

Studi Komparasi Penggunaan Base Isolation Tipe Lead Rubber Bearing dan Friction Pendulum Bearing pada Bangunan Gedung Anutapura Medical Center Palu

Amelynda Oktaviyana Suzzan^{1,*}, Tavio¹

Departemen Teknik Sipil, Institut Teknologi Sepuluh Nopember, Surabaya¹ Koresponden*, Email: 6012221137@student.its.ac.id

Info Artikel		Abstract
Diajukan Din arhailti	05 Agustus 2024	Earthquake-resistant-building with seismic isolation system is the concept that separate upper
Disetujui	13 Agustus 2024	building from the source of vibrations on subgrade. Because it's separated, the height of the building is limited to avoid rollout. AMC building is located in Palu City, an earthquake-prone area, so it's necessary to plan isolation system to reduce the earthquake load and minimalize damage. This study used ETABS program to model structure with fixed-base, LRB and FPB. They are analyzed by pushover and nonlinear time history analyses. The results show that the performance level of fixed-base structure is LS while performance level of LRB and FPB types are IO. The LRB type structure increases the structure period by 129.6%, while the FPB type
Keywords: base isolation, lead rubber bearing, pushover, NLTH		increases by 160.3% compared to the fixed-base type. The LRB type reduces the roof maximum- drift by 65.6%, while the FPB type reduces by 68.8% compared to the fixed-base roof maximum-drift.
		Abstrak
		Bangunan tahan gempa dengan sistem isolasi seismik merupakan konsep bangunan atas yang terpisah dari sumber getaran di tanah dasar. Karena terpisah, maka ketinggian bangunan dibatasi untuk menghindari guling. Gedung AMC terletak di Kota Palu yang merupakan daerah rawan gempa, sehingga perlu direncanakan sistem isolasi untuk mengurangi beban gempa dan meminimalisir kerusakan yang terjadi. Pada penelitian ini struktur akan dimodelkan menggunakan program ETABS untuk memodelkan struktur menggunakan <i>fixed-base</i> , LRB dan FPB. Ketiga tipe struktur tersebut dianalisis <i>pushover</i> dan nonlinier <i>time history</i> . Hasil analisis menunjukkan bahwa level kinerja struktur fixed-base adalah LS, sedangkan pada tipe <i>LRB dan FPB</i> levl kinerjanya menjadi IO. Struktur tipe LRB meningkatakan perioda struktur sebesar 129,6%, sedangkan tipe FPB meningkatakan perioda struktur 160,3% dari tipe <i>fixed base</i> . Tipe LRB mereduksi <i>drift</i>
Kata kunci: bas bearing, pushov	e isolation, lead rubber ver. NLTH	maksimum lantai atap sebesar 65,6%, sedangkan tipe FPB mereduksi sebesar 68,8% dari pada lantai atap tipe <i>fixed-base</i> .

1. Pendahuluan

Sebagai negara yang terletak pada wilayah rawan gempa, Indonesia memiliki banyak sejarah terjadinya gempa bumi besar yang banyak memakan korban. Oleh karena itu, perencanaan bangunan yang tahan terhadap gempa sangat diperlukan untuk meminimalisir jumlah korban.

Gedung Anutapura Medical Center terletak di Kota Palu Sulawesi Tengah. Sesuai Buku Peta Degradasi Bahaya Gempa Indonesia untuk Perencanaan dan Evaluasi Infrastruktur Tahan Gempa, diketahui bahwa Kota Palu yang terletak di bagian tengah Pulau Sulawesi terdapat Sesar Palukoro dengan slip geodetic 41–45 mm/tahun, Bellier dkk. Pada tanggal 28 September 2018, terjadi gempa bumi dahsyat di Sulawesi Tengah dengan Kota Palu sebagai salah satu kota yang terdampak. Dalam catatan Badan Meteorologi, Klimatologi, dan Geofisika, gempa tersebut berkekuatan 7,7 skala Richter dan berpusat di 0,18 Lintang Selatan dan 119,85 Bujur Timur atau 27 kilo meter timur laut Donggala.

Isolasi dasar adalah salah satu sistem proteksi seismik yang paling banyak diterapkan dalam aplikasi nyata [1]. Dalam beberapa dekade terakhir, teknologi isolasi dasar telah banyak digunakan untuk mengurangi kerusakan pada komponen struktural dan non-struktural serta melindungi penggunaan normal bangunan selama gempa bumi [2]. Konsep dasar base isolator adalah memisahkan struktur dari pergerakan tanah dengan memasang elemen fleksibel di atas pondasi di bawah struktur atas. Hal ini dapat mengurangi frekuensi alami suatu struktur, sehingga juga mengurangi percepatan dasar dan simpangan antar lantai [3]. *Lead Rubber Bearing* (LRB) adalah bantalan elestromerik yang terdiri dari lapisan tipis karet alam dengan redaman rendah dan terapat lapisan pelat baja yang dipasang silih bergantian dengan lapisan karetnya serta leadplug yang terpasang erat pada lubang di tengahnya agar berdeformasi secara murni geser. Sedangkan *Friction Pendulum Bearing* (FPB) adalah isolator tersusun dari *spherical concave* surface yang memiliki radius kelengkungan tertentu dan *articulated slider* yang dilapisi dengan lapisan *polytetrafluoroethylene* (PTFE) yang memiliki koefisien gesek tertentu. Penerapan sistem isolasi ini berdasarkan pergerakan berat struktur di atas permukaan slider lengkung yang memiliki gesekan rendah yang bergerak layaknya sebuah bandul harmonik sederhana.

Meskipun kedua sistem isolasi tersebut sama-sama mendisipasi energi seismik dengan membentuk loop histeresis dalam perilaku deformasi gaya isolator, tetapi mekanisme keduanya berbeda [4]. Sehingga perlu dilakukan analisis untuk mengetahui tipe base isolator yang lebih efektif kinerjanya dalam menahan gaya gempa yang terjadi dengan membandingkan perioda struktur setelah dipasang *base isolator*, gaya geser gempa yang terjadi, perpindahan yang terjadi dan juga membandingkan *drift* atau simpangan antar lantai yang terjadi.

Perencanaan tersebut mangacu pada SNI 2847:2019, SNI 1726:2019SNI 11727:2020 serta peraturan lainnya. Dimensi struktur dalam perencanaan ini adalah: balok 400x600 mm, kolom terbesar 900x700 mm, dengan tebal pelat 14 mm. Lead Rubber Bearing (LRB) yang digunakan adalah produk dari Bridgestone dengan tipe LH070G4-E dan LH075G4-E. Sedangkan untuk analisis Friction Pendulum Bearing (FPB) digunakan produk dari Nippon Steel Engineering tipe NS-SSB-M(L)60-250-950N dan NS-SSB-M(L)60-300-950N. Evaluasi perbandingan kinerja dari teknologi isolasi dasar tipe LRB dan FPB pada gedung di kawasan gempa tinggi dan memiliki kondisi tanah lunak. Studi ini difokuskan pada analisis tingkat kinerja gedung setelah penerapan isolasi dasar tipe LRB dan FPB untuk dibandingkan secara proporsional. Dengan menggunakan analisis pushover dan analisis nonlinier time history.

2. Metode

Tahapan penelitian ini dimulai dengan mengumpulkan data-data struktur pada Gedung AMC seperti denah bangunan beserta potongannya sebagaimana terlihat pada **Gambar 1 - Gambar 3.** Dilakukan pula pengumpulan data seismik Kota Palu sebagai dasar perhitungan beban gempa sebagaimana ditunjukkan pada **Tabel 1**.

Gambar 1. Denah Lantai Struktur

Gambar 2 Potongan A-A

Gambar 3 Potongan B-B

Tabel 1. Da	ata Seismil	k Rencana
-------------	-------------	-----------

No	Uraian	Keterangan
1	Jenis Bangunan	Gedung Rumah Sakit
2	Kategori Resiko	IV
3	Lokasi	Palu
4	Jenis Tanah	Lunak (SE)
5	S _S	1,5 g
6	S1	0,6 g

Studi literatur dilakukan untuk lebih memahami dengan lebih baik tentang konsep analisis bangunan gedung dengan sistem isolasi. *Preliminary design* untuk menentukan dimensi balok, kolom dan pelat dilakukan dengan mengacu SNI 2847:2019 dan pembebanan mengacu pada SNI 1726:2019. Pemodelan struktur *fixed-base* dilakukan terlebih dahulu, dan dilakukan kontrol desain. Gaya dan reaksi yang dihasilkan pada analisis struktur fixed-base digunakan dalam perencanaan struktur dengan *base isolation* tipe LRB dan FPB. Setelah dilakukan kontrol desain pada kedua tipe sistem isolasi, lalu dianalisis menggunakan analisis pushover dan analisis *non-linier time history*. Dan terakhir adalah melakukan komparasi terhadap hasil analisis ketiga struktur tersebut untuk menentukan jenis base isolation yang paling efektif untuk digunakan.

3. Hasil dan Pembahasan

Dari hasil preliminary desain didapatkan dimensi balok induk terbesar adalah 400x600 mm, dimensi balok anak terbesar 350x500 mm, dimensi kolom lantai dasar adalah 900x700 mm dan tebal pelat 140mm. an. Pemodelan struktur dengan fixed seperti terlihat pada **Gambar 4**

Gambar 4. Pemodelan Struktur Fixed Base di ETABS

Dari data gempa kota Palu dengan kelas situs SE (tanah lunak), parameter percepatan gempa $S_S = 1,5g$ dan $S_1 = 0,6g$ didapat perioda respon dessain $T_0 = 0,2s$ dan TS = 0,8g. Sehingga dapat digambarkan respon spektrum struktur desain yang ditunjukkan oleh **Gambar 5**.

Gambar 5. Respon Spektrum Desain

Base shear akibat beban seismik efektif pada struktur dengan *fixed base* adalah sebesar 24.716,919 kN dan

didapatkan hasil kontrol analisis desain seperti terlihat pada Tabel 2 – Tabel 5

Tab	Tabel 2. Kontrol Simpoangan Arah X Akibat Load EQX									
Story	δ_n	D en	Cd	Ie	Δ_n	h_{sx}	A a max	Cek A < A		
	mm	mm			mm	mm	mm	∐ n <u>≤</u> ∐amax		
5	140,155	22,208	5,5	1,50	81,4293	5100	58,8462	Not OK		
4	117,947	26,866	5,5	1,50	98,5087	4200	48,4615	Not OK		
3	91,081	33,6	5,5	1,50	123,2000	4200	48,4615	Not OK		
2	57,481	34,276	5,5	1,50	125,6787	4200	48,4615	Not OK		
1	23,205	23,205	5,5	1,50	85,0850	4950	57,1154	Not OK		

Tabel 3. Kontrol Simpoangan Arah Y Akibat Load EQY

Story	δ_n	L en	Cd	Ie	Δ_n	h _{sx}	∆ a max	Cek $\Delta_n \leq \Delta_{amax}$
	mm	mm			mm	mm	mm	
5	129,19	22,057	5,5	1,50	80,8757	5100	58,8462	Not OK
4	107,133	26,290	5,5	1,50	96,3967	4200	48,4615	Not OK
3	80,843	32,278	5,5	1,50	118,3527	4200	48,4615	Not OK
2	48,565	30,809	5,5	1,50	112,9663	4200	48,4615	Not OK
1	17,756	17,756	5,5	1,50	65,1053	4950	57,1154	Not OK

Tabel 4. Kontrol P-Delta Arah X

h _{sx}	Р	V	δ	⊿	θ	H max	Cek $\theta \leq \theta_{amax}$
mm	kN	kN	mm	mm			
5100	23465,6	6599,6	140,2	22,2	0,004	0,091	OK
:4200	38565,3	14402,7	117,9	26,9	0,005	0,091	OK
4200	38054,0	19811,8	91,1	33,6	0,004	0,091	OK
4200	38054,0	23133,5	57,5	34,3	0,004	0,091	OK
4950	40090,1	24716,9	23,2	23,2	0,002	0,091	OK
0	0	0	0	0	0	0,091	OK
	<i>h</i> _{sx} <u>mm</u> 5100 24200 4200 4200 4950 0	h _{sx} P mm kN 5100 23465,6 4200 38565,3 4200 38054,0 4200 38054,0 4950 40090,1 0 0	h _{sx} P V mm kN kN 5100 23465,6 6599,6 4200 38565,3 14402,7 4200 38054,0 19811,8 4200 38054,0 23133,5 4950 40090,1 24716,9 0 0 0	h _{sx} P V δ mm kN kN mm 5100 23465,6 6599,6 140,2 4200 38565,3 14402,7 117,9 4200 38054,0 19811,8 91,1 4200 38054,0 23133,5 57,5 4950 40090,1 24716,9 23,2 0 0 0 0	h_{sx} PV δ Δ mmkNkNmmmm510023465,66599,6140,222,2420038565,314402,7117,926,9420038054,019811,891,133,6420038054,023133,557,534,3495040090,124716,923,223,200000	h _{sx} P V δ Δ θ mm kN kN mm mm 5100 23465,6 6599,6 140,2 22,2 0,004 4200 38565,3 14402,7 117,9 26,9 0,005 4200 38054,0 19811,8 91,1 33,6 0,004 4200 38054,0 23133,5 57,5 34,3 0,004 4950 40090,1 24716,9 23,2 23,2 0,002 0 0 0 0 0 0 0	h _{xx} P V δ Δ θ θ _{max} mm kN kN mm mm state state

Tabel 5. Kontrol P-Delta Arah Y

Story	h_{sx}	Р	V	δ	Δ	θ	H max	Cek $\theta \leq \theta_{amax}$
	mm	kN	kN	mm	mm			
5	5100	23465,6	6599,6	140,2	22,057	0,004	0,091	OK
4	4200	38565,3	14402,7	117,9	26,290	0,005	0,091	OK
3	4200	38054,0	19811,8	91,1	32,278	0,004	0,091	OK
2	4200	38054,0	23133,5	57,5	30,809	0,004	0,091	OK
1	4950	40090,1	24716,9	23,2	17,756	0,002	0,091	OK
Base	0	0	0	0	0	0	0,091	OK

Drift (simpangan antar lantai) dari struktur fixed base yang tidak memenuhi syarat direncanakan akan diakomodasi oleh isolator LRB dan FPB. Sebelum melakukan analisis system isolasi, perlu dicek ketidakberaturan struktur seperti yang ditunjukkan oleh **Tabel 6** dan **Tabel 7**.

Tabel 6. Rekapitulasi Ketidakberaturan Horizontal

Tipe	Ketidakberaturan	Keterangan
1a	Tidak ada	$\Delta \max/\Delta \arg < 1.2$
1b	Tidak ada	$\Delta \max/\Delta \arg < 1.4$
2	Ada	Sudut dalam >15%
3	Tidak ada	Tidak terdapat diskontinuitas diafragma
4	Tidak ada	Lintasan tahanan lateral kontinyu
5	Tidak ada	Elemen vertikal sejajar sumbu ortogonal

Tabel 7. Rekapitulasi Ketidak beraturan Horizontal

Tipe	Ketidakberaturan	Keterangan
1a	Tidak ada	ki >80% k(i+1) dan k avg (i+3)
1b	Tidak ada	>70% k(i+1) dan k avg (i+3)
2	Tidak ada	Massa efektif <150% tingkat di dekatnya
3	Tidak ada	Dimensi horizontal semua tingkat sama
4	Tidak ada	Tidak terdapat pergeseran elemen pemikul gaya
5a	Tidak ada	Tergantung perencanaan tulangan
5b	Tidak ada	Tergantung perencanaan tulangan
la	Tidak ada	ki >80% k(i+1) dan k avg (i+3)

Pemodelan Struktur dengan LRB

Penentuan tipe LRB didasakrkan pada posisi dan gaya aksial kolom interior dan kolom eksterior seperti ditunjukkan oleh **Gambar 6**.

Gambar 6. Denah Posisi LRB Eksterior (bulat hijau) dan Interior (bulat merah)

Setelah dilakukan *trial* dan *error* digunakan tipe LRB dari produk Bridgestone dengan spesifikasi yang ditunjukkan pada **Tabel 8** lalu dimodelkan menggunakan ETABS seperti yang ditunjukkan pada **Gambar 7**

Parameter	Tip	Satuan	
	Eksterior	Interior	
Gaya aksial kolom	2839,3297	3967,4423	kN
Jumlah kolom	39	41	buah
Tipe LRB	LH070G4-E	LH075G4-E	
Beban kolom maksimum	3050	4060	kN
Tegangan kritis	35	42	N/mm ²
Diameter Luar LRB	700	750	mm
Luas penampang efektif	377000	432300	mm ²
Tebal karet total	202	200	mm
Kekakuan vertikal	2250000	2610000	kN/m
Kekakuan pasca leleh	741	860	kN/m
Berat total sistem	820	930	kg
Kekuatan lead-plug	62,6	75,7	kN
Kekakuan efektif	1050	1240	kN/m
φ lead-plug	100	110	mm
Luas lead-plug total (Apb)	15707,963	19006,636	mm ²
Redaman efektif	18,10%	18,7%	

Gambar 7. Pemodelan Struktur dengan LRB

Hasil perhitungan kekakuan efektif total sistem struktur (K_M) *adalah* 91790 kN/m, redaman efektif *total* β_M adalah 18,408%, perioda efektif (T_M) adalah 3,045 detik dan perpindahan maksimum (D'_M) adalah 0,589 mm. *Base shear* akibat beban seismik efektif pada struktur dengan isolasi LRB adalah sebesar 26.163,781 kN dan hasil kontrol analisis desain ditunjukkan pada **Tabel 9 – Tabel 12**

Tabel 9. Kontrol Simpoangan Arah X Akibat Load EQX(Struktur Terisolasi LRB)

Story	δ_n	∆en	Cd	Ie	Δ_n	h _{sx}	L a max	Cek $\Delta_n \leq \Delta_{amax}$
	mm	mm			mm	mm	mm	
5	403,21	12,314	2	1	24,628	5100	76,50	OK
4	390,896	14,841	2	1	29,682	4200	63,00	OK
3	376,055	19,965	2	1	39,93	4200	63,00	OK
2	356,09	27,257	2	1	54,514	4200	63,00	OK
1	328,833	36,671	2	1	73,342	4950	74,25	OK
_	292,162	0	2	1	0	0	0	OK

Tabel 10. Kontrol Simpoangan Arah Y Akibat Load EQY (Struktur Terisolasi LRB)

Story	δ_n	L en	Cd	Ie	Δ_n	h _{sx}	A a max	Cek $\Delta_n \leq \Delta_{amax}$
	mm	mm			mm	mm	mm	
5	399,894	12,521	2	1	25,042	5100	76,50	OK
4	387,373	14,899	2	1	29,798	4200	63,00	OK
3	372,474	19,848	2	1	39,696	4200	63,00	OK
2	352,626	26,729	2	1	53,458	4200	63,00	OK
1	325,897	36,578	2	1	73,156	4950	74,25	OK
Base	289,319	0	2	1	0	0	0	OK

Story	h _{sx}	Р	V	δ	Δ	θ	H max	Cek $\theta \leq \theta_{amax}$
	mm	kN	kN	mm	mm			
5	5100	23465,6	6599,6	407,4	13,986	0,008	0,25	OK
4	:4200	38565,3	14402,7	393,4	16,095	0,010	0,25	OK
3	4200	38054,0	19811,8	377,3	20,751	0,010	0,25	OK
2	4200	38054,0	23133,5	356,6	27,576	0,011	0,25	OK
1	4950	40090,1	24716,9	329,0	36,812	0,005	0,25	OK
Base	0	0	0	292,2	0	0	0,25	OK

Tabel 12. Kontrol P-Delta Arah Y (Struktur Teriso	lasi)
---	-------

Story	$h_{\rm sx}$	Р	V	δ	Δ	θ	H max	Cek $\theta \leq \theta_{amax}$
	mm	kN	kN	mm	mm			
5	5100	23465,6	6599,6	404,1	14,204	0,009	0,25	OK
4	:4200	38565,3	14402,7	389,9	16,155	0,010	0,25	OK
3	4200	38054,0	19811,8	373,7	20,635	0,009	0,25	OK
2	4200	38054,0	23133,5	353,1	27,046	0,011	0,25	OK
1	4950	40090,1	24716,9	326,0	36,724	0,005	0,25	OK
Base	0	0	0	289,3	0	0,000	0,25	OK

Batas perpindahan maksimum karet LRB adalah sesuai regangan maksimum (γ L) yaitu 400% tebal karet (sesuai brosur). Maka batas perpindahan untuk LRB interior adalah 4 x 200 = 800 mm, sedangkan batas perpindahan LRB eksterior 4 x 202 = 808 mm. Maka perpindahan yang terjadi tidak melebihi perpindahan maksimum yang disyaratkan. Rollout displacement pada LRB interior adalah 465,596 mm dan pada LRB eksterior adalah 412,880 mm, dan hasil tersebut kurang dari batas perpindahan maksimum yaitu 589 mm. Maka disimpulkan perpindahan yang terjadi belum pada batas guling pada LRB interior maupun eksterior.

Pemodelan Struktur dengan FPB

Penentuan tipe FPB didasakrkan pada gaya aksial kolom yang terjadi pada sesuai pemodelan *fixed base*. Setelah dipetakan menjadi 2 tipe yaitu tipe P1 (beban kolom dibawah 3000 kN) dan tipe P2 (beban kolom di atas 3000 kN) seperti ditunjukkan oleh **Gambar 8**.

Gambar 8. Denah Posisi FPB Tipe P1 (bulat hijau) dan Tipe P2 (bulat hijau)

Pemilihan tipe FPB dilakukan dengan melakukan iterasi property isolator agar mendekati target system isolasi. Digunakan property FPB dari produk Nippon Steel Engineering NS-SSB-M(L)60-250-950N untuk P1 dan NS-SSB-M(L)60-300-950N untuk P2 dengan spesifikasi yang ditunjukkan pada **Tabel 13**, lalu dimodelkan ke dalam ETABS seperti ditunjukkan oleh **Gambar 9**.

Gambar 9. Pemodelan Struktur dengan FPB

Tabel 13. Properti FPB

Parameter	Tipe P1	Tipe P2	Satuan
Periode Natural (Tn)	6	6	S
Beban Vertikal Nominal (Pv)	2945	4241	kN
Sliding Plate Radius Kurvatur (Rs)	4500	4500	mm
Sliding Diameter (Dsl)	250	300	mm
Height (Ht)	207	215	mm
Concave Plate Diameter (Dc)	1270	1320	mm
Concave Plate Diameter (Dc1)	1796	1867	mm
Anchor Bolt Holes (Be)	50	50	mm
Anchor Bolt Holes (Bg)	85	85	mm
Berat Bearing (Wssb)	1570	1810	kg
Displacement Horizontal Ultimate (δc)	950	950	mm
Displacement Vertikal Maksimum (δv)	52	52	mm
Kekakuan Vertikal (Kv)	5400	7500	kN/mm
Kekakuan Horizontal (Kh)	0.327	0.471	kN/mm
Koefisien Friksi Nominal (µ0)	5	5	%
Beban Karakteristik (Qd)	147,25	212,05	kN
Kekakuan Awal (Ki)	32,7	47.1	kN/mm
Kekakuan Efektif (Keff)	809,444	1165,655	kN/mm

Dari hasil iterasi, dapat ditentukan perioda fundamental struktur terisolasi (T_M) adalah 3,8 detik, redaman viscous (β_M) adalah 13%, perpindahan maksimum (D_M) adalah 0,878 m dan kekakuan system isolasi struktur (K_M) adalah 67075,963 kN/m. Gaya Geser dasar akibat beban seismik efektif pada struktur dengan isolasi FPB adalah sebesar 28.902,7505 kN dan hasil kontrol analisis desain ditunjukkan pada **Tabel 14 – Tabel 17**

Dari hasil analisis struktur terisolasi dengan FPB diketahui simpangan maksimum kolom yang terjadi adalah 441,945 mm (arah x) dan 455,422 (arah y), dimana nilai tersebut kurang dari simpangan maksimum desain $(D_M) = 878$ mm, sehingga struktur dinyatakan aman.

Tabel 14. Kontrol Simpoangan Arah X Akibat Load EQX(Struktur Terisolasi FPB)

Story	δ_n	D _{en}	Cd	Ie	Δ_n	h _{sx}	∆ a max	Cek $\Delta_n \leq \Delta_{amax}$
	mm	mm			mm	mm	mm	
5	562,342	12,686	2	1	25,372	5100	76,50	OK
4	549,656	15,381	2	1	30,762	4200	63,00	OK
3	534,275	20,914	2	1	41,828	4200	63,00	OK
2	513,361	29,129	2	1	58,258	4200	63,00	OK
1	484,232	36,931	2	1	73,862	4950	74,25	OK
	447,301	0	2	1	0	0	0	OK

Tabel 15. Kontrol Simpoangan Arah Y Akibat Load EQY (Struktur Terisolasi FPB)

Story	δ_n	L en	Cd	Ie	Δ_n	h _{sx}	∆ a max	$Cek \Delta_n \leq \Delta_{amax}$
	mm	mm			mm	mm	mm	
5	568,043	12,816	2	1	25,632	5100	76,50	OK
4	555,227	15,371	2	1	30,742	4200	63,00	OK
3	539,856	20,717	2	1	41,434	4200	63,00	OK
2	519,139	28,495	2	1	56,99	4200	63,00	OK
1	490,644	36,244	2	1	72,488	4950	74,25	OK
Base	454,4	0	2	1	0	0	0	OK

 Tabel 16. Kontrol P-Delta Arah X (Struktur Terisolasi FPB)

Story	h _{sx}	Р	V	δ	Δ	θ	H max	Cek $\theta \leq \theta_{amax}$
	mm	kN	kN	mm	mm			
5	5100	23465,6	6599,6	562,3	12,686	0,008	0,25	OK
4	:4200	38565,3	14402,7	549,7	15,381	0,009	0,25	OK
3	4200	38054,0	19811,8	534,3	20,914	0,010	0,25	OK
2	4200	38054,0	23133,5	513,4	29,129	0,012	0,25	OK
1	4950	40090,1	24716,9	484,2	36,931	0,005	0,25	OK
Base	0	0	0	447,3	0	0	0,25	OK

Tabel 17. Kontrol P-Delta Arah Y (Struktur Terisolasi FPB)

Ctores	1.	n	V	s	4			Cek
Siory	n_{sx}	P		0	Δ	θ	θ_{max}	$\theta \leq \theta_{amax}$
	mm	kN	kN	mm	mm			
5	5100	23465,6	6599,6	568,0	12,816	0,008	0,25	OK
4	:4200	38565,3	14402,7	555,2	15,371	0,009	0,25	OK
3	4200	38054,0	19811,8	539,9	20,717	0,010	0,25	OK
2	4200	38054,0	23133,5	519,1	28,495	0,012	0,25	OK
1	4950	40090,1	24716,9	490,6	36,244	0,005	0,25	OK
Base	0	0	0	454,4	0	0,000	0,25	OK

Analisis Satatik Nonlinier Pushover

Analisis pushover pada struktur *fixed base* dihasilkan kurva kapasitas dan kinerja FEMA 440 arah X struktur berada pada level kinerja antara IO-LS dan pada arah Y struktur pada level kinerja struktur pada LS-CP sebagaimana ditunjukkan oleh **Gambar 10** dan **Gambar 11**. Sedangkan pada struktur dengan *base isolation* didesain pada saat terjadi gempa maksimum, struktur masih dalam kondisi elastis. *Story drift*/ simpangan antar lantai pada *base isolated structure* berkurang drastis hingga mendekati 70% daripada *fixed base structure* karena pergeseran di lantai dasar yang besar dan berkurangnya energi gempa yang diserap oleh struktur atas. Sehingga level kinerja struktur dengan *base isolation* adalah IO

Gambar 10. Kurva Pushover Fixed Base Arah X

Gambar 11. Kurva Pushover Fixed Base Arah Y

Analisis Nonlinier Time History

Sesuai SNI 1726:2019 Pasal 13.2.2.2, pada penggunaan prosedur respons riwayat waktu nonlinier, desain gempa dan gerak tanah MCER yang bersesuaian harus masing-masing terdiri dari tidak kurang dari tujuh pasang komponen percepatan horizontal terpilih yang diskalakan dari rekaman

kejadian gempa yang memiliki besaran, jarak patahan, dan mekanisme sumber yang konsisten terhadap gempa desain dan MCER. Gerakan tanah riwayat waktu suatu gempa memberikan gambaran tentang intensitas, suatu ukuran yang berhubungan dengan aras (level) kebencanaan tertentu (yaitu periode ulang), yang akan menggambarkan magnitudo, jarak ke pusat gempa, kondisi situs, dan beberapa parameter yang menentukan sifat-sifat karakteristik gerakan tanahnya [5]. Rekaman gempa yang diskalakan terhadap respon spektrum Kota Palu adalah:

- 1. Gempa Tottory, Jepang (2000)
- 2. Gempa Chi-chi, Taiwan (1999)
- 3. GEmpa El Mayor-Cucapah (2008)
- 4. GEmpa Iwate, Jepang (2008)
- 5. Gempa Duzce, Turki (1999)
- 6. Gempa Darfield, New Zealand (2010)
- 7. Gempa Niigata, Jepang (2004)

Dari hasil analisis, struktur *fixed base* mengalami simpangan maksimum antara lantai dasar dan lantai atap akibat gempa Duzce arah X sebesar 204,117 mm sebagaimana ditunjukkan oleh **Gambar 12**

Gambar 12 Perpindahan Lantai Atap Struktur Fixed Base akibat Gempa Duzce

Pada struktur dengan LRB, simpangan maksimum antara lantai dasar dan lantai atap terjadi pada Gempa Darfield di arah Y sebesar 105,901 mm sebagaimana ditunjukkan pada **Gambar 13** dan **Gambar 14**.

Gambar 13. Perpindahan Lantai Dasar Struktur LRB Akibat Gempa Darfield

Gambar 14. Perpindahan Lantai Atap Struktur LRB Akibat Gempa Darfield

Pada struktur dengan FPB, simpangan maksimum lantai dasar dan lantai atap terjadi pada gempa Iwate pada arah Y sebesar 1,448 mm seperti ditunjukkan oleh **Gambar 15** dan **Gambar 16**.

Gambar 15. Perpindahan Lantai Dasar Struktur FPB Akibat Gempa Iwate

Gambar 16. Perpindahan Lantai Atap Struktur FPB Akibat Gempa Iwate

Evaluasi Perbandingan

a. Perbandingan periode struktur

Struktur dengan LRB meningkatkan periode struktur sebesar 129,6% dari perioda struktur *fixed base*, sedangkan struktur dengan FPB meningkatkan perioda struktur sebesar 160,3% dari perioda struktur *fixed base*, sebagaimana ditunjukkan oleh **Gambar 17**.

Gambar 17. Grafik Perbandingan PErioda Getar Struktur

b. Perbandingan Story Displacement

Pada arah X, story displacement lantai atap struktur dengan LRB meningkat sebesar 191% dari story displacement lantai atap struktur fixed base, sedangkan story displacement lantai atap struktur FPB meningkat 301% dari story displacement lantai atap struktur fixed base, sebagaimana terlihat pada Gambar 18 (a)

Pada arah Y, story displacement lantai atap struktur dengan LRB meningkat sebesar 213% dari story displacement lantai atap struktur fixed base, sedangkan story displacement lantai atap struktur FPB meningkat 340% dari story displacement lantai atap struktur fixed base, sebagaimana terlihat pada Gambar 18 (b).

Gambar 18. Perbandingan *Story Displacement* c. Perbandingan Story Drift

Story drift arah x lantai atap struktur tipe LRB tereduksi sebesar 65,6% dari story drift lantai atap struktur fixed base, sedangkan struktur tipe FPB tereduksi 68,8 % dari story drift lantai atap struktur fixed base, sebagaimana ditunjukkan oleh **Gambar 19 (a)**. Story drift arah y lantai atap struktur tipe LRB tereduksi sebesar 64,9% dari story drift lantai atap struktur fixed base, sedangkan struktur tipe FPB tereduksi 68,3% dari story drift lantai atap struktur fixed base, sebagaimana ditunjukkan oleh Gambar 19 (b).

Gambar 19. Perbandingan Story Drift

d. Perbandingan Kinerja Struktur dari Analisis Pushover

Struktur *fixed base* memiliki level kinerja LS saat terjadi gempa maksimum, sedangkan struktur dengan base isoalation baik LRB maupun FPB memiliki level kinerja IO sesuai dengan persyaratan bangunan rumah sakit.

e. Perbandingan Analisis Nonlinier Time History

Dari hasil analisis NLTH dapat diketahui bahwa besar simpangan antara lantai dasar dan lantai atap struktur saat terjadi gempa mengalami penurunan saat menggunakan *base isolation*, dimana penurunan nilai simpangan terkecil adalah pada struktur dengan tipe FPB sebagaimana ditunjukkan pada **Gambar 20 – Gambar 26**

Gambar 20. Simpangan Arah X dan Y Akibat Gempa Tottori

Gambar 21. Simpangan Arah X dan Y Akibat Gempa Chi-chi

Gambar 22. Simpangan Arah X dan Y Akibat Gempa El Mayor - Cucapah

Gambar 23. Simpangan Arah X dan Y Akibat Gempa Iwate

Gambar 24. Simpangan Arah X dan Y Akibat Gempa Duzce

Gambar 26. Simpangan Arah X dan Y Akibat Gempa Niigata

4. Simpulan

Dari hasil analisis dan pembahasan dapat disimpulkan sebagai berikut:

- a. Penggunaan LRB meningkatkan perioda struktur sebesar 129,6%, sedangkan struktur dengan FPB meningkatkan perioda struktur sebesar 160,3% dari perioda struktur *fixed base*.
- b. *Story displacement* lantai atap struktur dengan LRB meningkat sebesar 191% (arah X) dan 213% (arah Y), sedangkan pada struktur FPB meningkat 301% (arah X) dan 340% (arah Y) dari pada *story displacement* lantai atap struktur *fixed base*.
- c. Story drift lantai atap struktur tipe LRB tereduksi sebesar 65,6% (arah X) dan 64,9% (arah Y), sedangkan struktur tipe FPB tereduksi 68,8 % (arah X) dan 68,3% (arah Y) dari pada story drift lantai atap struktur fixed base.
- Hasil analisis *pushover* menunjukkan bahwa level kinerja d. struktur fixed base berada antara Life Safety (LS) -Collapse Prevention (CP), hal ini menunjukkan bahwa komponen struktur telah mengalami kerusakan, berkurangnya kekakuan, tetapi masih cukup kuat menahan terjadinya keruntuhan, komponen non struktur masih ada tetapi tidak berfungsi, namun dapat digunakan kembali jika sudah dilakukan perbaikan. Setelah struktur dimodifikasi dengan menggunakan isolasi dasar LRB dan FPB, level kinerja struktur berada pada IO (Immediate Occupancy), yaitu struktur tidak mengalami kerusakan yang berarti pada komponen struktural maupun non struktural.dan memungkinkan penghuni untuk kembali menempati bangunan setelah dilakukan inspeksi dan perbaikan minor.
- e. Hasil analisis *nonlinier time history* menunjukkan bahwa simpangan antara lantai atap dan lantai dasar struktu berkurang dengan penggunaan *base isolation*, terutama FPB. Pada penggunaan FPB simpangan antara lantai atap dan lantai dasar sangat kecil yang artinya stuktur kaku dan saat terjadi gempa setiap lantai bergerak bersama-sama sesuai dengan perpindahan pada lantai dasar.
- f. Sehingga dapat disimpulkan penggunaan FPB merupakan yang paling efektif.

Daftar Pustaka

- B. F. Spencer, & S. Nagarajaiah, "State of The Art of Structural Contro,", Univ. Illinois at Urbana-Champaign, United State, 2003
- Y. Zhou, et al., "Shaking Table Tests and Numerical Studies on The Effect Of Viscous Dampers On An Isolated RC Building By Friction Pendulum Bearings," J. Journal of Building Engineering vol. 75, Sept. 2017
- [3] W. Liangkun, & N. Satish, "Seismic Performance Improvement of Base-Isolated Structures Using a Semi-Active Tuned Mass Damper," J. Engineering Structures vol. 271, Nov. 2022
- [4] S. V. Aditi, et al., "Performance Evaluation of FPS and LRB Isolated Frames Under Main and Aftershocks of an Earthquake," J. Structures vol. 44, Oct. 2022
- [5] I. W. Dicky, "Pemilihan dan Pen-skala-an Rekaman Akselerogram Gempa Nyata agar Sesuai dengan Spektrum Respons SNI 1726-2012," J. Apl. Tek. Sipil vol. 15, No 2; Aug. 2017
- [6] Badan Standardisasi Nasional, Standar Nasional Indonesia 1727:2020, Beban Desain Minimum dan Kriteria Terkait Untuk Bangunan Gedung dan Struktur Lain, Jakarta: Badan Standardisasi Nasional, 2020
- Badan Standardisasi Nasional, Standar Nasional Indonesia 2847:2019, Persyaratan Beton Struktural Untuk Bangunan Gedung dan Penjelasan. Jakarta: Badan Standardisasi Nasional, 2019
- [8] Badan Standardisasi Nasional, Standar Nasional Indonesia 1726:2019. Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Nongedung. Jakarta: Badan Standardisasi Nasional, 2019
- [9] K. Bharadwaj, & D. C. Rai, "Seismic Performance Comparison of Base-Isolated Hospital Building with Various Isolator Modeling Approache," J. International Journal of Earthquake and Impact Engineering, 1(2), 85-108, 2010
- [10] J. M. Kelly, & A. Calabrese, "Mechanics of Fiber Reinforced Bearings," J. Pacific Earthquake Engineering Research Center: 101, 2012
- [11] J. M. Kelly, & F. Naeim, Design of Seismic Isolated Structures from Theory To Practice, California: John Wiley & Sons, Inc, 1999