

Perencanaan Sistem Penyangga pada Terowongan Pengelak (Studi kasus pembangunan Bendungan Beringin Sila Utan Kab. Sumbawa)

Muhammad Jayyid^{1,*}, Dedy Dharmawansyah¹, Dinda Fardila¹

Program Studi Teknik Sipil, Universitas Teknologi Sumbawa, Nusa Tenggara Barat¹ Koresponden*, Email: *dedy.dharmawansyah@uts.ac.id*

Info Artikel		Abstract
Diajukan31 Juli 2022Diperbaiki24 Februari 2023Disetujui27 Februari 2023Keywords: steel support, rock mass rating, beringin sila, safety factor.		The excavation process caused the rocks around the Beringin Sila tunnel to be disturbed so that an initial support was needed in the form of steel supports. This study uses empirical methods, namely analysis of rock mass classification with the Rock Mass Rating (RMR) system and mathematical calculations of stress and stiffness of steel supports to determine the safety factor with steel spacing 1.5m, 2m and 3m. Based on the results of rock mass classification on the inlet and outlet sides are 37 and 27 which are classified as poor rock (rock class IV). The safety factor in the combination of steel set, shotcrete, and rockbolt, obtained at the inlet side of 0.84 on the roof and 2.03 on the wall at a distance of 1.5 m, at a distance of 2 m obtained a safety factor of 0.81 on the roof. and 1.93 on the wall, and at a distance of 3 m by 0.77 on the roof and 1.84 on the wall. The above information proves that the roof and 8.56 on the walls at a distance of 1.5 m, at a distance of 2 m, the safety factor is 4.74 on the roof and 8.13 on the walls, and at a distance of 3 m content side at a distance of 3 m content side at a distance of 3 m content side at a distance of 3 m content of and 8.52 on the roof and 7.75 on the walls. So that the outlet side at a distance of 3 meters is still categorized as safe.
		Abstrak Proses galian menyebabkan batuan di sekitar terowongan Beringin Sila terganggu sehingga diperlukan penopang awal berupa penopang baja. Penelitian ini menggunakan metode empiris yaitu analisis klasifikasi massa batuan dengan <i>sistem Rock Mass Rating</i> (RMR) dan perhitungan matematis tegangan dan kekakuan penyangga baja untuk menetukan faktor keamanan dengan menentukan jarak baja 1,5m, 2m dan 3m. Berdasarkan hasil klasifikasi massa batuan pada sisi <i>inlet</i> dan <i>outlet</i> adalah 37 dan 27 yang termasuk dalam batuan kelas IV yaitu batuan buruk. Faktor keamanan pada kombinasi <i>steel set, shotcrete,</i> dan <i>rockholt,</i> diperoleh pada sisi <i>inlet</i> sebesar 0,84 pada atap dan 2,03 pada dinding pada jarak spasi 1,5 m, pada jarak spasi 2 m memperoleh faktor keamanan sebesar 0,81 pada atap dan 1,93 pada dinding, serta pada jarak 3 m sebesar 0,77 pada atap dan 1,84 pada dinding. Hal ini membuktikan bahwa pada atap terowongan masih dalam kriteria tidak aman. Pada sisi <i>outlet</i> mendapatkan faktor keamanan sebesar 5 pada atap dan 8,56 pada dinding pada jarak spasi 1,5 m, pada jarak spasi 2 m memperoleh faktor keamanan sebesar 4,74 pada
Kata kunci: st beringin sila,	<i>teel support, rock mass rating,</i> angka keamanan	atap dan 8,13 pada dinding, serta pada jarak 3 m sebesar 4,52 pada atap dan 7,75 pada dinding. Sehingga pada sisi <i>outlet</i> pada jarak 3 meter pun masih dikategorikan aman.

1. Pendahuluan

Dalam konstruksi bendungan, peranan terowongan sangat penting dalam menunjang kinerja dari salah satu bangunan air ini. Terowongan berfungsi sebagai pengalih air sungai selama pembangunan tubuh bendungan (*main dam*) serta sebagai saluran air irigasi dan PDAM. Terowongan adalah sebuah tembusan dibawah permukaan tanah atau gunung yang umumnya dibuat melalui berbagai jenis lapisan tanah dan bebatuan sehingga metode konstruksi pembuatan terowongan tergantung dari massa batuan dan kondisi geologi [1].

Terowongan yang tidak stabil biasanya disebabkan oleh adanya berbagai gangguan seperti gejala-gejala geologi, pelapukan, *swelling* batuan, tekanan dan aliran air tanah yang berlebihan, tegangan yang berada disekitar terowongan dan aktivitas seperti galian pada terowongan yang mengakibatkan adanya deformasi batuan disekitarnya. Pembuatan lubang bukaan bawah tanah akan mengakibatkan perubahan distribusi tegangan terutama pada daerah sekitar lubang bukaan. Sehingga setelah proses penggalian diperlukan sistem penyangga (*Support System*) sebagai konstruksi pendukung agar terowongan tidak mengalami keruntuhan.

Terowongan pengelak pada penelitian ini merupakan pekerjaan Paket I proyek pembangunan Bendungan Beringin Sila Kec. Utan Kabupaten Sumbawa (**Gambar 1**). Penelitian sebelumnya yang dilakukan oleh Sudrajat [2] bahwa infrastruktur ini dibangun pada batuan breksi tuf dengan pelapukan yang tinggi, sehingga batuan tergolong tidak stabil dan dikategorikan batuan jelek (*poor rock*).

Gambar 1. Lokasi Bendungan Beringin Sila [3]

Analisis kestabilan terowongan batuan menggunakan sistem *Rock Mass Rating* (RMR) sebagai klasifikasi dasar untuk mengetahui jenis batuan yang berada dilokasi bukaan, serta pengklasifikasian massa batuan untuk menentukan kelas massa batuan agar dapat memberikan rekomendasi penyanggaan yang sesuai dengan parameter-parameter pemilihan tipe penyangga batuan dan mendapatkan faktor keamanan yang sesuai standar yang direncanakan. Selain itu, pemilihan sistem penyangga dapat dilakukan seefisien mungkin, sehingga lebih ekonomis. Pada Terowongan Pengelak Bendungan Beringin Sila saat ini telah terpasang penyangga *steel support* dengan jarak 1 m.

Oleh karena itu, untuk menghindari penggunaan sistem penyangga pada *Steel Support* yang tidak efisien, maka perlu dilakukan analisis ulang sebagai alternatif untuk meninjau dan mengetahui penggunaan *Steel Support* yang efektif dengan memperbesar jarak antar penyangga *Steel Support* pada lokasi bukaan terowongan pengelak Bendungan Beringin Sila.

2. Metode

2.1. Sistem Rock Mass Rating

Rock Mass Rating (RMR) atau dikenal dengan Geomechanical Classification yang dikembangkan oleh Bieniawski 1973 – 1989 dengan adanya penambahan data masukan sehingga membuat perubahan nilai rating pada parameter sesuai dengan pengalaman Bieniawski. Metode ini digunakan sebagai parameter penting dalam perancangan terowongan untuk dijadikan sebagai dasar perkiraan jenis penyanggaan. Adapun sistem RMR ini menggunakan enam parameter, dimana setiap parameter dijumlahkan untuk mendapatkan total rating tersebut [4], yaitu:

- 1. Kuat tekan batuan utuh (*Uniaxial Compressive Strength/UCS*)
- 2. Rock Quality Designation (RQD)
- 3. Jarak antar kekar (spacing of discontinuities)
- 4. Kondisi kekar (condition of discontinuities)
- 5. Kondisi air tanah (groundwater condition)
- 6. Orientasi ketidakmenerusan (*orientation of discontinuities*)

Acuan dalam memberikan *rating* berdasarkan 6 (enam) parameter ini diperoleh dari **Tabel 1**. Langkah selanjutnya, menentukan kondisi massa batuan berdasarkan kelas batuan sesuai dengan **Tabel 2** dan rekomendasi penyangga berdasarkan **Tabel 3**.

[a]	bel	2.	Klasif	ikasi	kelas	massa	batuan	[4]	
-----	-----	----	--------	-------	-------	-------	--------	-----	--

Parameter		1	Deskripsi		
Rating	100-81	80-61	60-41	40-21	<20
Kelas massa batuan	Sangat baik (I)	Baik (II)	Sedang (III)	Buruk (IV)	Sangat Buruk (V)
<i>Stand-up time</i> rata- rata	20 tahun untuk span 15m	1 tahun untuk span 10m	l minggu untuk span 5m	10 jam untuk span 2,5m	30 menit untuk span 1m
Kohesi (MPa)	>0.4	0.3-0.4	0.2-0.3	0.1-0.2	< 0.1
Sudut geser dalam batuan	>45°	35°-45°	25°-35°	15°-25°	<15°

2.2. Kuat Massa Batuan

Analisis kuat massa batuan merupakan salah satu parameter yang digunakan untuk menentukan faktor aman pada terowongan. Kriteria empiris yang akan digunakan adalah kriteria usulan dari Agustawijaya [5], merupakan modifikasi kriteria Coulomb yang dihitung menggunakan persamaan 1, persamaan 2 dan persamaan 3. Kriteria ini didasarkan pada data hasil pengujian kompresi batuan lunak lebih dari 150 sampel.

$$\sigma_1 = \sigma_{cm} + \mu \sigma_3 \tag{1}$$

$$\sigma_{cm} = \rho . \sigma_{ci} \tag{2}$$

$$\mu = \tan^2 \alpha = \frac{1 + \sin \phi_b}{1 - \sin \phi_b} \tag{3}$$

Keterangan:

- σ_1 = Tegangan utama mayor (kN/m²)
- σ_3 = Tegangan utama minor (kN/m²)
- μ = Kemiringan linier antara σ_1 dan σ_3
- σ_{cm} = Kuat tekan massa batuan (kN/m²)
- σ_{ci} = Kuat tekan material batuan utuh (kN/m²)
- ϕ_b = Sudut gesek dasar (°)
- ρ = Rasio kuat tekan

	Parameter Klasifikasi Nilai Rating						
1.	PLI	>10	4-10	2-4	1-2	Kuat Tekan Re	ndah Perlu UCS
	Kuat Tekan (MPa) Batuan Utuh UCS (MPa)	>250	100-250	50-100	25-50	5-25 1-5	<1
	Rating	15	12	7	4	2 1	0
2.	RQD	90-100	75-90	50-75		25-50	<25
	Rating	20	17	13		8	3
3.	Jarak antar kekar Rating	>2 m 20	0,6-2 m 15	200-600 mm 10	60-200 mm 8	<60) mm 5
4.	Kondisi Kekar	Panjang kekar Rating	<1 m 6	1-3 m 4	3-10 m 2	10-20 m 1	>20 m 0
		Jarak antar kekar	Tidak ada	<0,1 mm	0,1-1,0 mm	1-5 mm	>5 mm
		Rating	6	5	4	1	0
		Kekasaran kekar	Sangat kasar	Kasar	Sedikit kasar	Halus	Licin
		Rating	6	5	3	1	0
		Material	Tidak	Ker	as	Lu	nak
		pengisi Rating	ada 6	<5 mm 4	>5 mm 2	<5 mm 2	>5 mm 0
		Pelapukan	Tidak lapuk	Sedikit lapuk	Lapuk	Sangat lapuk	Hancur
		Rating	6	5	3	1	0
5.	Kondisi Air Tanah	<i>Inflow</i> setiap 10m panjang terowongan (<i>l</i> /menit)	Tidak ada	<10	10-25	25-125	>125
		Perbandingan tekanan air pada kekar/ <i>major</i> <i>principal stress</i> (kPa)	0	<0,1	0,1-0,2	0,2-0,3	>0,5
		Kondisi umum	Kering (Comple telv drv)	Lembab (Damp)	Basah (Wet)	Menetes (Dripping)	Mengalir (Flowing)
		Rating	15	10	7	4	0
6.	Jurus dan Kemiringan Orientasi Diskontinuita	s Sang Mengunt	at Ingkan	Menguntungkan	Sedang	Tidak Menguntungkan	Sangat tidak menguntungkan
	Rating Terowong	an 0		-2	-5	-10	-12
	Pondas	i 0		-2	-7	-15	-25
	Lereng	0		-5	-25	-50	-60

 Tabel 1. Rock Mass Rating [4]

Tabel 3. Rekomendasi Jenis Penyangga [4]

Kelas	Teknik	Rock Bolt	Shotcrete	Steel Sets
KMK	Penggallan	T	4.1.1	1
1	<i>Full Jace</i> , 3 m kedalam	Umumnya j kecu	penyangga tidak (ali ada sedikit <i>bo</i>	diwajibkan Iting
п	Full face, $1 - 15$ m ke	Di tempat	50 mm pada	Tidak ada
	dalam	nada <i>crown</i>	tempat yang	
	Penyangga	senaniang 3	diharuskan	
	lengkap 20 m	m.	unital abitanti	
	dari muka	jarak 2.5 m		
		dengan wire		
		mesh.		
Ш	Top heading	Bolt	50 - 100	Tidak ada
	and bench	sistematis	mm pada	
	1.5 – 3 m ke	sepanjang 4	crown dan 30	
	dalam.	m	mm pada	
	Diperiksa	dengan	sisinya.	
	setiap selesai	Jarak 1.5		
	peledakan.	- 2 m pada		
	lengkan 10 m	dinding		
	dari muka	dengan wire		
	duri maka.	mesh pada		
		crown.		
IV	Top heading	bolt	100 - 150	Ringan s/d
	and bench	sistematis	mm pada	medium
	1.0 - 1.5 m	sepanjang 4	crown dan	dengan
	ke dalam.	-5	100 mm pada	spasi 1,5 m
	Pemasangan	m jarak 1 –	sisinya.	
	penyangga	1.5 m pada		
	bersamaan	crown dan		
	dengan	dinding		
	penggalian,	dengan wire		
	muka	erown		
v	Multinla	crown.	140 200	Madium
v	Mulliple	boll	140 – 200 mm nada	s/d bernt
	-1.5 m ke	sepaniang 4	crown 150	dengan
	dalam.	- 5	mm pada	spasi 0.75
	Pemasangan	m jarak 1 –	sisinya dan	m, forepolt
	penyangga	1.5 m pada	50 mm di	jika
	bersamaan	crown dan	muka.	diharuskan.
	dengan	dinding		
	penggalian.	dengan wire		
	Shotcrete	<i>mesh</i> pada		
	sesegera	crown.		
	mungkin			
	seteian			
	peledakan.			

2.3. Tegangan pada atap dan dinding terowongan

Persamaan 4 dan Persamaan 5 digunakan untuk menganalisis tegangan pada atap dan dinding terowongan yang diusulkan oleh Brady and Brown [6].

$$\sigma_v = \gamma h \tag{4}$$

$$\sigma_h = K \sigma_v \tag{5}$$

 $\sigma_h = K \sigma_v$ Keterangan:

 σ_{ν} = Tegangan vertikal (MPa)

- σ_h = Tegangan horisontal (MPa)
- γ = Berat isi batuan (MN/m³)

h = Kedalaman(m)

K = Koefisien tegangan lateral

2.4. Tegangan dan kekakuan maksimum pada primary supporting

Penelitian ini menggunakan sistem penyangga *rockbolt*, shotcrete dan blocked steel sets. Brady and Brown [6] dan Hoek and Brown [7] memberikan persamaan untuk menghitung tegangan maksimum pada sistem penyangga untuk terowongan.

a. Sistem penyangga rockbolt

Kekakuan sistem penyangga *rockbolt* dihitung menggunakan persamaan 6.

$$\frac{1}{k_b} = \frac{s_c s_l}{r_i} \left(\frac{4l}{\pi d_b^2 E_b} + Q \right) \tag{6}$$

Tegangan sistem penyangga *rockbolt* dihitung menggunakan persamaan 7.

$$P_{sb\,max} = \frac{T_{bf}}{s_c s_l} \tag{7}$$

Keterangan:

 d_b = diameter *rockbolt* (m),

 $l = panjang \ rockbolt \ (m),$

 E_b = modulus elastisitas *rockbolt* (MPa)

 r_i = radius internal terowongan (m)

 S_c = Jarak *rockbolt* secara sirkumferensial (m)

 S_l = Jarak *rockbolt* secara longitudinal (m)

 T_{bf} = kuat tekan *rockbolt* (MPa)

Q = deformasi beban

b. Sistem penyangga shotcrete

Kekakuan sistem penyangga *shotcrete* dihitung menggunakan persamaan 8.

$$K_c = \frac{E_c(r_i^2 - (r_i - t_c)^2)}{(1 + v_c)[(1 - 2v_c)r_i^2 + (r_i - t_c)^2]}$$
(8)

Tegangan sistem penyangga *shotcrete* dihitung menggunakan persamaan 9.

$$P_{sc\,max} = \frac{\sigma_{cc}}{2} \left[1 - \frac{(r_i - t_c)^2}{r_i^2} \right] \tag{9}$$

Keterangan:

 P_{smax} = Tegangan maksimum penyangga (MPa),

 σ_{cc} = UCS of the shotcrete (MPa)

- r_i = Radius internal terowongan (m)
- t_c = Tebal *shotcrete* (m)
- $K_{sc} = Kekakuan shotcrete (MPa/m)$

 E_c = Modulus elastisitas *shotcrete* (MPa)

v = Poisson rasio (m)

c. Sistem penyangga steel sets

Kekakuan steel set dihitung menggunakan persamaan 10.

$$\frac{1}{k_s} = \frac{s_{ri}}{E_s A_s} + \frac{s_{ri}^3}{E_s I_s} \left[\frac{\theta(\theta + \sin\theta\cos\theta)}{2\sin^2\theta} - 1 \right] + \frac{2s\theta t_B}{E_B W^2}$$
(10)

Tegangan steel set dihitung menggunakan persamaan 11.

$$P_{ss\,max} = \frac{3A_S I_S \sigma_{ys}}{2Sr_i \theta \{3I_S + XA_S[(r_i - (t_B + 0.5X))(1 - \cos \theta)]\}}$$
(11)

Keterangan:

- $\sigma_{ys} = UCS \text{ of the steel (MPa)}$
- I_S = momen inersia *steel* (m⁴)
- E_s = modulus elastisitas *steel* (MPa)
- $A_{\rm S}$ = luas penampang steel (m²)
- S = spasi antar steel (m)
- r_i = radius internal terowongan (m)
- θ = setengah sudut diameter titik (°)
- X = tinggi baja/kedalaman baja (m)
- t_B = ketebalan blok (m)
- W = lebar blok (m)

2.5. Faktor Keamanan

Penentuan faktor keamanan dilakukan berdasarkan teori dari Mohr-Coulomb menggunakan persamaan 12. Teori ini menyatakan bahwa faktor keamanan merupakan perbandingan keadaan kekuatan batuan terhadap tegangan yang bekerja pada batuan tersebut.

$$SF = \frac{kekuatan}{tegangan yang bekerja}$$
(12)

Parameter kekuatan terdiri atas kuat massa batuan dan tegangan dari setiap sistem penyangga yang digunakan. Sedangkan parameter tegangan yang bekerja menggunakan tegangan vertikal.

Hasil perhitungan faktor keamanan ini selanjutnya disandingkan dengan kriteria keamanan, apabila SF <1,0 maka batuan dianggap tidak stabil, SF = 0 maka dianggap seimbang namun akan segera longsor ketika ada gangguan sedikit saja dan SF > 1 maka batuan dianggap stabil.

3. Hasil dan Pembahasan

3.1. Pengujian Batuan

Tabel 4menunjukkan hasil pengujian batuanmenggunakan metode empiris pada klasifikasi Rock MassRating (RMR). Uji kuat tekan batuan (Uniaxial CompressiveStrength / USC) yang dilakukan dengan alat Point LoadIndex (PLI) dalam menentukan kualitas massa batuan utuh.

Tabel 4. Hasil Pengujian Batuan

Stationing	No. LB* Kedalaman (m – m)	Jenis Batuan	Berat Isi Batuan (kN/m³)	Kuat Tekan (MPa)
<i>Inlet</i> (Sta 0+180 – 0+360)	B5-6 (45,00-46,00)	Breksi tuff 2 lapuk ringan	16,13	51,9
<i>Outlet</i> (Sta 0+720 – 0+880)	B5-9 (19,00-20,00)	Breksi tuff 1 segar (<i>boulde</i> r)	17.79	23

Ket * LB = Lubang Bor

Berdasarkan hasil pemboran inti, terowongan pengelak melalui batuan kolovial, breksi tuf 2 lapuk ringan dan breksi tuf 1 segar dengan nilai kuat tekan batuan sebesar 51,9 MPa pada bagian *inlet* dan 23 MPa pada bagian *outlet*. Berdasarkan nilai kuat tekan pada **Tabel 4**, batuan pada terowongan pengelak termasuk dalam *weak to medium strong rock* [8]. Ilustrasi jenis batuan pada lokasi terowongan pengelak Bendungan Beringin Sila dapat dilihat pada **Gambar 2.**

Gambar 2. Hasil Pemboran inti

3.2. Hasil Klasifikasi Massa Batuan

Klasifikasi massa batuan berdasarkan 6 (enam) parameter dilakukan pada massa batuan di *inlet* dan *outlet* dapat dilihat pada **Tabel 5** dan **Tabel 6**. Sedangkan rekomendasi penyangga berdasarkan *Rock Mass Rating* dapat dilihat pada **Tabel 7**.

Tabel 5. Klasifikasi massa batuan pada inlet

No.	Parameter	Nilai	Rating
1.	Kuat tekan batuan	51,9 MPa	7
2.	RQD	25-50 %	8
3.	Jarak antar (spasi) kekar	200-600 mm	10
4.	Kondisi kekar	Permukaan rata dan licin	10
5.	Kondisi air tanah	Basah	7
6.	Orientasi	Sedang	-5
	Ketidakmenerusan	-	
	Total score		37

Ket: Batuan yang dipakai dengan nomor pemboran B5-6 (45,00-46,00 m)

Tabel 6. Klasifikasi massa batuan pada outlet

		*	
No.	Parameter	Nilai	Rating
1.	Kuat tekan batuan	23 MPa	2
	utuh		
2.	RQD	10-25 %	3
3.	Jarak antar (spasi)	200-250 mm	10
	kekar		
4.	Kondisi kekar	Permukaan	10
		sedikit kasar	
5.	Kondisi air tanah	Basah	7
6.	Orientasi	Sedang	-5
	Ketidakmenerusan		
	Total score		27

Ket: Batuan yang dipakai dengan nomor pemboran B5-9 (19,00-20,00 m)

Tabel 5 dan Tabel 6 menunjukkan bahwa klasifikasi massa batuan pada bagian *inlet* diperoleh nilai sebesar 37 dan pada bagian *outlet* diperoleh nilai sebesar 27. Berdasarkan Tabel 2, kualitas massa batuan pada bagian *inlet* dan *outlet* terowongan ini memiliki kualitas massa batuan yang masuk dalam kelas batuan IV batuan buruk atau *poor rock* (RMR = 21-40), sehingga rekomendasi penyangga *rockbolt, shotcrete* dan *steel sets* yang digunakan berdasarkan RMR sesuai Tabel 7.

Tabel 7. Rekomendasi Penyangga berdasarkan RMR

Kelas Massa Batuan	Teknik Penggalian			
Batuan Buruk (IV) 21-40	<i>Top heading and bench</i> 1.0 – 1.5 m kedalam. Pemasangan penyangga bersamaan dengan penggalian, 10 m dari muka.			
Donvongoo	Rockbolt	Bolt sepanjang 4 – 5m jarak 1 – 1.5 m pada crown dan dinding dengan wire mesh pada crown.		
renyangga	Shotcrete	100 – 150 mm pada <i>crown</i> dan 100 mm pada sisinya.		
	Steel Sets	Sebaiknya menggunakan <i>medium ribs</i> jarak 1.5 m di tempat yang diharuskan.		

3.3. Kuat Massa Batuan

Kuat Mass Batuan digunakan untuk menentukan faktor keamanan pada terowongan. Analisis kuat massa batuan ditentukan berdasarkan kriteria empiris dari perhitungan persamaan Coulomb sesuai persamaan 1, diperoleh hasil seperti pada **Tabel 8**.

Tabel 8. Hasil	analisis kua	: massa batuan
----------------	--------------	----------------

Labasi	Kuat Massa Batuan (MPa)		
LOKASI	Atap	Dinding	
Inlet	0,45	0,43	
Outlet	0,40	0,42	

Berdasarkan **Tabel 8**, kuat massa batuan pada bagian *inlet* sebesar 0,45 MPa (atap), 0,43 MPa (dinding), sedangkan pada bagian *outlet* sebesar 0,40 MPa (atap), 0,42 MPa (dinding).

3.4. Tegangan pada atap dan dinding terowongan

Analisis ini didasarkan pada persamaan 4 dan 5 untuk meninjau tegangan pada arah vertikal dan horisontal. **Gambar 3** s.d. **Gambar 6** adalah hasil tegangan yang terjadi di setiap *stationing* pada bagian *inlet* dan *outlet*.

Hasil analisis berdasarkan Gambar 3 dan Gambar 4 menunjukkan bahwa besar tegangan vertikal pada suatu titik

dibawah permukaan merupakan fungsi dari densitas batuan (pengaruh kerapatan pada tiap pori batuan) diatas titik tersebut serta pengaruh kedalaman tembusan lubang bukaan. Karena batuan dianggap homogen (densitasnya dianggap konstan) maka besar tegangan vertikal berbeda-beda yang dipengaruhi oleh kedalaman lubang bukaan, semakin besar kedalaman maka semakin besar tegangan yang diterima oleh terowongan.

Gambar 5. Tegangan horisontal pada sisi Inlet

Gambar 6. Tegangan horisontal pada sisi Outlet

Kemudian, tegangan horisontal ditentukan oleh parameter koefisien tegangan lateral (K) dan tegangan vertikal (σ_v), dimana semakin besar tegangan vertikal yang dihasilkan oleh lubang bukaan terowongan maka semakin besar pula tegangan horisontal yang bekerja pada terowongan, karena sifat batuan mempengaruhi besar tegangan tersebut (**Gambar 5** dan **Gambar 6**).

Rekapitulasi tegangan vertikal dan horisontal pada *inlet* dan *outlet* yang akan digunakan dalam perhitungan faktor keamanan terowongan dapat dilihat pada **Tabel 9**.

	Stationing		
Tegangan (MPa)	<i>Inlet</i> 0+448,62	<i>Outlet</i> 0+865,00	
Tegangan Vertikal	1,65	0,27	
Tegangan Horisontal	0,68	0,16	

3.5. Analisis tegangan dan kekakuan maksimum pada *primary supporting*

Pada perencanaan sistem penyangga terowongan diperlukan penyangga awal (*primary supporting*) sebagai penyangga awal untuk menahan beban runtuhan batuan akibat proses penggalian, sehingga proses pembuatan terowongan berjalan dengan baik dan aman. Perhitungan ini didasarkan pada rekomendasi pada **Tabel 7** dan dibutuhkan setelah penggalian yang memerlukan adanya perkuatan penyangga *rockbolt* untuk memperbaiki dan mengisi rekahan yang terjadi di sekeliling lubang bukaan akibat penggalian. Lalu diikuti dengan perkuatan *shotcrete* sehingga dapat mendukung sistem penyangga *steel support* dalam meningkatkan faktor keamanan dan memperkuat sistem perkuatan terowongan. **Gambar 7** menunjukkan urutan perkuatan pada setiap penyangga bukaan terowongan.

Gambar 7. Urutan Pemasangan Perkuatan pada Terowongan

Lapisan pertama (*prime shotcrete*) disemprotkan setelah pekerjaan *scalling* (pengangkutan material penggalian)

selesai. Lalu diikuti dengan pemasangan *wiremesh* untuk menutupi seluruh bagian batuan. Selanjutnya memasang *rockbolt grouting* (penyuntikan beton) lalu pemasangan *steel support* dan terakhir penyemprotan *secondary shotcrete* untuk memperkuat seluruh penyangga.

Hasil analisis perhitungan kekakuan dan tegangan pada setiap sistem penyangga awal dengan persamaan 6 s.d. persamaan 11 dapat dilihat pada **Tabel 10** yang digunakan sebagai parameter perhitungan faktor keamanan terowongan.

Tabel 10.	Kekakuan	dan	Tegangan	Sistem	Penyangga
					/ ///

Penyangga	Spasi (m)	Kekakuan (MPa/m)	Tegangan (MPa)
Rockbolt	-	5,94	0,40
Shotcrete	-	407,06	0,29
	1,5	881,54	0,26
Steel set	2	661,16	0,19
	3	440,77	0,13

3.6. Faktor Keamanan

Perhitungan faktor keamanan dilakukan menggunakan persamaan 12 dengan contoh perhitungan pada sisi *inlet* bagian atap (STA 0+448,62) sebagai berikut:

Diketahui:

Kuat Massa Batuan (Tabel 8)	= 0,45 MPa
Fegangan vertikal (Tabel 9)	= 1,65 MPa
Teg. Rockbolt (P _{ss max I}) (Tabel 10)	= 0,4 MPa
Гед. Shotcrete (P _{ss max II}) (Tabel 10)	= 0,29 MPa
Teg. Steel set. $s = 1.5 \text{ m} (P_{ss \text{ max III}})$ (Tabel 10)	= 0.26 MPa

SF atap	Kekuatan
	– Tegangan yang bekerja _ Kuat Massa Batuan+ P _{ssmax} I + P _{ssmax} II + P _{ssmax} III
	 Tegangan Vertikal
	_ 0,45+0,40+0,29+0,26
	1,65
	= 0.84

Adapun hasil analisis faktor keamanan pada sisi *inlet* dan *outlet* untuk bagian atap dan dinding terowongan dapat dilihat pada **Gambar 8** dan **Gambar 9**.

Berdasarkan **Gambar 8**, angka keamanan yang dihasilkan pada bagian atap SF<1 (tidak aman) sehingga perlu dilakukan penambahan perkuatan. Sedangkan pada bagian dinding SF>1 sehingga dinyatakan aman. Sedangkan pada **Gambar 9** menunjukkan bahwa SF yang dihasilkan >1 baik pada bagian atap maupun dinding sehingga dianggap aman.

Gambar 8. Faktor keamanan pada penyangga awal dengan perbedaan spasi *Steel Support* sisi *Inlet*.

Gambar 9. Faktor keamanan pada penyangga awal dengan perbedaan spasi *Steel Support* sisi *Outlet*

4. Simpulan

Berdasarkan analisis data yang telah dilakukan, maka dapat disimpulkan sebagai berikut:

- Hasil klasifikasi massa batuan menggunakan enam parameter dari metode *Rock Mass Rating* (RMR) diperoleh total *score* bagian *inlet* sebesar 37 dan bagian *outlet* sebesar 27. Hasil bobot total klasifikasi ini menunjukkan kualitas massa batuan pada bagian *inlet* dan *outlet* terowongan memiliki kelas batuan IV yaitu batuan jelek atau *poor rock* (RMR = 21-40). Dengan hasil kelas massa batuan ini mendapatkan rekomendasi penyangga berupa penyangga *rockbolt* dengan panjang (l) 4 -5 m dengan jarak 1-1,5 m pada atap (*crown*) dan dinding dengan *wiremesh* pada *crown*, untuk penyangga *shotcrete* dengan tebal 100-150 mm pada *crown* dan 100 mm pada sisinya, serta penyangga *steel set* dipasang dengan jarak 1,5 m.
- 2. Hasil tegangan dan kekakuan maksimum pada penyangga awal (*primary supporting*) yaitu pada penyangga *rockbolt* mendapatkan tegangan sebesar 0,40 MPa dan kekakuan 5,94 MPa, untuk penyangga *shotcrete* mendapatkan tegangan sebesar 0,29 MPa dan kekakuan 407,06 MPa, dan pada penyangga *steel set* mendapatkan nilai 0,26 MPa dan kekakuan sebesar 881,54 MPa pada jarak spasi 1,5 m, pada jarak 2 m menghasilkan tegangan sebesar 0,19 MPa dan kekakuan sebesar 661,16 MPa, serta pada

jarak spasi 3 m menghasilkan tegangan sebesar 0,13 MPa dan kekakuan sebesar 440,77 MPa.

3. Tegangan yang dihasilkan pada kombinasi penyangga awal (*Primary Supporting*) seperti penyangga *rockbolt*, *shotcrete*, dan *steel set* mendapatkan faktor aman pada sisi inlet sebesar 0,84 pada atap dan 2,03 pada dinding pada jarak spasi 1,5 m, pada jarak spasi 2 m memperoleh faktor aman sebesar 0,81 pada atap dan 1,93 pada dinding, serta pada jarak 3 m sebesar 0,77 pada atap dan 1,84 pada dinding. Hal ini membuktikan bahwa pada atap terowongan masih dalam kriteria tidak aman. Pada sisi *outlet* mendapatkan faktor aman sebesar 5 pada atap dan 8,56 pada dinding pada jarak spasi 1,5 m, pada jarak spasi 2 m memperoleh faktor aman sebesar 4,74 pada atap dan 8,13 pada dinding, serta pada jarak 3 m sebesar 4,52 pada atap dan 7,75 pada dinding. Sehingga pada sisi *outlet* pada jarak 3 meter pun masih dikategorikan aman.

Daftar Pustaka

- [1] B. Kharisma, D. S. Agustawijaya, and T. Sulistyowati, "Interaksi Sistem Penyangga dengan Massa Batuan pada Terowongan mila di Rababaka Kompleks, Kabupaten Dompu," Universitas Mataram, 2016.
- [2] C. Sudrajat, "Analisis Sistem Penyangga pada Terowongan Pengelak Bendungan Beringin Sila di Kabupaten Sumbawa," Universitas Mataram, 2020.
- [3] N. Aulia, V. Dermawan, and E. N. Cahya, "Kajian Hidrolika Aliran Bangunan Pelimpah Samping (Side Channel Spillway) Bendungan Beringin Sila Kabupaten Sumbawa," J. Teknol. dan Rekayasa Sumber Daya Air, vol. 1, no. 2, pp. 711–721, 2021.
- [4] Z. T. Bieniawski, Engineering Rock Mass Classifications A Complete Manual for Engineers and Geologists in Mining, Civil and Petroleum Engineering. Canada: A Wiley Interscience Publication, 1989.
- [5] D. S. Agustawijaya, "The Influence of Rock Properties and Size into Strength Criteria: A Proposed Criterion for Soft Rock Masses.," *Civ. Eng. Dimens.*, vol. 13, no. 2, pp. 75–81, 2011.
- [6] B. H. G. Brady and E. T. Brown, *Rock Mechanics for underground mining*, 3rd ed. United States of America: Kluwer Academic Publisher, 2005.
- [7] E. Hoek and E. T. Brown, Underground Excavations in Rock, Revised fi. New York: CRC Press, 1982.
- [8] B. Singh and R. K. Goel, Engineering Rock Mass Classification. United State of America: Butterworth-Heinemann-Elsevier, 2011