandemic recovery implied by the rapid increase in 2022 is also consistent with the model. The six-step forecasts, 

shown in blue, predict a gradual rise in the observed variable. The point estimates range from about 450,000 to 510,000. 

The fan-shaped confidence interval shows growing uncertainty over time, a typical aspect of time series forecasting. 

However, the relatively narrow band indicates stable model variance and confidence in its short-term predictive ability. 

The train-test split is marked by the red vertical dotted line. This line separates the model training phase, which is pre-

2024, from the evaluation phase. The future forecasting window begins in late 2024 and continues into early 2025. It is 

marked by a purple vertical dotted line and a light gray background. These markers create a clear visual structure to 

assess time periods and ensure reproducibility in future studies. 

Table 5. Random Forest Forecast Results and 95% Confidence Intervals for Six Future Periods 

Period Random Forest 

Forecast 

Lower 95% CI Upper 95% CI 

2025-01-01  486870.6875 413385.5 560355.875 

2025-02-01  426060.125 352574.9375 499545.3125 

2025-03-01  434418.8438 360933.6563 507904.0313 

2025-04-01  454332.0625 380846.875 527817.25 

2025-05-01  495273.375 421788.1875 568758.5625 

2025-06-01  532949.5 459464.3125 606434.6875 

     The six-step forecast generated by the Random Forest model shows a gradual upward trend in the observed variable 

from January to June 2025. It starts at about 486,871 in January. The values drop slightly in February before steadily 

increasing to a peak of 532,950 in June. This pattern suggests a potential short-term fluctuation, likely caused by seasonal 

effects or structural changes, followed by a strong recovery path. Each forecast point comes with a 95% confidence 

interval, showing the model’s estimate of uncertainty for each prediction. The confidence bands widen slightly over time, 

creating a fan-shaped structure often seen in time series forecasting. Even with this widening, the intervals stay relatively 

narrow, averaging ±73,000. This shows that the model keeps stable variance and strong predictive reliability in the short 

term. The steady increase from March through June shows that the model understands the timing factors involved, 

including nonlinear growth patterns and possible hidden seasonal effects. The strength of the Random Forest algorithm 

in this situation is clear, as it can identify these trends and create precise forecast intervals. This improves our confidence 

in the accuracy of short-term forecasts. In general, these results confirm that the model can deliver dependable, data-

driven predictions, even with structural changes. These insights are vital for planning and decision-making, especially 

in areas where timely and accurate forecasts are important. 

V. CONCLUSIONS AND SUGGESTIONS 
     This study assessed the forecasting capabilities of Random Forest, XGBoost, LSTM, and a Hybrid RF-XGBoost model 

to predict monthly tourist arrivals to Bali, using a decade-long dataset. Random Forest achieved the most accurate 

predictions, reflected in the lowest RMSE of 41,772.68 and a MAPE of 6.30%. The Hybrid RF-XGBoost model delivered 

competitive results, while LSTM lagged, reinforcing the necessity of matching model choice to the dataset’s 

characteristics. The findings highlight the robustness of ensemble methods in tourism forecasting, especially in 

destinations marked by seasonality and complex visitor patterns.  Future research should:   

1. Broaden the forecasting scope to a multivariate framework, incorporating external drivers such as flight schedules, 

currency fluctuations, and geopolitical events.   

2. Examine advanced deep hybrid architectures, for instance, CNN-LSTM or Transformer combined with Random 

Forest, to extend the accuracy of long-term predictions.   

3. Leverage explainable AI techniques to clarify model reasoning, thereby providing actionable insights that support 

evidence-based policymaking. 
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